xref: /freebsd/contrib/llvm-project/lld/ELF/CallGraphSort.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- CallGraphSort.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// Implementation of Call-Chain Clustering from: Optimizing Function Placement
10 /// for Large-Scale Data-Center Applications
11 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
12 ///
13 /// The goal of this algorithm is to improve runtime performance of the final
14 /// executable by arranging code sections such that page table and i-cache
15 /// misses are minimized.
16 ///
17 /// Definitions:
18 /// * Cluster
19 ///   * An ordered list of input sections which are laid out as a unit. At the
20 ///     beginning of the algorithm each input section has its own cluster and
21 ///     the weight of the cluster is the sum of the weight of all incoming
22 ///     edges.
23 /// * Call-Chain Clustering (C³) Heuristic
24 ///   * Defines when and how clusters are combined. Pick the highest weighted
25 ///     input section then add it to its most likely predecessor if it wouldn't
26 ///     penalize it too much.
27 /// * Density
28 ///   * The weight of the cluster divided by the size of the cluster. This is a
29 ///     proxy for the amount of execution time spent per byte of the cluster.
30 ///
31 /// It does so given a call graph profile by the following:
32 /// * Build a weighted call graph from the call graph profile
33 /// * Sort input sections by weight
34 /// * For each input section starting with the highest weight
35 ///   * Find its most likely predecessor cluster
36 ///   * Check if the combined cluster would be too large, or would have too low
37 ///     a density.
38 ///   * If not, then combine the clusters.
39 /// * Sort non-empty clusters by density
40 ///
41 //===----------------------------------------------------------------------===//
42 
43 #include "CallGraphSort.h"
44 #include "OutputSections.h"
45 #include "SymbolTable.h"
46 #include "Symbols.h"
47 
48 #include <numeric>
49 
50 using namespace llvm;
51 
52 namespace lld {
53 namespace elf {
54 
55 namespace {
56 struct Edge {
57   int from;
58   uint64_t weight;
59 };
60 
61 struct Cluster {
62   Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
63 
64   double getDensity() const {
65     if (size == 0)
66       return 0;
67     return double(weight) / double(size);
68   }
69 
70   int next;
71   int prev;
72   size_t size = 0;
73   uint64_t weight = 0;
74   uint64_t initialWeight = 0;
75   Edge bestPred = {-1, 0};
76 };
77 
78 class CallGraphSort {
79 public:
80   CallGraphSort();
81 
82   DenseMap<const InputSectionBase *, int> run();
83 
84 private:
85   std::vector<Cluster> clusters;
86   std::vector<const InputSectionBase *> sections;
87 };
88 
89 // Maximum amount the combined cluster density can be worse than the original
90 // cluster to consider merging.
91 constexpr int MAX_DENSITY_DEGRADATION = 8;
92 
93 // Maximum cluster size in bytes.
94 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
95 } // end anonymous namespace
96 
97 using SectionPair =
98     std::pair<const InputSectionBase *, const InputSectionBase *>;
99 
100 // Take the edge list in Config->CallGraphProfile, resolve symbol names to
101 // Symbols, and generate a graph between InputSections with the provided
102 // weights.
103 CallGraphSort::CallGraphSort() {
104   MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
105   DenseMap<const InputSectionBase *, int> secToCluster;
106 
107   auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
108     auto res = secToCluster.try_emplace(isec, clusters.size());
109     if (res.second) {
110       sections.push_back(isec);
111       clusters.emplace_back(clusters.size(), isec->getSize());
112     }
113     return res.first->second;
114   };
115 
116   // Create the graph.
117   for (std::pair<SectionPair, uint64_t> &c : profile) {
118     const auto *fromSB = cast<InputSectionBase>(c.first.first->repl);
119     const auto *toSB = cast<InputSectionBase>(c.first.second->repl);
120     uint64_t weight = c.second;
121 
122     // Ignore edges between input sections belonging to different output
123     // sections.  This is done because otherwise we would end up with clusters
124     // containing input sections that can't actually be placed adjacently in the
125     // output.  This messes with the cluster size and density calculations.  We
126     // would also end up moving input sections in other output sections without
127     // moving them closer to what calls them.
128     if (fromSB->getOutputSection() != toSB->getOutputSection())
129       continue;
130 
131     int from = getOrCreateNode(fromSB);
132     int to = getOrCreateNode(toSB);
133 
134     clusters[to].weight += weight;
135 
136     if (from == to)
137       continue;
138 
139     // Remember the best edge.
140     Cluster &toC = clusters[to];
141     if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
142       toC.bestPred.from = from;
143       toC.bestPred.weight = weight;
144     }
145   }
146   for (Cluster &c : clusters)
147     c.initialWeight = c.weight;
148 }
149 
150 // It's bad to merge clusters which would degrade the density too much.
151 static bool isNewDensityBad(Cluster &a, Cluster &b) {
152   double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
153   return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
154 }
155 
156 // Find the leader of V's belonged cluster (represented as an equivalence
157 // class). We apply union-find path-halving technique (simple to implement) in
158 // the meantime as it decreases depths and the time complexity.
159 static int getLeader(std::vector<int> &leaders, int v) {
160   while (leaders[v] != v) {
161     leaders[v] = leaders[leaders[v]];
162     v = leaders[v];
163   }
164   return v;
165 }
166 
167 static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
168                           Cluster &from, int fromIdx) {
169   int tail1 = into.prev, tail2 = from.prev;
170   into.prev = tail2;
171   cs[tail2].next = intoIdx;
172   from.prev = tail1;
173   cs[tail1].next = fromIdx;
174   into.size += from.size;
175   into.weight += from.weight;
176   from.size = 0;
177   from.weight = 0;
178 }
179 
180 // Group InputSections into clusters using the Call-Chain Clustering heuristic
181 // then sort the clusters by density.
182 DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
183   std::vector<int> sorted(clusters.size());
184   std::vector<int> leaders(clusters.size());
185 
186   std::iota(leaders.begin(), leaders.end(), 0);
187   std::iota(sorted.begin(), sorted.end(), 0);
188   llvm::stable_sort(sorted, [&](int a, int b) {
189     return clusters[a].getDensity() > clusters[b].getDensity();
190   });
191 
192   for (int l : sorted) {
193     // The cluster index is the same as the index of its leader here because
194     // clusters[L] has not been merged into another cluster yet.
195     Cluster &c = clusters[l];
196 
197     // Don't consider merging if the edge is unlikely.
198     if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
199       continue;
200 
201     int predL = getLeader(leaders, c.bestPred.from);
202     if (l == predL)
203       continue;
204 
205     Cluster *predC = &clusters[predL];
206     if (c.size + predC->size > MAX_CLUSTER_SIZE)
207       continue;
208 
209     if (isNewDensityBad(*predC, c))
210       continue;
211 
212     leaders[l] = predL;
213     mergeClusters(clusters, *predC, predL, c, l);
214   }
215 
216   // Sort remaining non-empty clusters by density.
217   sorted.clear();
218   for (int i = 0, e = (int)clusters.size(); i != e; ++i)
219     if (clusters[i].size > 0)
220       sorted.push_back(i);
221   llvm::stable_sort(sorted, [&](int a, int b) {
222     return clusters[a].getDensity() > clusters[b].getDensity();
223   });
224 
225   DenseMap<const InputSectionBase *, int> orderMap;
226   int curOrder = 1;
227   for (int leader : sorted)
228     for (int i = leader;;) {
229       orderMap[sections[i]] = curOrder++;
230       i = clusters[i].next;
231       if (i == leader)
232         break;
233     }
234 
235   if (!config->printSymbolOrder.empty()) {
236     std::error_code ec;
237     raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
238     if (ec) {
239       error("cannot open " + config->printSymbolOrder + ": " + ec.message());
240       return orderMap;
241     }
242 
243     // Print the symbols ordered by C3, in the order of increasing curOrder
244     // Instead of sorting all the orderMap, just repeat the loops above.
245     for (int leader : sorted)
246       for (int i = leader;;) {
247         // Search all the symbols in the file of the section
248         // and find out a Defined symbol with name that is within the section.
249         for (Symbol *sym : sections[i]->file->getSymbols())
250           if (!sym->isSection()) // Filter out section-type symbols here.
251             if (auto *d = dyn_cast<Defined>(sym))
252               if (sections[i] == d->section)
253                 os << sym->getName() << "\n";
254         i = clusters[i].next;
255         if (i == leader)
256           break;
257       }
258   }
259 
260   return orderMap;
261 }
262 
263 // Sort sections by the profile data provided by -callgraph-profile-file
264 //
265 // This first builds a call graph based on the profile data then merges sections
266 // according to the C³ huristic. All clusters are then sorted by a density
267 // metric to further improve locality.
268 DenseMap<const InputSectionBase *, int> computeCallGraphProfileOrder() {
269   return CallGraphSort().run();
270 }
271 
272 } // namespace elf
273 } // namespace lld
274