xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/X86_64.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/Object/ELF.h"
16 #include "llvm/Support/Endian.h"
17 
18 using namespace llvm;
19 using namespace llvm::object;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24 
25 namespace {
26 class X86_64 : public TargetInfo {
27 public:
28   X86_64();
29   int getTlsGdRelaxSkip(RelType type) const override;
30   RelExpr getRelExpr(RelType type, const Symbol &s,
31                      const uint8_t *loc) const override;
32   RelType getDynRel(RelType type) const override;
33   void writeGotPltHeader(uint8_t *buf) const override;
34   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
35   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
36   void writePltHeader(uint8_t *buf) const override;
37   void writePlt(uint8_t *buf, const Symbol &sym,
38                 uint64_t pltEntryAddr) const override;
39   void relocate(uint8_t *loc, const Relocation &rel,
40                 uint64_t val) const override;
41   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
42   void applyJumpInstrMod(uint8_t *loc, JumpModType type,
43                          unsigned size) const override;
44 
45   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
46                           const uint8_t *loc) const override;
47   void relaxGot(uint8_t *loc, const Relocation &rel,
48                 uint64_t val) const override;
49   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
50                       uint64_t val) const override;
51   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
52                       uint64_t val) const override;
53   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
54                       uint64_t val) const override;
55   void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
56                       uint64_t val) const override;
57   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
58                                         uint8_t stOther) const override;
59   bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
60                              InputSection *nextIS) const override;
61 };
62 } // namespace
63 
64 // This is vector of NOP instructions of sizes from 1 to 8 bytes.  The
65 // appropriately sized instructions are used to fill the gaps between sections
66 // which are executed during fall through.
67 static const std::vector<std::vector<uint8_t>> nopInstructions = {
68     {0x90},
69     {0x66, 0x90},
70     {0x0f, 0x1f, 0x00},
71     {0x0f, 0x1f, 0x40, 0x00},
72     {0x0f, 0x1f, 0x44, 0x00, 0x00},
73     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
74     {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
75     {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
76     {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
77 
78 X86_64::X86_64() {
79   copyRel = R_X86_64_COPY;
80   gotRel = R_X86_64_GLOB_DAT;
81   pltRel = R_X86_64_JUMP_SLOT;
82   relativeRel = R_X86_64_RELATIVE;
83   iRelativeRel = R_X86_64_IRELATIVE;
84   symbolicRel = R_X86_64_64;
85   tlsDescRel = R_X86_64_TLSDESC;
86   tlsGotRel = R_X86_64_TPOFF64;
87   tlsModuleIndexRel = R_X86_64_DTPMOD64;
88   tlsOffsetRel = R_X86_64_DTPOFF64;
89   gotBaseSymInGotPlt = true;
90   gotEntrySize = 8;
91   pltHeaderSize = 16;
92   pltEntrySize = 16;
93   ipltEntrySize = 16;
94   trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
95   nopInstrs = nopInstructions;
96 
97   // Align to the large page size (known as a superpage or huge page).
98   // FreeBSD automatically promotes large, superpage-aligned allocations.
99   defaultImageBase = 0x200000;
100 }
101 
102 int X86_64::getTlsGdRelaxSkip(RelType type) const {
103   // TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
104   return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1
105                                                                            : 2;
106 }
107 
108 // Opcodes for the different X86_64 jmp instructions.
109 enum JmpInsnOpcode : uint32_t {
110   J_JMP_32,
111   J_JNE_32,
112   J_JE_32,
113   J_JG_32,
114   J_JGE_32,
115   J_JB_32,
116   J_JBE_32,
117   J_JL_32,
118   J_JLE_32,
119   J_JA_32,
120   J_JAE_32,
121   J_UNKNOWN,
122 };
123 
124 // Given the first (optional) and second byte of the insn's opcode, this
125 // returns the corresponding enum value.
126 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
127                                     const uint8_t *second) {
128   if (*second == 0xe9)
129     return J_JMP_32;
130 
131   if (first == nullptr)
132     return J_UNKNOWN;
133 
134   if (*first == 0x0f) {
135     switch (*second) {
136     case 0x84:
137       return J_JE_32;
138     case 0x85:
139       return J_JNE_32;
140     case 0x8f:
141       return J_JG_32;
142     case 0x8d:
143       return J_JGE_32;
144     case 0x82:
145       return J_JB_32;
146     case 0x86:
147       return J_JBE_32;
148     case 0x8c:
149       return J_JL_32;
150     case 0x8e:
151       return J_JLE_32;
152     case 0x87:
153       return J_JA_32;
154     case 0x83:
155       return J_JAE_32;
156     }
157   }
158   return J_UNKNOWN;
159 }
160 
161 // Return the relocation index for input section IS with a specific Offset.
162 // Returns the maximum size of the vector if no such relocation is found.
163 static unsigned getRelocationWithOffset(const InputSection &is,
164                                         uint64_t offset) {
165   unsigned size = is.relocations.size();
166   for (unsigned i = size - 1; i + 1 > 0; --i) {
167     if (is.relocations[i].offset == offset && is.relocations[i].expr != R_NONE)
168       return i;
169   }
170   return size;
171 }
172 
173 // Returns true if R corresponds to a relocation used for a jump instruction.
174 // TODO: Once special relocations for relaxable jump instructions are available,
175 // this should be modified to use those relocations.
176 static bool isRelocationForJmpInsn(Relocation &R) {
177   return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
178          R.type == R_X86_64_PC8;
179 }
180 
181 // Return true if Relocation R points to the first instruction in the
182 // next section.
183 // TODO: Delete this once psABI reserves a new relocation type for fall thru
184 // jumps.
185 static bool isFallThruRelocation(InputSection &is, InputFile *file,
186                                  InputSection *nextIS, Relocation &r) {
187   if (!isRelocationForJmpInsn(r))
188     return false;
189 
190   uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
191   uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
192       file, r.type, r.addend, addrLoc, *r.sym, r.expr);
193 
194   // If this jmp is a fall thru, the target offset is the beginning of the
195   // next section.
196   uint64_t nextSectionOffset =
197       nextIS->getOutputSection()->addr + nextIS->outSecOff;
198   return (addrLoc + 4 + targetOffset) == nextSectionOffset;
199 }
200 
201 // Return the jmp instruction opcode that is the inverse of the given
202 // opcode.  For example, JE inverted is JNE.
203 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
204   switch (opcode) {
205   case J_JE_32:
206     return J_JNE_32;
207   case J_JNE_32:
208     return J_JE_32;
209   case J_JG_32:
210     return J_JLE_32;
211   case J_JGE_32:
212     return J_JL_32;
213   case J_JB_32:
214     return J_JAE_32;
215   case J_JBE_32:
216     return J_JA_32;
217   case J_JL_32:
218     return J_JGE_32;
219   case J_JLE_32:
220     return J_JG_32;
221   case J_JA_32:
222     return J_JBE_32;
223   case J_JAE_32:
224     return J_JB_32;
225   default:
226     return J_UNKNOWN;
227   }
228 }
229 
230 // Deletes direct jump instruction in input sections that jumps to the
231 // following section as it is not required.  If there are two consecutive jump
232 // instructions, it checks if they can be flipped and one can be deleted.
233 // For example:
234 // .section .text
235 // a.BB.foo:
236 //    ...
237 //    10: jne aa.BB.foo
238 //    16: jmp bar
239 // aa.BB.foo:
240 //    ...
241 //
242 // can be converted to:
243 // a.BB.foo:
244 //   ...
245 //   10: je bar  #jne flipped to je and the jmp is deleted.
246 // aa.BB.foo:
247 //   ...
248 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
249                                    InputSection *nextIS) const {
250   const unsigned sizeOfDirectJmpInsn = 5;
251 
252   if (nextIS == nullptr)
253     return false;
254 
255   if (is.getSize() < sizeOfDirectJmpInsn)
256     return false;
257 
258   // If this jmp insn can be removed, it is the last insn and the
259   // relocation is 4 bytes before the end.
260   unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
261   if (rIndex == is.relocations.size())
262     return false;
263 
264   Relocation &r = is.relocations[rIndex];
265 
266   // Check if the relocation corresponds to a direct jmp.
267   const uint8_t *secContents = is.data().data();
268   // If it is not a direct jmp instruction, there is nothing to do here.
269   if (*(secContents + r.offset - 1) != 0xe9)
270     return false;
271 
272   if (isFallThruRelocation(is, file, nextIS, r)) {
273     // This is a fall thru and can be deleted.
274     r.expr = R_NONE;
275     r.offset = 0;
276     is.drop_back(sizeOfDirectJmpInsn);
277     is.nopFiller = true;
278     return true;
279   }
280 
281   // Now, check if flip and delete is possible.
282   const unsigned sizeOfJmpCCInsn = 6;
283   // To flip, there must be atleast one JmpCC and one direct jmp.
284   if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
285     return false;
286 
287   unsigned rbIndex =
288       getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
289   if (rbIndex == is.relocations.size())
290     return false;
291 
292   Relocation &rB = is.relocations[rbIndex];
293 
294   const uint8_t *jmpInsnB = secContents + rB.offset - 1;
295   JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
296   if (jmpOpcodeB == J_UNKNOWN)
297     return false;
298 
299   if (!isFallThruRelocation(is, file, nextIS, rB))
300     return false;
301 
302   // jmpCC jumps to the fall thru block, the branch can be flipped and the
303   // jmp can be deleted.
304   JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
305   if (jInvert == J_UNKNOWN)
306     return false;
307   is.jumpInstrMod = make<JumpInstrMod>();
308   *is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
309   // Move R's values to rB except the offset.
310   rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
311   // Cancel R
312   r.expr = R_NONE;
313   r.offset = 0;
314   is.drop_back(sizeOfDirectJmpInsn);
315   is.nopFiller = true;
316   return true;
317 }
318 
319 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
320                            const uint8_t *loc) const {
321   if (type == R_X86_64_GOTTPOFF)
322     config->hasTlsIe = true;
323 
324   switch (type) {
325   case R_X86_64_8:
326   case R_X86_64_16:
327   case R_X86_64_32:
328   case R_X86_64_32S:
329   case R_X86_64_64:
330     return R_ABS;
331   case R_X86_64_DTPOFF32:
332   case R_X86_64_DTPOFF64:
333     return R_DTPREL;
334   case R_X86_64_TPOFF32:
335     return R_TPREL;
336   case R_X86_64_TLSDESC_CALL:
337     return R_TLSDESC_CALL;
338   case R_X86_64_TLSLD:
339     return R_TLSLD_PC;
340   case R_X86_64_TLSGD:
341     return R_TLSGD_PC;
342   case R_X86_64_SIZE32:
343   case R_X86_64_SIZE64:
344     return R_SIZE;
345   case R_X86_64_PLT32:
346     return R_PLT_PC;
347   case R_X86_64_PC8:
348   case R_X86_64_PC16:
349   case R_X86_64_PC32:
350   case R_X86_64_PC64:
351     return R_PC;
352   case R_X86_64_GOT32:
353   case R_X86_64_GOT64:
354     return R_GOTPLT;
355   case R_X86_64_GOTPC32_TLSDESC:
356     return R_TLSDESC_PC;
357   case R_X86_64_GOTPCREL:
358   case R_X86_64_GOTPCRELX:
359   case R_X86_64_REX_GOTPCRELX:
360   case R_X86_64_GOTTPOFF:
361     return R_GOT_PC;
362   case R_X86_64_GOTOFF64:
363     return R_GOTPLTREL;
364   case R_X86_64_PLTOFF64:
365     return R_PLT_GOTPLT;
366   case R_X86_64_GOTPC32:
367   case R_X86_64_GOTPC64:
368     return R_GOTPLTONLY_PC;
369   case R_X86_64_NONE:
370     return R_NONE;
371   default:
372     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
373           ") against symbol " + toString(s));
374     return R_NONE;
375   }
376 }
377 
378 void X86_64::writeGotPltHeader(uint8_t *buf) const {
379   // The first entry holds the value of _DYNAMIC. It is not clear why that is
380   // required, but it is documented in the psabi and the glibc dynamic linker
381   // seems to use it (note that this is relevant for linking ld.so, not any
382   // other program).
383   write64le(buf, mainPart->dynamic->getVA());
384 }
385 
386 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
387   // See comments in X86::writeGotPlt.
388   write64le(buf, s.getPltVA() + 6);
389 }
390 
391 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
392   // An x86 entry is the address of the ifunc resolver function (for -z rel).
393   if (config->writeAddends)
394     write64le(buf, s.getVA());
395 }
396 
397 void X86_64::writePltHeader(uint8_t *buf) const {
398   const uint8_t pltData[] = {
399       0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
400       0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
401       0x0f, 0x1f, 0x40, 0x00, // nop
402   };
403   memcpy(buf, pltData, sizeof(pltData));
404   uint64_t gotPlt = in.gotPlt->getVA();
405   uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
406   write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
407   write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
408 }
409 
410 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
411                       uint64_t pltEntryAddr) const {
412   const uint8_t inst[] = {
413       0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
414       0x68, 0, 0, 0, 0,       // pushq <relocation index>
415       0xe9, 0, 0, 0, 0,       // jmpq plt[0]
416   };
417   memcpy(buf, inst, sizeof(inst));
418 
419   write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
420   write32le(buf + 7, sym.getPltIdx());
421   write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
422 }
423 
424 RelType X86_64::getDynRel(RelType type) const {
425   if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
426       type == R_X86_64_SIZE64)
427     return type;
428   return R_X86_64_NONE;
429 }
430 
431 void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
432                             uint64_t val) const {
433   if (rel.type == R_X86_64_TLSGD) {
434     // Convert
435     //   .byte 0x66
436     //   leaq x@tlsgd(%rip), %rdi
437     //   .word 0x6666
438     //   rex64
439     //   call __tls_get_addr@plt
440     // to the following two instructions.
441     const uint8_t inst[] = {
442         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
443         0x00, 0x00,                            // mov %fs:0x0,%rax
444         0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
445     };
446     memcpy(loc - 4, inst, sizeof(inst));
447 
448     // The original code used a pc relative relocation and so we have to
449     // compensate for the -4 in had in the addend.
450     write32le(loc + 8, val + 4);
451   } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
452     // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
453     if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
454         (loc[-1] & 0xc7) != 0x05) {
455       errorOrWarn(getErrorLocation(loc - 3) +
456                   "R_X86_64_GOTPC32_TLSDESC must be used "
457                   "in leaq x@tlsdesc(%rip), %REG");
458       return;
459     }
460     loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
461     loc[-2] = 0xc7;
462     loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
463     write32le(loc, val + 4);
464   } else {
465     // Convert call *x@tlsdesc(%REG) to xchg ax, ax.
466     assert(rel.type == R_X86_64_TLSDESC_CALL);
467     loc[0] = 0x66;
468     loc[1] = 0x90;
469   }
470 }
471 
472 void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
473                             uint64_t val) const {
474   if (rel.type == R_X86_64_TLSGD) {
475     // Convert
476     //   .byte 0x66
477     //   leaq x@tlsgd(%rip), %rdi
478     //   .word 0x6666
479     //   rex64
480     //   call __tls_get_addr@plt
481     // to the following two instructions.
482     const uint8_t inst[] = {
483         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
484         0x00, 0x00,                            // mov %fs:0x0,%rax
485         0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
486     };
487     memcpy(loc - 4, inst, sizeof(inst));
488 
489     // Both code sequences are PC relatives, but since we are moving the
490     // constant forward by 8 bytes we have to subtract the value by 8.
491     write32le(loc + 8, val - 8);
492   } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
493     // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
494     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
495     if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
496         (loc[-1] & 0xc7) != 0x05) {
497       errorOrWarn(getErrorLocation(loc - 3) +
498                   "R_X86_64_GOTPC32_TLSDESC must be used "
499                   "in leaq x@tlsdesc(%rip), %REG");
500       return;
501     }
502     loc[-2] = 0x8b;
503     write32le(loc, val);
504   } else {
505     // Convert call *x@tlsdesc(%rax) to xchg ax, ax.
506     assert(rel.type == R_X86_64_TLSDESC_CALL);
507     loc[0] = 0x66;
508     loc[1] = 0x90;
509   }
510 }
511 
512 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
513 // R_X86_64_TPOFF32 so that it does not use GOT.
514 void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &,
515                             uint64_t val) const {
516   uint8_t *inst = loc - 3;
517   uint8_t reg = loc[-1] >> 3;
518   uint8_t *regSlot = loc - 1;
519 
520   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
521   // because LEA with these registers needs 4 bytes to encode and thus
522   // wouldn't fit the space.
523 
524   if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
525     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
526     memcpy(inst, "\x48\x81\xc4", 3);
527   } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
528     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
529     memcpy(inst, "\x49\x81\xc4", 3);
530   } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
531     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
532     memcpy(inst, "\x4d\x8d", 2);
533     *regSlot = 0x80 | (reg << 3) | reg;
534   } else if (memcmp(inst, "\x48\x03", 2) == 0) {
535     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
536     memcpy(inst, "\x48\x8d", 2);
537     *regSlot = 0x80 | (reg << 3) | reg;
538   } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
539     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
540     memcpy(inst, "\x49\xc7", 2);
541     *regSlot = 0xc0 | reg;
542   } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
543     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
544     memcpy(inst, "\x48\xc7", 2);
545     *regSlot = 0xc0 | reg;
546   } else {
547     error(getErrorLocation(loc - 3) +
548           "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
549   }
550 
551   // The original code used a PC relative relocation.
552   // Need to compensate for the -4 it had in the addend.
553   write32le(loc, val + 4);
554 }
555 
556 void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
557                             uint64_t val) const {
558   if (rel.type == R_X86_64_DTPOFF64) {
559     write64le(loc, val);
560     return;
561   }
562   if (rel.type == R_X86_64_DTPOFF32) {
563     write32le(loc, val);
564     return;
565   }
566 
567   const uint8_t inst[] = {
568       0x66, 0x66,                                           // .word 0x6666
569       0x66,                                                 // .byte 0x66
570       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
571   };
572 
573   if (loc[4] == 0xe8) {
574     // Convert
575     //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
576     //   callq __tls_get_addr@PLT             # e8 <disp32>
577     //   leaq bar@dtpoff(%rax), %rcx
578     // to
579     //   .word 0x6666
580     //   .byte 0x66
581     //   mov %fs:0,%rax
582     //   leaq bar@tpoff(%rax), %rcx
583     memcpy(loc - 3, inst, sizeof(inst));
584     return;
585   }
586 
587   if (loc[4] == 0xff && loc[5] == 0x15) {
588     // Convert
589     //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
590     //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
591     // to
592     //   .long  0x66666666
593     //   movq   %fs:0,%rax
594     // See "Table 11.9: LD -> LE Code Transition (LP64)" in
595     // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
596     loc[-3] = 0x66;
597     memcpy(loc - 2, inst, sizeof(inst));
598     return;
599   }
600 
601   error(getErrorLocation(loc - 3) +
602         "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
603 }
604 
605 // A JumpInstrMod at a specific offset indicates that the jump instruction
606 // opcode at that offset must be modified.  This is specifically used to relax
607 // jump instructions with basic block sections.  This function looks at the
608 // JumpMod and effects the change.
609 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
610                                unsigned size) const {
611   switch (type) {
612   case J_JMP_32:
613     if (size == 4)
614       *loc = 0xe9;
615     else
616       *loc = 0xeb;
617     break;
618   case J_JE_32:
619     if (size == 4) {
620       loc[-1] = 0x0f;
621       *loc = 0x84;
622     } else
623       *loc = 0x74;
624     break;
625   case J_JNE_32:
626     if (size == 4) {
627       loc[-1] = 0x0f;
628       *loc = 0x85;
629     } else
630       *loc = 0x75;
631     break;
632   case J_JG_32:
633     if (size == 4) {
634       loc[-1] = 0x0f;
635       *loc = 0x8f;
636     } else
637       *loc = 0x7f;
638     break;
639   case J_JGE_32:
640     if (size == 4) {
641       loc[-1] = 0x0f;
642       *loc = 0x8d;
643     } else
644       *loc = 0x7d;
645     break;
646   case J_JB_32:
647     if (size == 4) {
648       loc[-1] = 0x0f;
649       *loc = 0x82;
650     } else
651       *loc = 0x72;
652     break;
653   case J_JBE_32:
654     if (size == 4) {
655       loc[-1] = 0x0f;
656       *loc = 0x86;
657     } else
658       *loc = 0x76;
659     break;
660   case J_JL_32:
661     if (size == 4) {
662       loc[-1] = 0x0f;
663       *loc = 0x8c;
664     } else
665       *loc = 0x7c;
666     break;
667   case J_JLE_32:
668     if (size == 4) {
669       loc[-1] = 0x0f;
670       *loc = 0x8e;
671     } else
672       *loc = 0x7e;
673     break;
674   case J_JA_32:
675     if (size == 4) {
676       loc[-1] = 0x0f;
677       *loc = 0x87;
678     } else
679       *loc = 0x77;
680     break;
681   case J_JAE_32:
682     if (size == 4) {
683       loc[-1] = 0x0f;
684       *loc = 0x83;
685     } else
686       *loc = 0x73;
687     break;
688   case J_UNKNOWN:
689     llvm_unreachable("Unknown Jump Relocation");
690   }
691 }
692 
693 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
694   switch (type) {
695   case R_X86_64_8:
696   case R_X86_64_PC8:
697     return SignExtend64<8>(*buf);
698   case R_X86_64_16:
699   case R_X86_64_PC16:
700     return SignExtend64<16>(read16le(buf));
701   case R_X86_64_32:
702   case R_X86_64_32S:
703   case R_X86_64_TPOFF32:
704   case R_X86_64_GOT32:
705   case R_X86_64_GOTPC32:
706   case R_X86_64_GOTPC32_TLSDESC:
707   case R_X86_64_GOTPCREL:
708   case R_X86_64_GOTPCRELX:
709   case R_X86_64_REX_GOTPCRELX:
710   case R_X86_64_PC32:
711   case R_X86_64_GOTTPOFF:
712   case R_X86_64_PLT32:
713   case R_X86_64_TLSGD:
714   case R_X86_64_TLSLD:
715   case R_X86_64_DTPOFF32:
716   case R_X86_64_SIZE32:
717     return SignExtend64<32>(read32le(buf));
718   case R_X86_64_64:
719   case R_X86_64_TPOFF64:
720   case R_X86_64_DTPOFF64:
721   case R_X86_64_DTPMOD64:
722   case R_X86_64_PC64:
723   case R_X86_64_SIZE64:
724   case R_X86_64_GLOB_DAT:
725   case R_X86_64_GOT64:
726   case R_X86_64_GOTOFF64:
727   case R_X86_64_GOTPC64:
728   case R_X86_64_PLTOFF64:
729   case R_X86_64_IRELATIVE:
730   case R_X86_64_RELATIVE:
731     return read64le(buf);
732   case R_X86_64_TLSDESC:
733     return read64le(buf + 8);
734   case R_X86_64_JUMP_SLOT:
735   case R_X86_64_NONE:
736     // These relocations are defined as not having an implicit addend.
737     return 0;
738   default:
739     internalLinkerError(getErrorLocation(buf),
740                         "cannot read addend for relocation " + toString(type));
741     return 0;
742   }
743 }
744 
745 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
746   switch (rel.type) {
747   case R_X86_64_8:
748     checkIntUInt(loc, val, 8, rel);
749     *loc = val;
750     break;
751   case R_X86_64_PC8:
752     checkInt(loc, val, 8, rel);
753     *loc = val;
754     break;
755   case R_X86_64_16:
756     checkIntUInt(loc, val, 16, rel);
757     write16le(loc, val);
758     break;
759   case R_X86_64_PC16:
760     checkInt(loc, val, 16, rel);
761     write16le(loc, val);
762     break;
763   case R_X86_64_32:
764     checkUInt(loc, val, 32, rel);
765     write32le(loc, val);
766     break;
767   case R_X86_64_32S:
768   case R_X86_64_TPOFF32:
769   case R_X86_64_GOT32:
770   case R_X86_64_GOTPC32:
771   case R_X86_64_GOTPC32_TLSDESC:
772   case R_X86_64_GOTPCREL:
773   case R_X86_64_GOTPCRELX:
774   case R_X86_64_REX_GOTPCRELX:
775   case R_X86_64_PC32:
776   case R_X86_64_GOTTPOFF:
777   case R_X86_64_PLT32:
778   case R_X86_64_TLSGD:
779   case R_X86_64_TLSLD:
780   case R_X86_64_DTPOFF32:
781   case R_X86_64_SIZE32:
782     checkInt(loc, val, 32, rel);
783     write32le(loc, val);
784     break;
785   case R_X86_64_64:
786   case R_X86_64_DTPOFF64:
787   case R_X86_64_PC64:
788   case R_X86_64_SIZE64:
789   case R_X86_64_GOT64:
790   case R_X86_64_GOTOFF64:
791   case R_X86_64_GOTPC64:
792   case R_X86_64_PLTOFF64:
793     write64le(loc, val);
794     break;
795   case R_X86_64_TLSDESC:
796     // The addend is stored in the second 64-bit word.
797     write64le(loc + 8, val);
798     break;
799   default:
800     llvm_unreachable("unknown relocation");
801   }
802 }
803 
804 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
805                                 const uint8_t *loc) const {
806   // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
807   // with addend != -4. Such an instruction does not load the full GOT entry, so
808   // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
809   // (addend=0) loads the high 32 bits of the GOT entry.
810   if (!config->relax || addend != -4 ||
811       (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
812     return R_GOT_PC;
813   const uint8_t op = loc[-2];
814   const uint8_t modRm = loc[-1];
815 
816   // FIXME: When PIC is disabled and foo is defined locally in the
817   // lower 32 bit address space, memory operand in mov can be converted into
818   // immediate operand. Otherwise, mov must be changed to lea. We support only
819   // latter relaxation at this moment.
820   if (op == 0x8b)
821     return R_RELAX_GOT_PC;
822 
823   // Relax call and jmp.
824   if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
825     return R_RELAX_GOT_PC;
826 
827   // We don't support test/binop instructions without a REX prefix.
828   if (type == R_X86_64_GOTPCRELX)
829     return R_GOT_PC;
830 
831   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
832   // If PIC then no relaxation is available.
833   return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
834 }
835 
836 // A subset of relaxations can only be applied for no-PIC. This method
837 // handles such relaxations. Instructions encoding information was taken from:
838 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
839 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
840 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
841 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
842                           uint8_t modRm) {
843   const uint8_t rex = loc[-3];
844   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
845   if (op == 0x85) {
846     // See "TEST-Logical Compare" (4-428 Vol. 2B),
847     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
848 
849     // ModR/M byte has form XX YYY ZZZ, where
850     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
851     // XX has different meanings:
852     // 00: The operand's memory address is in reg1.
853     // 01: The operand's memory address is reg1 + a byte-sized displacement.
854     // 10: The operand's memory address is reg1 + a word-sized displacement.
855     // 11: The operand is reg1 itself.
856     // If an instruction requires only one operand, the unused reg2 field
857     // holds extra opcode bits rather than a register code
858     // 0xC0 == 11 000 000 binary.
859     // 0x38 == 00 111 000 binary.
860     // We transfer reg2 to reg1 here as operand.
861     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
862     loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
863 
864     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
865     // See "TEST-Logical Compare" (4-428 Vol. 2B).
866     loc[-2] = 0xf7;
867 
868     // Move R bit to the B bit in REX byte.
869     // REX byte is encoded as 0100WRXB, where
870     // 0100 is 4bit fixed pattern.
871     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
872     //   default operand size is used (which is 32-bit for most but not all
873     //   instructions).
874     // REX.R This 1-bit value is an extension to the MODRM.reg field.
875     // REX.X This 1-bit value is an extension to the SIB.index field.
876     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
877     // SIB.base field.
878     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
879     loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
880     write32le(loc, val);
881     return;
882   }
883 
884   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
885   // or xor operations.
886 
887   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
888   // Logic is close to one for test instruction above, but we also
889   // write opcode extension here, see below for details.
890   loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
891 
892   // Primary opcode is 0x81, opcode extension is one of:
893   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
894   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
895   // This value was wrote to MODRM.reg in a line above.
896   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
897   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
898   // descriptions about each operation.
899   loc[-2] = 0x81;
900   loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
901   write32le(loc, val);
902 }
903 
904 void X86_64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
905   checkInt(loc, val, 32, rel);
906   const uint8_t op = loc[-2];
907   const uint8_t modRm = loc[-1];
908 
909   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
910   if (op == 0x8b) {
911     loc[-2] = 0x8d;
912     write32le(loc, val);
913     return;
914   }
915 
916   if (op != 0xff) {
917     // We are relaxing a rip relative to an absolute, so compensate
918     // for the old -4 addend.
919     assert(!config->isPic);
920     relaxGotNoPic(loc, val + 4, op, modRm);
921     return;
922   }
923 
924   // Convert call/jmp instructions.
925   if (modRm == 0x15) {
926     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
927     // Instead we convert to "addr32 call foo" where addr32 is an instruction
928     // prefix. That makes result expression to be a single instruction.
929     loc[-2] = 0x67; // addr32 prefix
930     loc[-1] = 0xe8; // call
931     write32le(loc, val);
932     return;
933   }
934 
935   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
936   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
937   assert(modRm == 0x25);
938   loc[-2] = 0xe9; // jmp
939   loc[3] = 0x90;  // nop
940   write32le(loc - 1, val + 1);
941 }
942 
943 // A split-stack prologue starts by checking the amount of stack remaining
944 // in one of two ways:
945 // A) Comparing of the stack pointer to a field in the tcb.
946 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
947 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
948                                               uint8_t stOther) const {
949   if (!config->is64) {
950     error("target doesn't support split stacks");
951     return false;
952   }
953 
954   if (loc + 8 >= end)
955     return false;
956 
957   // Replace "cmp %fs:0x70,%rsp" and subsequent branch
958   // with "stc, nopl 0x0(%rax,%rax,1)"
959   if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
960     memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
961     return true;
962   }
963 
964   // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
965   // be r10 or r11. The lea instruction feeds a subsequent compare which checks
966   // if there is X available stack space. Making X larger effectively reserves
967   // that much additional space. The stack grows downward so subtract the value.
968   if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
969       memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
970     // The offset bytes are encoded four bytes after the start of the
971     // instruction.
972     write32le(loc + 4, read32le(loc + 4) - 0x4000);
973     return true;
974   }
975   return false;
976 }
977 
978 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
979 // entries containing endbr64 instructions. A PLT entry will be split into two
980 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
981 namespace {
982 class IntelIBT : public X86_64 {
983 public:
984   IntelIBT();
985   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
986   void writePlt(uint8_t *buf, const Symbol &sym,
987                 uint64_t pltEntryAddr) const override;
988   void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
989 
990   static const unsigned IBTPltHeaderSize = 16;
991 };
992 } // namespace
993 
994 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
995 
996 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
997   uint64_t va =
998       in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize;
999   write64le(buf, va);
1000 }
1001 
1002 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
1003                         uint64_t pltEntryAddr) const {
1004   const uint8_t Inst[] = {
1005       0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
1006       0xff, 0x25, 0,    0,    0, 0, // jmpq *got(%rip)
1007       0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
1008   };
1009   memcpy(buf, Inst, sizeof(Inst));
1010   write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
1011 }
1012 
1013 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
1014   writePltHeader(buf);
1015   buf += IBTPltHeaderSize;
1016 
1017   const uint8_t inst[] = {
1018       0xf3, 0x0f, 0x1e, 0xfa,    // endbr64
1019       0x68, 0,    0,    0,    0, // pushq <relocation index>
1020       0xe9, 0,    0,    0,    0, // jmpq plt[0]
1021       0x66, 0x90,                // nop
1022   };
1023 
1024   for (size_t i = 0; i < numEntries; ++i) {
1025     memcpy(buf, inst, sizeof(inst));
1026     write32le(buf + 5, i);
1027     write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1028     buf += sizeof(inst);
1029   }
1030 }
1031 
1032 // These nonstandard PLT entries are to migtigate Spectre v2 security
1033 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1034 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1035 // entries, we use a CALL followed by MOV and RET to do the same thing as an
1036 // indirect jump. That instruction sequence is so-called "retpoline".
1037 //
1038 // We have two types of retpoline PLTs as a size optimization. If `-z now`
1039 // is specified, all dynamic symbols are resolved at load-time. Thus, when
1040 // that option is given, we can omit code for symbol lazy resolution.
1041 namespace {
1042 class Retpoline : public X86_64 {
1043 public:
1044   Retpoline();
1045   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1046   void writePltHeader(uint8_t *buf) const override;
1047   void writePlt(uint8_t *buf, const Symbol &sym,
1048                 uint64_t pltEntryAddr) const override;
1049 };
1050 
1051 class RetpolineZNow : public X86_64 {
1052 public:
1053   RetpolineZNow();
1054   void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1055   void writePltHeader(uint8_t *buf) const override;
1056   void writePlt(uint8_t *buf, const Symbol &sym,
1057                 uint64_t pltEntryAddr) const override;
1058 };
1059 } // namespace
1060 
1061 Retpoline::Retpoline() {
1062   pltHeaderSize = 48;
1063   pltEntrySize = 32;
1064   ipltEntrySize = 32;
1065 }
1066 
1067 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1068   write64le(buf, s.getPltVA() + 17);
1069 }
1070 
1071 void Retpoline::writePltHeader(uint8_t *buf) const {
1072   const uint8_t insn[] = {
1073       0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
1074       0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
1075       0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
1076       0xf3, 0x90,                               // 12: loop: pause
1077       0x0f, 0xae, 0xe8,                         // 14:   lfence
1078       0xeb, 0xf9,                               // 17:   jmp loop
1079       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
1080       0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
1081       0xc3,                                     // 24:   ret
1082       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
1083       0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
1084   };
1085   memcpy(buf, insn, sizeof(insn));
1086 
1087   uint64_t gotPlt = in.gotPlt->getVA();
1088   uint64_t plt = in.plt->getVA();
1089   write32le(buf + 2, gotPlt - plt - 6 + 8);
1090   write32le(buf + 9, gotPlt - plt - 13 + 16);
1091 }
1092 
1093 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1094                          uint64_t pltEntryAddr) const {
1095   const uint8_t insn[] = {
1096       0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
1097       0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
1098       0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
1099       0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
1100       0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
1101       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1102   };
1103   memcpy(buf, insn, sizeof(insn));
1104 
1105   uint64_t off = pltEntryAddr - in.plt->getVA();
1106 
1107   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1108   write32le(buf + 8, -off - 12 + 32);
1109   write32le(buf + 13, -off - 17 + 18);
1110   write32le(buf + 18, sym.getPltIdx());
1111   write32le(buf + 23, -off - 27);
1112 }
1113 
1114 RetpolineZNow::RetpolineZNow() {
1115   pltHeaderSize = 32;
1116   pltEntrySize = 16;
1117   ipltEntrySize = 16;
1118 }
1119 
1120 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1121   const uint8_t insn[] = {
1122       0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
1123       0xf3, 0x90,                   // 5:  loop: pause
1124       0x0f, 0xae, 0xe8,             // 7:    lfence
1125       0xeb, 0xf9,                   // a:    jmp loop
1126       0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
1127       0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
1128       0xc3,                         // 14:   ret
1129       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
1130       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
1131       0xcc,                         // 1f:   int3; padding
1132   };
1133   memcpy(buf, insn, sizeof(insn));
1134 }
1135 
1136 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1137                              uint64_t pltEntryAddr) const {
1138   const uint8_t insn[] = {
1139       0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1140       0xe9, 0,    0,    0,    0,       // jmp plt+0
1141       0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
1142   };
1143   memcpy(buf, insn, sizeof(insn));
1144 
1145   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1146   write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1147 }
1148 
1149 static TargetInfo *getTargetInfo() {
1150   if (config->zRetpolineplt) {
1151     if (config->zNow) {
1152       static RetpolineZNow t;
1153       return &t;
1154     }
1155     static Retpoline t;
1156     return &t;
1157   }
1158 
1159   if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1160     static IntelIBT t;
1161     return &t;
1162   }
1163 
1164   static X86_64 t;
1165   return &t;
1166 }
1167 
1168 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
1169