1 //===- X86_64.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "OutputSections.h" 10 #include "Relocations.h" 11 #include "Symbols.h" 12 #include "SyntheticSections.h" 13 #include "Target.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/Support/Endian.h" 17 #include "llvm/Support/MathExtras.h" 18 19 using namespace llvm; 20 using namespace llvm::object; 21 using namespace llvm::support::endian; 22 using namespace llvm::ELF; 23 using namespace lld; 24 using namespace lld::elf; 25 26 namespace { 27 class X86_64 : public TargetInfo { 28 public: 29 X86_64(); 30 int getTlsGdRelaxSkip(RelType type) const override; 31 RelExpr getRelExpr(RelType type, const Symbol &s, 32 const uint8_t *loc) const override; 33 RelType getDynRel(RelType type) const override; 34 void writeGotPltHeader(uint8_t *buf) const override; 35 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 36 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; 37 void writePltHeader(uint8_t *buf) const override; 38 void writePlt(uint8_t *buf, const Symbol &sym, 39 uint64_t pltEntryAddr) const override; 40 void relocate(uint8_t *loc, const Relocation &rel, 41 uint64_t val) const override; 42 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; 43 void applyJumpInstrMod(uint8_t *loc, JumpModType type, 44 unsigned size) const override; 45 RelExpr adjustGotPcExpr(RelType type, int64_t addend, 46 const uint8_t *loc) const override; 47 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; 48 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 49 uint8_t stOther) const override; 50 bool deleteFallThruJmpInsn(InputSection &is, InputFile *file, 51 InputSection *nextIS) const override; 52 bool relaxOnce(int pass) const override; 53 }; 54 } // namespace 55 56 // This is vector of NOP instructions of sizes from 1 to 8 bytes. The 57 // appropriately sized instructions are used to fill the gaps between sections 58 // which are executed during fall through. 59 static const std::vector<std::vector<uint8_t>> nopInstructions = { 60 {0x90}, 61 {0x66, 0x90}, 62 {0x0f, 0x1f, 0x00}, 63 {0x0f, 0x1f, 0x40, 0x00}, 64 {0x0f, 0x1f, 0x44, 0x00, 0x00}, 65 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, 66 {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00}, 67 {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, 68 {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}}; 69 70 X86_64::X86_64() { 71 copyRel = R_X86_64_COPY; 72 gotRel = R_X86_64_GLOB_DAT; 73 pltRel = R_X86_64_JUMP_SLOT; 74 relativeRel = R_X86_64_RELATIVE; 75 iRelativeRel = R_X86_64_IRELATIVE; 76 symbolicRel = R_X86_64_64; 77 tlsDescRel = R_X86_64_TLSDESC; 78 tlsGotRel = R_X86_64_TPOFF64; 79 tlsModuleIndexRel = R_X86_64_DTPMOD64; 80 tlsOffsetRel = R_X86_64_DTPOFF64; 81 gotBaseSymInGotPlt = true; 82 gotEntrySize = 8; 83 pltHeaderSize = 16; 84 pltEntrySize = 16; 85 ipltEntrySize = 16; 86 trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3 87 nopInstrs = nopInstructions; 88 89 // Align to the large page size (known as a superpage or huge page). 90 // FreeBSD automatically promotes large, superpage-aligned allocations. 91 defaultImageBase = 0x200000; 92 } 93 94 int X86_64::getTlsGdRelaxSkip(RelType type) const { 95 // TLSDESC relocations are processed separately. See relaxTlsGdToLe below. 96 return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1 97 : 2; 98 } 99 100 // Opcodes for the different X86_64 jmp instructions. 101 enum JmpInsnOpcode : uint32_t { 102 J_JMP_32, 103 J_JNE_32, 104 J_JE_32, 105 J_JG_32, 106 J_JGE_32, 107 J_JB_32, 108 J_JBE_32, 109 J_JL_32, 110 J_JLE_32, 111 J_JA_32, 112 J_JAE_32, 113 J_UNKNOWN, 114 }; 115 116 // Given the first (optional) and second byte of the insn's opcode, this 117 // returns the corresponding enum value. 118 static JmpInsnOpcode getJmpInsnType(const uint8_t *first, 119 const uint8_t *second) { 120 if (*second == 0xe9) 121 return J_JMP_32; 122 123 if (first == nullptr) 124 return J_UNKNOWN; 125 126 if (*first == 0x0f) { 127 switch (*second) { 128 case 0x84: 129 return J_JE_32; 130 case 0x85: 131 return J_JNE_32; 132 case 0x8f: 133 return J_JG_32; 134 case 0x8d: 135 return J_JGE_32; 136 case 0x82: 137 return J_JB_32; 138 case 0x86: 139 return J_JBE_32; 140 case 0x8c: 141 return J_JL_32; 142 case 0x8e: 143 return J_JLE_32; 144 case 0x87: 145 return J_JA_32; 146 case 0x83: 147 return J_JAE_32; 148 } 149 } 150 return J_UNKNOWN; 151 } 152 153 // Return the relocation index for input section IS with a specific Offset. 154 // Returns the maximum size of the vector if no such relocation is found. 155 static unsigned getRelocationWithOffset(const InputSection &is, 156 uint64_t offset) { 157 unsigned size = is.relocs().size(); 158 for (unsigned i = size - 1; i + 1 > 0; --i) { 159 if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE) 160 return i; 161 } 162 return size; 163 } 164 165 // Returns true if R corresponds to a relocation used for a jump instruction. 166 // TODO: Once special relocations for relaxable jump instructions are available, 167 // this should be modified to use those relocations. 168 static bool isRelocationForJmpInsn(Relocation &R) { 169 return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 || 170 R.type == R_X86_64_PC8; 171 } 172 173 // Return true if Relocation R points to the first instruction in the 174 // next section. 175 // TODO: Delete this once psABI reserves a new relocation type for fall thru 176 // jumps. 177 static bool isFallThruRelocation(InputSection &is, InputFile *file, 178 InputSection *nextIS, Relocation &r) { 179 if (!isRelocationForJmpInsn(r)) 180 return false; 181 182 uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset; 183 uint64_t targetOffset = InputSectionBase::getRelocTargetVA( 184 file, r.type, r.addend, addrLoc, *r.sym, r.expr); 185 186 // If this jmp is a fall thru, the target offset is the beginning of the 187 // next section. 188 uint64_t nextSectionOffset = 189 nextIS->getOutputSection()->addr + nextIS->outSecOff; 190 return (addrLoc + 4 + targetOffset) == nextSectionOffset; 191 } 192 193 // Return the jmp instruction opcode that is the inverse of the given 194 // opcode. For example, JE inverted is JNE. 195 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) { 196 switch (opcode) { 197 case J_JE_32: 198 return J_JNE_32; 199 case J_JNE_32: 200 return J_JE_32; 201 case J_JG_32: 202 return J_JLE_32; 203 case J_JGE_32: 204 return J_JL_32; 205 case J_JB_32: 206 return J_JAE_32; 207 case J_JBE_32: 208 return J_JA_32; 209 case J_JL_32: 210 return J_JGE_32; 211 case J_JLE_32: 212 return J_JG_32; 213 case J_JA_32: 214 return J_JBE_32; 215 case J_JAE_32: 216 return J_JB_32; 217 default: 218 return J_UNKNOWN; 219 } 220 } 221 222 // Deletes direct jump instruction in input sections that jumps to the 223 // following section as it is not required. If there are two consecutive jump 224 // instructions, it checks if they can be flipped and one can be deleted. 225 // For example: 226 // .section .text 227 // a.BB.foo: 228 // ... 229 // 10: jne aa.BB.foo 230 // 16: jmp bar 231 // aa.BB.foo: 232 // ... 233 // 234 // can be converted to: 235 // a.BB.foo: 236 // ... 237 // 10: je bar #jne flipped to je and the jmp is deleted. 238 // aa.BB.foo: 239 // ... 240 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file, 241 InputSection *nextIS) const { 242 const unsigned sizeOfDirectJmpInsn = 5; 243 244 if (nextIS == nullptr) 245 return false; 246 247 if (is.getSize() < sizeOfDirectJmpInsn) 248 return false; 249 250 // If this jmp insn can be removed, it is the last insn and the 251 // relocation is 4 bytes before the end. 252 unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4); 253 if (rIndex == is.relocs().size()) 254 return false; 255 256 Relocation &r = is.relocs()[rIndex]; 257 258 // Check if the relocation corresponds to a direct jmp. 259 const uint8_t *secContents = is.content().data(); 260 // If it is not a direct jmp instruction, there is nothing to do here. 261 if (*(secContents + r.offset - 1) != 0xe9) 262 return false; 263 264 if (isFallThruRelocation(is, file, nextIS, r)) { 265 // This is a fall thru and can be deleted. 266 r.expr = R_NONE; 267 r.offset = 0; 268 is.drop_back(sizeOfDirectJmpInsn); 269 is.nopFiller = true; 270 return true; 271 } 272 273 // Now, check if flip and delete is possible. 274 const unsigned sizeOfJmpCCInsn = 6; 275 // To flip, there must be at least one JmpCC and one direct jmp. 276 if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn) 277 return false; 278 279 unsigned rbIndex = 280 getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4)); 281 if (rbIndex == is.relocs().size()) 282 return false; 283 284 Relocation &rB = is.relocs()[rbIndex]; 285 286 const uint8_t *jmpInsnB = secContents + rB.offset - 1; 287 JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB); 288 if (jmpOpcodeB == J_UNKNOWN) 289 return false; 290 291 if (!isFallThruRelocation(is, file, nextIS, rB)) 292 return false; 293 294 // jmpCC jumps to the fall thru block, the branch can be flipped and the 295 // jmp can be deleted. 296 JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB); 297 if (jInvert == J_UNKNOWN) 298 return false; 299 is.jumpInstrMod = make<JumpInstrMod>(); 300 *is.jumpInstrMod = {rB.offset - 1, jInvert, 4}; 301 // Move R's values to rB except the offset. 302 rB = {r.expr, r.type, rB.offset, r.addend, r.sym}; 303 // Cancel R 304 r.expr = R_NONE; 305 r.offset = 0; 306 is.drop_back(sizeOfDirectJmpInsn); 307 is.nopFiller = true; 308 return true; 309 } 310 311 bool X86_64::relaxOnce(int pass) const { 312 uint64_t minVA = UINT64_MAX, maxVA = 0; 313 for (OutputSection *osec : outputSections) { 314 minVA = std::min(minVA, osec->addr); 315 maxVA = std::max(maxVA, osec->addr + osec->size); 316 } 317 // If the max VA difference is under 2^31, GOT-generating relocations with a 32-bit range cannot overflow. 318 if (isUInt<31>(maxVA - minVA)) 319 return false; 320 321 SmallVector<InputSection *, 0> storage; 322 bool changed = false; 323 for (OutputSection *osec : outputSections) { 324 if (!(osec->flags & SHF_EXECINSTR)) 325 continue; 326 for (InputSection *sec : getInputSections(*osec, storage)) { 327 for (Relocation &rel : sec->relocs()) { 328 if (rel.expr != R_RELAX_GOT_PC) 329 continue; 330 331 uint64_t v = sec->getRelocTargetVA(sec->file, rel.type, rel.addend, 332 sec->getOutputSection()->addr + 333 sec->outSecOff + rel.offset, 334 *rel.sym, rel.expr); 335 if (isInt<32>(v)) 336 continue; 337 if (rel.sym->auxIdx == 0) { 338 rel.sym->allocateAux(); 339 addGotEntry(*rel.sym); 340 changed = true; 341 } 342 rel.expr = R_GOT_PC; 343 } 344 } 345 } 346 return changed; 347 } 348 349 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s, 350 const uint8_t *loc) const { 351 switch (type) { 352 case R_X86_64_8: 353 case R_X86_64_16: 354 case R_X86_64_32: 355 case R_X86_64_32S: 356 case R_X86_64_64: 357 return R_ABS; 358 case R_X86_64_DTPOFF32: 359 case R_X86_64_DTPOFF64: 360 return R_DTPREL; 361 case R_X86_64_TPOFF32: 362 case R_X86_64_TPOFF64: 363 return R_TPREL; 364 case R_X86_64_TLSDESC_CALL: 365 return R_TLSDESC_CALL; 366 case R_X86_64_TLSLD: 367 return R_TLSLD_PC; 368 case R_X86_64_TLSGD: 369 return R_TLSGD_PC; 370 case R_X86_64_SIZE32: 371 case R_X86_64_SIZE64: 372 return R_SIZE; 373 case R_X86_64_PLT32: 374 return R_PLT_PC; 375 case R_X86_64_PC8: 376 case R_X86_64_PC16: 377 case R_X86_64_PC32: 378 case R_X86_64_PC64: 379 return R_PC; 380 case R_X86_64_GOT32: 381 case R_X86_64_GOT64: 382 return R_GOTPLT; 383 case R_X86_64_GOTPC32_TLSDESC: 384 return R_TLSDESC_PC; 385 case R_X86_64_GOTPCREL: 386 case R_X86_64_GOTPCRELX: 387 case R_X86_64_REX_GOTPCRELX: 388 case R_X86_64_GOTTPOFF: 389 return R_GOT_PC; 390 case R_X86_64_GOTOFF64: 391 return R_GOTPLTREL; 392 case R_X86_64_PLTOFF64: 393 return R_PLT_GOTPLT; 394 case R_X86_64_GOTPC32: 395 case R_X86_64_GOTPC64: 396 return R_GOTPLTONLY_PC; 397 case R_X86_64_NONE: 398 return R_NONE; 399 default: 400 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 401 ") against symbol " + toString(s)); 402 return R_NONE; 403 } 404 } 405 406 void X86_64::writeGotPltHeader(uint8_t *buf) const { 407 // The first entry holds the link-time address of _DYNAMIC. It is documented 408 // in the psABI and glibc before Aug 2021 used the entry to compute run-time 409 // load address of the shared object (note that this is relevant for linking 410 // ld.so, not any other program). 411 write64le(buf, mainPart->dynamic->getVA()); 412 } 413 414 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const { 415 // See comments in X86::writeGotPlt. 416 write64le(buf, s.getPltVA() + 6); 417 } 418 419 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { 420 // An x86 entry is the address of the ifunc resolver function (for -z rel). 421 if (config->writeAddends) 422 write64le(buf, s.getVA()); 423 } 424 425 void X86_64::writePltHeader(uint8_t *buf) const { 426 const uint8_t pltData[] = { 427 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) 428 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) 429 0x0f, 0x1f, 0x40, 0x00, // nop 430 }; 431 memcpy(buf, pltData, sizeof(pltData)); 432 uint64_t gotPlt = in.gotPlt->getVA(); 433 uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA(); 434 write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8 435 write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16 436 } 437 438 void X86_64::writePlt(uint8_t *buf, const Symbol &sym, 439 uint64_t pltEntryAddr) const { 440 const uint8_t inst[] = { 441 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) 442 0x68, 0, 0, 0, 0, // pushq <relocation index> 443 0xe9, 0, 0, 0, 0, // jmpq plt[0] 444 }; 445 memcpy(buf, inst, sizeof(inst)); 446 447 write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6); 448 write32le(buf + 7, sym.getPltIdx()); 449 write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16); 450 } 451 452 RelType X86_64::getDynRel(RelType type) const { 453 if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 || 454 type == R_X86_64_SIZE64) 455 return type; 456 return R_X86_64_NONE; 457 } 458 459 static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { 460 if (rel.type == R_X86_64_TLSGD) { 461 // Convert 462 // .byte 0x66 463 // leaq x@tlsgd(%rip), %rdi 464 // .word 0x6666 465 // rex64 466 // call __tls_get_addr@plt 467 // to the following two instructions. 468 const uint8_t inst[] = { 469 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 470 0x00, 0x00, // mov %fs:0x0,%rax 471 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax 472 }; 473 memcpy(loc - 4, inst, sizeof(inst)); 474 475 // The original code used a pc relative relocation and so we have to 476 // compensate for the -4 in had in the addend. 477 write32le(loc + 8, val + 4); 478 } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) { 479 // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG. 480 if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || 481 (loc[-1] & 0xc7) != 0x05) { 482 errorOrWarn(getErrorLocation(loc - 3) + 483 "R_X86_64_GOTPC32_TLSDESC must be used " 484 "in leaq x@tlsdesc(%rip), %REG"); 485 return; 486 } 487 loc[-3] = 0x48 | ((loc[-3] >> 2) & 1); 488 loc[-2] = 0xc7; 489 loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7); 490 write32le(loc, val + 4); 491 } else { 492 // Convert call *x@tlsdesc(%REG) to xchg ax, ax. 493 assert(rel.type == R_X86_64_TLSDESC_CALL); 494 loc[0] = 0x66; 495 loc[1] = 0x90; 496 } 497 } 498 499 static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) { 500 if (rel.type == R_X86_64_TLSGD) { 501 // Convert 502 // .byte 0x66 503 // leaq x@tlsgd(%rip), %rdi 504 // .word 0x6666 505 // rex64 506 // call __tls_get_addr@plt 507 // to the following two instructions. 508 const uint8_t inst[] = { 509 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 510 0x00, 0x00, // mov %fs:0x0,%rax 511 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax 512 }; 513 memcpy(loc - 4, inst, sizeof(inst)); 514 515 // Both code sequences are PC relatives, but since we are moving the 516 // constant forward by 8 bytes we have to subtract the value by 8. 517 write32le(loc + 8, val - 8); 518 } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) { 519 // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG. 520 assert(rel.type == R_X86_64_GOTPC32_TLSDESC); 521 if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || 522 (loc[-1] & 0xc7) != 0x05) { 523 errorOrWarn(getErrorLocation(loc - 3) + 524 "R_X86_64_GOTPC32_TLSDESC must be used " 525 "in leaq x@tlsdesc(%rip), %REG"); 526 return; 527 } 528 loc[-2] = 0x8b; 529 write32le(loc, val); 530 } else { 531 // Convert call *x@tlsdesc(%rax) to xchg ax, ax. 532 assert(rel.type == R_X86_64_TLSDESC_CALL); 533 loc[0] = 0x66; 534 loc[1] = 0x90; 535 } 536 } 537 538 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to 539 // R_X86_64_TPOFF32 so that it does not use GOT. 540 static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) { 541 uint8_t *inst = loc - 3; 542 uint8_t reg = loc[-1] >> 3; 543 uint8_t *regSlot = loc - 1; 544 545 // Note that ADD with RSP or R12 is converted to ADD instead of LEA 546 // because LEA with these registers needs 4 bytes to encode and thus 547 // wouldn't fit the space. 548 549 if (memcmp(inst, "\x48\x03\x25", 3) == 0) { 550 // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" 551 memcpy(inst, "\x48\x81\xc4", 3); 552 } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) { 553 // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" 554 memcpy(inst, "\x49\x81\xc4", 3); 555 } else if (memcmp(inst, "\x4c\x03", 2) == 0) { 556 // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" 557 memcpy(inst, "\x4d\x8d", 2); 558 *regSlot = 0x80 | (reg << 3) | reg; 559 } else if (memcmp(inst, "\x48\x03", 2) == 0) { 560 // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" 561 memcpy(inst, "\x48\x8d", 2); 562 *regSlot = 0x80 | (reg << 3) | reg; 563 } else if (memcmp(inst, "\x4c\x8b", 2) == 0) { 564 // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" 565 memcpy(inst, "\x49\xc7", 2); 566 *regSlot = 0xc0 | reg; 567 } else if (memcmp(inst, "\x48\x8b", 2) == 0) { 568 // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" 569 memcpy(inst, "\x48\xc7", 2); 570 *regSlot = 0xc0 | reg; 571 } else { 572 error(getErrorLocation(loc - 3) + 573 "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); 574 } 575 576 // The original code used a PC relative relocation. 577 // Need to compensate for the -4 it had in the addend. 578 write32le(loc, val + 4); 579 } 580 581 static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { 582 const uint8_t inst[] = { 583 0x66, 0x66, // .word 0x6666 584 0x66, // .byte 0x66 585 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax 586 }; 587 588 if (loc[4] == 0xe8) { 589 // Convert 590 // leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc> 591 // callq __tls_get_addr@PLT # e8 <disp32> 592 // leaq bar@dtpoff(%rax), %rcx 593 // to 594 // .word 0x6666 595 // .byte 0x66 596 // mov %fs:0,%rax 597 // leaq bar@tpoff(%rax), %rcx 598 memcpy(loc - 3, inst, sizeof(inst)); 599 return; 600 } 601 602 if (loc[4] == 0xff && loc[5] == 0x15) { 603 // Convert 604 // leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc> 605 // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32> 606 // to 607 // .long 0x66666666 608 // movq %fs:0,%rax 609 // See "Table 11.9: LD -> LE Code Transition (LP64)" in 610 // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf 611 loc[-3] = 0x66; 612 memcpy(loc - 2, inst, sizeof(inst)); 613 return; 614 } 615 616 error(getErrorLocation(loc - 3) + 617 "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD"); 618 } 619 620 // A JumpInstrMod at a specific offset indicates that the jump instruction 621 // opcode at that offset must be modified. This is specifically used to relax 622 // jump instructions with basic block sections. This function looks at the 623 // JumpMod and effects the change. 624 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type, 625 unsigned size) const { 626 switch (type) { 627 case J_JMP_32: 628 if (size == 4) 629 *loc = 0xe9; 630 else 631 *loc = 0xeb; 632 break; 633 case J_JE_32: 634 if (size == 4) { 635 loc[-1] = 0x0f; 636 *loc = 0x84; 637 } else 638 *loc = 0x74; 639 break; 640 case J_JNE_32: 641 if (size == 4) { 642 loc[-1] = 0x0f; 643 *loc = 0x85; 644 } else 645 *loc = 0x75; 646 break; 647 case J_JG_32: 648 if (size == 4) { 649 loc[-1] = 0x0f; 650 *loc = 0x8f; 651 } else 652 *loc = 0x7f; 653 break; 654 case J_JGE_32: 655 if (size == 4) { 656 loc[-1] = 0x0f; 657 *loc = 0x8d; 658 } else 659 *loc = 0x7d; 660 break; 661 case J_JB_32: 662 if (size == 4) { 663 loc[-1] = 0x0f; 664 *loc = 0x82; 665 } else 666 *loc = 0x72; 667 break; 668 case J_JBE_32: 669 if (size == 4) { 670 loc[-1] = 0x0f; 671 *loc = 0x86; 672 } else 673 *loc = 0x76; 674 break; 675 case J_JL_32: 676 if (size == 4) { 677 loc[-1] = 0x0f; 678 *loc = 0x8c; 679 } else 680 *loc = 0x7c; 681 break; 682 case J_JLE_32: 683 if (size == 4) { 684 loc[-1] = 0x0f; 685 *loc = 0x8e; 686 } else 687 *loc = 0x7e; 688 break; 689 case J_JA_32: 690 if (size == 4) { 691 loc[-1] = 0x0f; 692 *loc = 0x87; 693 } else 694 *loc = 0x77; 695 break; 696 case J_JAE_32: 697 if (size == 4) { 698 loc[-1] = 0x0f; 699 *loc = 0x83; 700 } else 701 *loc = 0x73; 702 break; 703 case J_UNKNOWN: 704 llvm_unreachable("Unknown Jump Relocation"); 705 } 706 } 707 708 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const { 709 switch (type) { 710 case R_X86_64_8: 711 case R_X86_64_PC8: 712 return SignExtend64<8>(*buf); 713 case R_X86_64_16: 714 case R_X86_64_PC16: 715 return SignExtend64<16>(read16le(buf)); 716 case R_X86_64_32: 717 case R_X86_64_32S: 718 case R_X86_64_TPOFF32: 719 case R_X86_64_GOT32: 720 case R_X86_64_GOTPC32: 721 case R_X86_64_GOTPC32_TLSDESC: 722 case R_X86_64_GOTPCREL: 723 case R_X86_64_GOTPCRELX: 724 case R_X86_64_REX_GOTPCRELX: 725 case R_X86_64_PC32: 726 case R_X86_64_GOTTPOFF: 727 case R_X86_64_PLT32: 728 case R_X86_64_TLSGD: 729 case R_X86_64_TLSLD: 730 case R_X86_64_DTPOFF32: 731 case R_X86_64_SIZE32: 732 return SignExtend64<32>(read32le(buf)); 733 case R_X86_64_64: 734 case R_X86_64_TPOFF64: 735 case R_X86_64_DTPOFF64: 736 case R_X86_64_DTPMOD64: 737 case R_X86_64_PC64: 738 case R_X86_64_SIZE64: 739 case R_X86_64_GLOB_DAT: 740 case R_X86_64_GOT64: 741 case R_X86_64_GOTOFF64: 742 case R_X86_64_GOTPC64: 743 case R_X86_64_PLTOFF64: 744 case R_X86_64_IRELATIVE: 745 case R_X86_64_RELATIVE: 746 return read64le(buf); 747 case R_X86_64_TLSDESC: 748 return read64le(buf + 8); 749 case R_X86_64_JUMP_SLOT: 750 case R_X86_64_NONE: 751 // These relocations are defined as not having an implicit addend. 752 return 0; 753 default: 754 internalLinkerError(getErrorLocation(buf), 755 "cannot read addend for relocation " + toString(type)); 756 return 0; 757 } 758 } 759 760 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val); 761 762 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 763 switch (rel.type) { 764 case R_X86_64_8: 765 checkIntUInt(loc, val, 8, rel); 766 *loc = val; 767 break; 768 case R_X86_64_PC8: 769 checkInt(loc, val, 8, rel); 770 *loc = val; 771 break; 772 case R_X86_64_16: 773 checkIntUInt(loc, val, 16, rel); 774 write16le(loc, val); 775 break; 776 case R_X86_64_PC16: 777 checkInt(loc, val, 16, rel); 778 write16le(loc, val); 779 break; 780 case R_X86_64_32: 781 checkUInt(loc, val, 32, rel); 782 write32le(loc, val); 783 break; 784 case R_X86_64_32S: 785 case R_X86_64_GOT32: 786 case R_X86_64_GOTPC32: 787 case R_X86_64_GOTPCREL: 788 case R_X86_64_PC32: 789 case R_X86_64_PLT32: 790 case R_X86_64_DTPOFF32: 791 case R_X86_64_SIZE32: 792 checkInt(loc, val, 32, rel); 793 write32le(loc, val); 794 break; 795 case R_X86_64_64: 796 case R_X86_64_TPOFF64: 797 case R_X86_64_DTPOFF64: 798 case R_X86_64_PC64: 799 case R_X86_64_SIZE64: 800 case R_X86_64_GOT64: 801 case R_X86_64_GOTOFF64: 802 case R_X86_64_GOTPC64: 803 case R_X86_64_PLTOFF64: 804 write64le(loc, val); 805 break; 806 case R_X86_64_GOTPCRELX: 807 case R_X86_64_REX_GOTPCRELX: 808 if (rel.expr != R_GOT_PC) { 809 relaxGot(loc, rel, val); 810 } else { 811 checkInt(loc, val, 32, rel); 812 write32le(loc, val); 813 } 814 break; 815 case R_X86_64_GOTPC32_TLSDESC: 816 case R_X86_64_TLSDESC_CALL: 817 case R_X86_64_TLSGD: 818 if (rel.expr == R_RELAX_TLS_GD_TO_LE) { 819 relaxTlsGdToLe(loc, rel, val); 820 } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) { 821 relaxTlsGdToIe(loc, rel, val); 822 } else { 823 checkInt(loc, val, 32, rel); 824 write32le(loc, val); 825 } 826 break; 827 case R_X86_64_TLSLD: 828 if (rel.expr == R_RELAX_TLS_LD_TO_LE) { 829 relaxTlsLdToLe(loc, rel, val); 830 } else { 831 checkInt(loc, val, 32, rel); 832 write32le(loc, val); 833 } 834 break; 835 case R_X86_64_GOTTPOFF: 836 if (rel.expr == R_RELAX_TLS_IE_TO_LE) { 837 relaxTlsIeToLe(loc, rel, val); 838 } else { 839 checkInt(loc, val, 32, rel); 840 write32le(loc, val); 841 } 842 break; 843 case R_X86_64_TPOFF32: 844 checkInt(loc, val, 32, rel); 845 write32le(loc, val); 846 break; 847 848 case R_X86_64_TLSDESC: 849 // The addend is stored in the second 64-bit word. 850 write64le(loc + 8, val); 851 break; 852 default: 853 llvm_unreachable("unknown relocation"); 854 } 855 } 856 857 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend, 858 const uint8_t *loc) const { 859 // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX 860 // with addend != -4. Such an instruction does not load the full GOT entry, so 861 // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax 862 // (addend=0) loads the high 32 bits of the GOT entry. 863 if (!config->relax || addend != -4 || 864 (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX)) 865 return R_GOT_PC; 866 const uint8_t op = loc[-2]; 867 const uint8_t modRm = loc[-1]; 868 869 // FIXME: When PIC is disabled and foo is defined locally in the 870 // lower 32 bit address space, memory operand in mov can be converted into 871 // immediate operand. Otherwise, mov must be changed to lea. We support only 872 // latter relaxation at this moment. 873 if (op == 0x8b) 874 return R_RELAX_GOT_PC; 875 876 // Relax call and jmp. 877 if (op == 0xff && (modRm == 0x15 || modRm == 0x25)) 878 return R_RELAX_GOT_PC; 879 880 // We don't support test/binop instructions without a REX prefix. 881 if (type == R_X86_64_GOTPCRELX) 882 return R_GOT_PC; 883 884 // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. 885 // If PIC then no relaxation is available. 886 return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC; 887 } 888 889 // A subset of relaxations can only be applied for no-PIC. This method 890 // handles such relaxations. Instructions encoding information was taken from: 891 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" 892 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ 893 // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) 894 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op, 895 uint8_t modRm) { 896 const uint8_t rex = loc[-3]; 897 // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". 898 if (op == 0x85) { 899 // See "TEST-Logical Compare" (4-428 Vol. 2B), 900 // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). 901 902 // ModR/M byte has form XX YYY ZZZ, where 903 // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). 904 // XX has different meanings: 905 // 00: The operand's memory address is in reg1. 906 // 01: The operand's memory address is reg1 + a byte-sized displacement. 907 // 10: The operand's memory address is reg1 + a word-sized displacement. 908 // 11: The operand is reg1 itself. 909 // If an instruction requires only one operand, the unused reg2 field 910 // holds extra opcode bits rather than a register code 911 // 0xC0 == 11 000 000 binary. 912 // 0x38 == 00 111 000 binary. 913 // We transfer reg2 to reg1 here as operand. 914 // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). 915 loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte. 916 917 // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 918 // See "TEST-Logical Compare" (4-428 Vol. 2B). 919 loc[-2] = 0xf7; 920 921 // Move R bit to the B bit in REX byte. 922 // REX byte is encoded as 0100WRXB, where 923 // 0100 is 4bit fixed pattern. 924 // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the 925 // default operand size is used (which is 32-bit for most but not all 926 // instructions). 927 // REX.R This 1-bit value is an extension to the MODRM.reg field. 928 // REX.X This 1-bit value is an extension to the SIB.index field. 929 // REX.B This 1-bit value is an extension to the MODRM.rm field or the 930 // SIB.base field. 931 // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). 932 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; 933 write32le(loc, val); 934 return; 935 } 936 937 // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub 938 // or xor operations. 939 940 // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". 941 // Logic is close to one for test instruction above, but we also 942 // write opcode extension here, see below for details. 943 loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte. 944 945 // Primary opcode is 0x81, opcode extension is one of: 946 // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, 947 // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. 948 // This value was wrote to MODRM.reg in a line above. 949 // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), 950 // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for 951 // descriptions about each operation. 952 loc[-2] = 0x81; 953 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; 954 write32le(loc, val); 955 } 956 957 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) { 958 assert(isInt<32>(val) && 959 "GOTPCRELX should not have been relaxed if it overflows"); 960 const uint8_t op = loc[-2]; 961 const uint8_t modRm = loc[-1]; 962 963 // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". 964 if (op == 0x8b) { 965 loc[-2] = 0x8d; 966 write32le(loc, val); 967 return; 968 } 969 970 if (op != 0xff) { 971 // We are relaxing a rip relative to an absolute, so compensate 972 // for the old -4 addend. 973 assert(!config->isPic); 974 relaxGotNoPic(loc, val + 4, op, modRm); 975 return; 976 } 977 978 // Convert call/jmp instructions. 979 if (modRm == 0x15) { 980 // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". 981 // Instead we convert to "addr32 call foo" where addr32 is an instruction 982 // prefix. That makes result expression to be a single instruction. 983 loc[-2] = 0x67; // addr32 prefix 984 loc[-1] = 0xe8; // call 985 write32le(loc, val); 986 return; 987 } 988 989 // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". 990 // jmp doesn't return, so it is fine to use nop here, it is just a stub. 991 assert(modRm == 0x25); 992 loc[-2] = 0xe9; // jmp 993 loc[3] = 0x90; // nop 994 write32le(loc - 1, val + 1); 995 } 996 997 // A split-stack prologue starts by checking the amount of stack remaining 998 // in one of two ways: 999 // A) Comparing of the stack pointer to a field in the tcb. 1000 // B) Or a load of a stack pointer offset with an lea to r10 or r11. 1001 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 1002 uint8_t stOther) const { 1003 if (!config->is64) { 1004 error("target doesn't support split stacks"); 1005 return false; 1006 } 1007 1008 if (loc + 8 >= end) 1009 return false; 1010 1011 // Replace "cmp %fs:0x70,%rsp" and subsequent branch 1012 // with "stc, nopl 0x0(%rax,%rax,1)" 1013 if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) { 1014 memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8); 1015 return true; 1016 } 1017 1018 // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could 1019 // be r10 or r11. The lea instruction feeds a subsequent compare which checks 1020 // if there is X available stack space. Making X larger effectively reserves 1021 // that much additional space. The stack grows downward so subtract the value. 1022 if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 || 1023 memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) { 1024 // The offset bytes are encoded four bytes after the start of the 1025 // instruction. 1026 write32le(loc + 4, read32le(loc + 4) - 0x4000); 1027 return true; 1028 } 1029 return false; 1030 } 1031 1032 void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { 1033 uint64_t secAddr = sec.getOutputSection()->addr; 1034 if (auto *s = dyn_cast<InputSection>(&sec)) 1035 secAddr += s->outSecOff; 1036 else if (auto *ehIn = dyn_cast<EhInputSection>(&sec)) 1037 secAddr += ehIn->getParent()->outSecOff; 1038 for (const Relocation &rel : sec.relocs()) { 1039 if (rel.expr == R_NONE) // See deleteFallThruJmpInsn 1040 continue; 1041 uint8_t *loc = buf + rel.offset; 1042 const uint64_t val = 1043 sec.getRelocTargetVA(sec.file, rel.type, rel.addend, 1044 secAddr + rel.offset, *rel.sym, rel.expr); 1045 relocate(loc, rel, val); 1046 } 1047 if (sec.jumpInstrMod) { 1048 applyJumpInstrMod(buf + sec.jumpInstrMod->offset, 1049 sec.jumpInstrMod->original, sec.jumpInstrMod->size); 1050 } 1051 } 1052 1053 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT 1054 // entries containing endbr64 instructions. A PLT entry will be split into two 1055 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt). 1056 namespace { 1057 class IntelIBT : public X86_64 { 1058 public: 1059 IntelIBT(); 1060 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 1061 void writePlt(uint8_t *buf, const Symbol &sym, 1062 uint64_t pltEntryAddr) const override; 1063 void writeIBTPlt(uint8_t *buf, size_t numEntries) const override; 1064 1065 static const unsigned IBTPltHeaderSize = 16; 1066 }; 1067 } // namespace 1068 1069 IntelIBT::IntelIBT() { pltHeaderSize = 0; } 1070 1071 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const { 1072 uint64_t va = 1073 in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize; 1074 write64le(buf, va); 1075 } 1076 1077 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym, 1078 uint64_t pltEntryAddr) const { 1079 const uint8_t Inst[] = { 1080 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 1081 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) 1082 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop 1083 }; 1084 memcpy(buf, Inst, sizeof(Inst)); 1085 write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10); 1086 } 1087 1088 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const { 1089 writePltHeader(buf); 1090 buf += IBTPltHeaderSize; 1091 1092 const uint8_t inst[] = { 1093 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 1094 0x68, 0, 0, 0, 0, // pushq <relocation index> 1095 0xe9, 0, 0, 0, 0, // jmpq plt[0] 1096 0x66, 0x90, // nop 1097 }; 1098 1099 for (size_t i = 0; i < numEntries; ++i) { 1100 memcpy(buf, inst, sizeof(inst)); 1101 write32le(buf + 5, i); 1102 write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30); 1103 buf += sizeof(inst); 1104 } 1105 } 1106 1107 // These nonstandard PLT entries are to migtigate Spectre v2 security 1108 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect 1109 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT 1110 // entries, we use a CALL followed by MOV and RET to do the same thing as an 1111 // indirect jump. That instruction sequence is so-called "retpoline". 1112 // 1113 // We have two types of retpoline PLTs as a size optimization. If `-z now` 1114 // is specified, all dynamic symbols are resolved at load-time. Thus, when 1115 // that option is given, we can omit code for symbol lazy resolution. 1116 namespace { 1117 class Retpoline : public X86_64 { 1118 public: 1119 Retpoline(); 1120 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 1121 void writePltHeader(uint8_t *buf) const override; 1122 void writePlt(uint8_t *buf, const Symbol &sym, 1123 uint64_t pltEntryAddr) const override; 1124 }; 1125 1126 class RetpolineZNow : public X86_64 { 1127 public: 1128 RetpolineZNow(); 1129 void writeGotPlt(uint8_t *buf, const Symbol &s) const override {} 1130 void writePltHeader(uint8_t *buf) const override; 1131 void writePlt(uint8_t *buf, const Symbol &sym, 1132 uint64_t pltEntryAddr) const override; 1133 }; 1134 } // namespace 1135 1136 Retpoline::Retpoline() { 1137 pltHeaderSize = 48; 1138 pltEntrySize = 32; 1139 ipltEntrySize = 32; 1140 } 1141 1142 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const { 1143 write64le(buf, s.getPltVA() + 17); 1144 } 1145 1146 void Retpoline::writePltHeader(uint8_t *buf) const { 1147 const uint8_t insn[] = { 1148 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip) 1149 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11 1150 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next 1151 0xf3, 0x90, // 12: loop: pause 1152 0x0f, 0xae, 0xe8, // 14: lfence 1153 0xeb, 0xf9, // 17: jmp loop 1154 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16 1155 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp) 1156 0xc3, // 24: ret 1157 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding 1158 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding 1159 }; 1160 memcpy(buf, insn, sizeof(insn)); 1161 1162 uint64_t gotPlt = in.gotPlt->getVA(); 1163 uint64_t plt = in.plt->getVA(); 1164 write32le(buf + 2, gotPlt - plt - 6 + 8); 1165 write32le(buf + 9, gotPlt - plt - 13 + 16); 1166 } 1167 1168 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym, 1169 uint64_t pltEntryAddr) const { 1170 const uint8_t insn[] = { 1171 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11 1172 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20 1173 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12 1174 0x68, 0, 0, 0, 0, // 11: pushq <relocation index> 1175 0xe9, 0, 0, 0, 0, // 16: jmp plt+0 1176 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding 1177 }; 1178 memcpy(buf, insn, sizeof(insn)); 1179 1180 uint64_t off = pltEntryAddr - in.plt->getVA(); 1181 1182 write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7); 1183 write32le(buf + 8, -off - 12 + 32); 1184 write32le(buf + 13, -off - 17 + 18); 1185 write32le(buf + 18, sym.getPltIdx()); 1186 write32le(buf + 23, -off - 27); 1187 } 1188 1189 RetpolineZNow::RetpolineZNow() { 1190 pltHeaderSize = 32; 1191 pltEntrySize = 16; 1192 ipltEntrySize = 16; 1193 } 1194 1195 void RetpolineZNow::writePltHeader(uint8_t *buf) const { 1196 const uint8_t insn[] = { 1197 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next 1198 0xf3, 0x90, // 5: loop: pause 1199 0x0f, 0xae, 0xe8, // 7: lfence 1200 0xeb, 0xf9, // a: jmp loop 1201 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16 1202 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp) 1203 0xc3, // 14: ret 1204 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding 1205 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding 1206 0xcc, // 1f: int3; padding 1207 }; 1208 memcpy(buf, insn, sizeof(insn)); 1209 } 1210 1211 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym, 1212 uint64_t pltEntryAddr) const { 1213 const uint8_t insn[] = { 1214 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11 1215 0xe9, 0, 0, 0, 0, // jmp plt+0 1216 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding 1217 }; 1218 memcpy(buf, insn, sizeof(insn)); 1219 1220 write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7); 1221 write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12); 1222 } 1223 1224 static TargetInfo *getTargetInfo() { 1225 if (config->zRetpolineplt) { 1226 if (config->zNow) { 1227 static RetpolineZNow t; 1228 return &t; 1229 } 1230 static Retpoline t; 1231 return &t; 1232 } 1233 1234 if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) { 1235 static IntelIBT t; 1236 return &t; 1237 } 1238 1239 static X86_64 t; 1240 return &t; 1241 } 1242 1243 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); } 1244