1 //===- CallGraphSort.cpp --------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// Implementation of Call-Chain Clustering from: Optimizing Function Placement 10 /// for Large-Scale Data-Center Applications 11 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf 12 /// 13 /// The goal of this algorithm is to improve runtime performance of the final 14 /// executable by arranging code sections such that page table and i-cache 15 /// misses are minimized. 16 /// 17 /// Definitions: 18 /// * Cluster 19 /// * An ordered list of input sections which are laid out as a unit. At the 20 /// beginning of the algorithm each input section has its own cluster and 21 /// the weight of the cluster is the sum of the weight of all incoming 22 /// edges. 23 /// * Call-Chain Clustering (C³) Heuristic 24 /// * Defines when and how clusters are combined. Pick the highest weighted 25 /// input section then add it to its most likely predecessor if it wouldn't 26 /// penalize it too much. 27 /// * Density 28 /// * The weight of the cluster divided by the size of the cluster. This is a 29 /// proxy for the amount of execution time spent per byte of the cluster. 30 /// 31 /// It does so given a call graph profile by the following: 32 /// * Build a weighted call graph from the call graph profile 33 /// * Sort input sections by weight 34 /// * For each input section starting with the highest weight 35 /// * Find its most likely predecessor cluster 36 /// * Check if the combined cluster would be too large, or would have too low 37 /// a density. 38 /// * If not, then combine the clusters. 39 /// * Sort non-empty clusters by density 40 /// 41 //===----------------------------------------------------------------------===// 42 43 #include "CallGraphSort.h" 44 #include "OutputSections.h" 45 #include "SymbolTable.h" 46 #include "Symbols.h" 47 48 #include <numeric> 49 50 using namespace llvm; 51 using namespace lld; 52 using namespace lld::elf; 53 54 namespace { 55 struct Edge { 56 int from; 57 uint64_t weight; 58 }; 59 60 struct Cluster { 61 Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {} 62 63 double getDensity() const { 64 if (size == 0) 65 return 0; 66 return double(weight) / double(size); 67 } 68 69 int next; 70 int prev; 71 uint64_t size; 72 uint64_t weight = 0; 73 uint64_t initialWeight = 0; 74 Edge bestPred = {-1, 0}; 75 }; 76 77 class CallGraphSort { 78 public: 79 CallGraphSort(); 80 81 DenseMap<const InputSectionBase *, int> run(); 82 83 private: 84 std::vector<Cluster> clusters; 85 std::vector<const InputSectionBase *> sections; 86 }; 87 88 // Maximum amount the combined cluster density can be worse than the original 89 // cluster to consider merging. 90 constexpr int MAX_DENSITY_DEGRADATION = 8; 91 92 // Maximum cluster size in bytes. 93 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; 94 } // end anonymous namespace 95 96 using SectionPair = 97 std::pair<const InputSectionBase *, const InputSectionBase *>; 98 99 // Take the edge list in Config->CallGraphProfile, resolve symbol names to 100 // Symbols, and generate a graph between InputSections with the provided 101 // weights. 102 CallGraphSort::CallGraphSort() { 103 MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile; 104 DenseMap<const InputSectionBase *, int> secToCluster; 105 106 auto getOrCreateNode = [&](const InputSectionBase *isec) -> int { 107 auto res = secToCluster.try_emplace(isec, clusters.size()); 108 if (res.second) { 109 sections.push_back(isec); 110 clusters.emplace_back(clusters.size(), isec->getSize()); 111 } 112 return res.first->second; 113 }; 114 115 // Create the graph. 116 for (std::pair<SectionPair, uint64_t> &c : profile) { 117 const auto *fromSB = cast<InputSectionBase>(c.first.first); 118 const auto *toSB = cast<InputSectionBase>(c.first.second); 119 uint64_t weight = c.second; 120 121 // Ignore edges between input sections belonging to different output 122 // sections. This is done because otherwise we would end up with clusters 123 // containing input sections that can't actually be placed adjacently in the 124 // output. This messes with the cluster size and density calculations. We 125 // would also end up moving input sections in other output sections without 126 // moving them closer to what calls them. 127 if (fromSB->getOutputSection() != toSB->getOutputSection()) 128 continue; 129 130 int from = getOrCreateNode(fromSB); 131 int to = getOrCreateNode(toSB); 132 133 clusters[to].weight += weight; 134 135 if (from == to) 136 continue; 137 138 // Remember the best edge. 139 Cluster &toC = clusters[to]; 140 if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) { 141 toC.bestPred.from = from; 142 toC.bestPred.weight = weight; 143 } 144 } 145 for (Cluster &c : clusters) 146 c.initialWeight = c.weight; 147 } 148 149 // It's bad to merge clusters which would degrade the density too much. 150 static bool isNewDensityBad(Cluster &a, Cluster &b) { 151 double newDensity = double(a.weight + b.weight) / double(a.size + b.size); 152 return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION; 153 } 154 155 // Find the leader of V's belonged cluster (represented as an equivalence 156 // class). We apply union-find path-halving technique (simple to implement) in 157 // the meantime as it decreases depths and the time complexity. 158 static int getLeader(std::vector<int> &leaders, int v) { 159 while (leaders[v] != v) { 160 leaders[v] = leaders[leaders[v]]; 161 v = leaders[v]; 162 } 163 return v; 164 } 165 166 static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx, 167 Cluster &from, int fromIdx) { 168 int tail1 = into.prev, tail2 = from.prev; 169 into.prev = tail2; 170 cs[tail2].next = intoIdx; 171 from.prev = tail1; 172 cs[tail1].next = fromIdx; 173 into.size += from.size; 174 into.weight += from.weight; 175 from.size = 0; 176 from.weight = 0; 177 } 178 179 // Group InputSections into clusters using the Call-Chain Clustering heuristic 180 // then sort the clusters by density. 181 DenseMap<const InputSectionBase *, int> CallGraphSort::run() { 182 std::vector<int> sorted(clusters.size()); 183 std::vector<int> leaders(clusters.size()); 184 185 std::iota(leaders.begin(), leaders.end(), 0); 186 std::iota(sorted.begin(), sorted.end(), 0); 187 llvm::stable_sort(sorted, [&](int a, int b) { 188 return clusters[a].getDensity() > clusters[b].getDensity(); 189 }); 190 191 for (int l : sorted) { 192 // The cluster index is the same as the index of its leader here because 193 // clusters[L] has not been merged into another cluster yet. 194 Cluster &c = clusters[l]; 195 196 // Don't consider merging if the edge is unlikely. 197 if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight) 198 continue; 199 200 int predL = getLeader(leaders, c.bestPred.from); 201 if (l == predL) 202 continue; 203 204 Cluster *predC = &clusters[predL]; 205 if (c.size + predC->size > MAX_CLUSTER_SIZE) 206 continue; 207 208 if (isNewDensityBad(*predC, c)) 209 continue; 210 211 leaders[l] = predL; 212 mergeClusters(clusters, *predC, predL, c, l); 213 } 214 215 // Sort remaining non-empty clusters by density. 216 sorted.clear(); 217 for (int i = 0, e = (int)clusters.size(); i != e; ++i) 218 if (clusters[i].size > 0) 219 sorted.push_back(i); 220 llvm::stable_sort(sorted, [&](int a, int b) { 221 return clusters[a].getDensity() > clusters[b].getDensity(); 222 }); 223 224 DenseMap<const InputSectionBase *, int> orderMap; 225 int curOrder = 1; 226 for (int leader : sorted) { 227 for (int i = leader;;) { 228 orderMap[sections[i]] = curOrder++; 229 i = clusters[i].next; 230 if (i == leader) 231 break; 232 } 233 } 234 if (!config->printSymbolOrder.empty()) { 235 std::error_code ec; 236 raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None); 237 if (ec) { 238 error("cannot open " + config->printSymbolOrder + ": " + ec.message()); 239 return orderMap; 240 } 241 242 // Print the symbols ordered by C3, in the order of increasing curOrder 243 // Instead of sorting all the orderMap, just repeat the loops above. 244 for (int leader : sorted) 245 for (int i = leader;;) { 246 // Search all the symbols in the file of the section 247 // and find out a Defined symbol with name that is within the section. 248 for (Symbol *sym : sections[i]->file->getSymbols()) 249 if (!sym->isSection()) // Filter out section-type symbols here. 250 if (auto *d = dyn_cast<Defined>(sym)) 251 if (sections[i] == d->section) 252 os << sym->getName() << "\n"; 253 i = clusters[i].next; 254 if (i == leader) 255 break; 256 } 257 } 258 259 return orderMap; 260 } 261 262 // Sort sections by the profile data provided by --callgraph-profile-file. 263 // 264 // This first builds a call graph based on the profile data then merges sections 265 // according to the C³ heuristic. All clusters are then sorted by a density 266 // metric to further improve locality. 267 DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() { 268 return CallGraphSort().run(); 269 } 270