xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/X86_64.cpp (revision e1e636193db45630c7881246d25902e57c43d24e)
1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "OutputSections.h"
10 #include "Relocations.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/Support/Endian.h"
17 #include "llvm/Support/MathExtras.h"
18 
19 using namespace llvm;
20 using namespace llvm::object;
21 using namespace llvm::support::endian;
22 using namespace llvm::ELF;
23 using namespace lld;
24 using namespace lld::elf;
25 
26 namespace {
27 class X86_64 : public TargetInfo {
28 public:
29   X86_64();
30   int getTlsGdRelaxSkip(RelType type) const override;
31   RelExpr getRelExpr(RelType type, const Symbol &s,
32                      const uint8_t *loc) const override;
33   RelType getDynRel(RelType type) const override;
34   void writeGotPltHeader(uint8_t *buf) const override;
35   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
36   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
37   void writePltHeader(uint8_t *buf) const override;
38   void writePlt(uint8_t *buf, const Symbol &sym,
39                 uint64_t pltEntryAddr) const override;
40   void relocate(uint8_t *loc, const Relocation &rel,
41                 uint64_t val) const override;
42   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
43   void applyJumpInstrMod(uint8_t *loc, JumpModType type,
44                          unsigned size) const override;
45   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
46                           const uint8_t *loc) const override;
47   void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
48   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
49                                         uint8_t stOther) const override;
50   bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
51                              InputSection *nextIS) const override;
52   bool relaxOnce(int pass) const override;
53 };
54 } // namespace
55 
56 // This is vector of NOP instructions of sizes from 1 to 8 bytes.  The
57 // appropriately sized instructions are used to fill the gaps between sections
58 // which are executed during fall through.
59 static const std::vector<std::vector<uint8_t>> nopInstructions = {
60     {0x90},
61     {0x66, 0x90},
62     {0x0f, 0x1f, 0x00},
63     {0x0f, 0x1f, 0x40, 0x00},
64     {0x0f, 0x1f, 0x44, 0x00, 0x00},
65     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
66     {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
67     {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
68     {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
69 
70 X86_64::X86_64() {
71   copyRel = R_X86_64_COPY;
72   gotRel = R_X86_64_GLOB_DAT;
73   pltRel = R_X86_64_JUMP_SLOT;
74   relativeRel = R_X86_64_RELATIVE;
75   iRelativeRel = R_X86_64_IRELATIVE;
76   symbolicRel = R_X86_64_64;
77   tlsDescRel = R_X86_64_TLSDESC;
78   tlsGotRel = R_X86_64_TPOFF64;
79   tlsModuleIndexRel = R_X86_64_DTPMOD64;
80   tlsOffsetRel = R_X86_64_DTPOFF64;
81   gotBaseSymInGotPlt = true;
82   gotEntrySize = 8;
83   pltHeaderSize = 16;
84   pltEntrySize = 16;
85   ipltEntrySize = 16;
86   trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
87   nopInstrs = nopInstructions;
88 
89   // Align to the large page size (known as a superpage or huge page).
90   // FreeBSD automatically promotes large, superpage-aligned allocations.
91   defaultImageBase = 0x200000;
92 }
93 
94 int X86_64::getTlsGdRelaxSkip(RelType type) const {
95   // TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
96   return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1
97                                                                            : 2;
98 }
99 
100 // Opcodes for the different X86_64 jmp instructions.
101 enum JmpInsnOpcode : uint32_t {
102   J_JMP_32,
103   J_JNE_32,
104   J_JE_32,
105   J_JG_32,
106   J_JGE_32,
107   J_JB_32,
108   J_JBE_32,
109   J_JL_32,
110   J_JLE_32,
111   J_JA_32,
112   J_JAE_32,
113   J_UNKNOWN,
114 };
115 
116 // Given the first (optional) and second byte of the insn's opcode, this
117 // returns the corresponding enum value.
118 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
119                                     const uint8_t *second) {
120   if (*second == 0xe9)
121     return J_JMP_32;
122 
123   if (first == nullptr)
124     return J_UNKNOWN;
125 
126   if (*first == 0x0f) {
127     switch (*second) {
128     case 0x84:
129       return J_JE_32;
130     case 0x85:
131       return J_JNE_32;
132     case 0x8f:
133       return J_JG_32;
134     case 0x8d:
135       return J_JGE_32;
136     case 0x82:
137       return J_JB_32;
138     case 0x86:
139       return J_JBE_32;
140     case 0x8c:
141       return J_JL_32;
142     case 0x8e:
143       return J_JLE_32;
144     case 0x87:
145       return J_JA_32;
146     case 0x83:
147       return J_JAE_32;
148     }
149   }
150   return J_UNKNOWN;
151 }
152 
153 // Return the relocation index for input section IS with a specific Offset.
154 // Returns the maximum size of the vector if no such relocation is found.
155 static unsigned getRelocationWithOffset(const InputSection &is,
156                                         uint64_t offset) {
157   unsigned size = is.relocs().size();
158   for (unsigned i = size - 1; i + 1 > 0; --i) {
159     if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE)
160       return i;
161   }
162   return size;
163 }
164 
165 // Returns true if R corresponds to a relocation used for a jump instruction.
166 // TODO: Once special relocations for relaxable jump instructions are available,
167 // this should be modified to use those relocations.
168 static bool isRelocationForJmpInsn(Relocation &R) {
169   return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
170          R.type == R_X86_64_PC8;
171 }
172 
173 // Return true if Relocation R points to the first instruction in the
174 // next section.
175 // TODO: Delete this once psABI reserves a new relocation type for fall thru
176 // jumps.
177 static bool isFallThruRelocation(InputSection &is, InputFile *file,
178                                  InputSection *nextIS, Relocation &r) {
179   if (!isRelocationForJmpInsn(r))
180     return false;
181 
182   uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
183   uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
184       file, r.type, r.addend, addrLoc, *r.sym, r.expr);
185 
186   // If this jmp is a fall thru, the target offset is the beginning of the
187   // next section.
188   uint64_t nextSectionOffset =
189       nextIS->getOutputSection()->addr + nextIS->outSecOff;
190   return (addrLoc + 4 + targetOffset) == nextSectionOffset;
191 }
192 
193 // Return the jmp instruction opcode that is the inverse of the given
194 // opcode.  For example, JE inverted is JNE.
195 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
196   switch (opcode) {
197   case J_JE_32:
198     return J_JNE_32;
199   case J_JNE_32:
200     return J_JE_32;
201   case J_JG_32:
202     return J_JLE_32;
203   case J_JGE_32:
204     return J_JL_32;
205   case J_JB_32:
206     return J_JAE_32;
207   case J_JBE_32:
208     return J_JA_32;
209   case J_JL_32:
210     return J_JGE_32;
211   case J_JLE_32:
212     return J_JG_32;
213   case J_JA_32:
214     return J_JBE_32;
215   case J_JAE_32:
216     return J_JB_32;
217   default:
218     return J_UNKNOWN;
219   }
220 }
221 
222 // Deletes direct jump instruction in input sections that jumps to the
223 // following section as it is not required.  If there are two consecutive jump
224 // instructions, it checks if they can be flipped and one can be deleted.
225 // For example:
226 // .section .text
227 // a.BB.foo:
228 //    ...
229 //    10: jne aa.BB.foo
230 //    16: jmp bar
231 // aa.BB.foo:
232 //    ...
233 //
234 // can be converted to:
235 // a.BB.foo:
236 //   ...
237 //   10: je bar  #jne flipped to je and the jmp is deleted.
238 // aa.BB.foo:
239 //   ...
240 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
241                                    InputSection *nextIS) const {
242   const unsigned sizeOfDirectJmpInsn = 5;
243 
244   if (nextIS == nullptr)
245     return false;
246 
247   if (is.getSize() < sizeOfDirectJmpInsn)
248     return false;
249 
250   // If this jmp insn can be removed, it is the last insn and the
251   // relocation is 4 bytes before the end.
252   unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
253   if (rIndex == is.relocs().size())
254     return false;
255 
256   Relocation &r = is.relocs()[rIndex];
257 
258   // Check if the relocation corresponds to a direct jmp.
259   const uint8_t *secContents = is.content().data();
260   // If it is not a direct jmp instruction, there is nothing to do here.
261   if (*(secContents + r.offset - 1) != 0xe9)
262     return false;
263 
264   if (isFallThruRelocation(is, file, nextIS, r)) {
265     // This is a fall thru and can be deleted.
266     r.expr = R_NONE;
267     r.offset = 0;
268     is.drop_back(sizeOfDirectJmpInsn);
269     is.nopFiller = true;
270     return true;
271   }
272 
273   // Now, check if flip and delete is possible.
274   const unsigned sizeOfJmpCCInsn = 6;
275   // To flip, there must be at least one JmpCC and one direct jmp.
276   if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
277     return false;
278 
279   unsigned rbIndex =
280       getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
281   if (rbIndex == is.relocs().size())
282     return false;
283 
284   Relocation &rB = is.relocs()[rbIndex];
285 
286   const uint8_t *jmpInsnB = secContents + rB.offset - 1;
287   JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
288   if (jmpOpcodeB == J_UNKNOWN)
289     return false;
290 
291   if (!isFallThruRelocation(is, file, nextIS, rB))
292     return false;
293 
294   // jmpCC jumps to the fall thru block, the branch can be flipped and the
295   // jmp can be deleted.
296   JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
297   if (jInvert == J_UNKNOWN)
298     return false;
299   is.jumpInstrMod = make<JumpInstrMod>();
300   *is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
301   // Move R's values to rB except the offset.
302   rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
303   // Cancel R
304   r.expr = R_NONE;
305   r.offset = 0;
306   is.drop_back(sizeOfDirectJmpInsn);
307   is.nopFiller = true;
308   return true;
309 }
310 
311 bool X86_64::relaxOnce(int pass) const {
312   uint64_t minVA = UINT64_MAX, maxVA = 0;
313   for (OutputSection *osec : outputSections) {
314     minVA = std::min(minVA, osec->addr);
315     maxVA = std::max(maxVA, osec->addr + osec->size);
316   }
317   // If the max VA difference is under 2^31, GOT-generating relocations with a 32-bit range cannot overflow.
318   if (isUInt<31>(maxVA - minVA))
319     return false;
320 
321   SmallVector<InputSection *, 0> storage;
322   bool changed = false;
323   for (OutputSection *osec : outputSections) {
324     if (!(osec->flags & SHF_EXECINSTR))
325       continue;
326     for (InputSection *sec : getInputSections(*osec, storage)) {
327       for (Relocation &rel : sec->relocs()) {
328         if (rel.expr != R_RELAX_GOT_PC)
329           continue;
330 
331         uint64_t v = sec->getRelocTargetVA(sec->file, rel.type, rel.addend,
332                                            sec->getOutputSection()->addr +
333                                                sec->outSecOff + rel.offset,
334                                            *rel.sym, rel.expr);
335         if (isInt<32>(v))
336           continue;
337         if (rel.sym->auxIdx == 0) {
338           rel.sym->allocateAux();
339           addGotEntry(*rel.sym);
340           changed = true;
341         }
342         rel.expr = R_GOT_PC;
343       }
344     }
345   }
346   return changed;
347 }
348 
349 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
350                            const uint8_t *loc) const {
351   switch (type) {
352   case R_X86_64_8:
353   case R_X86_64_16:
354   case R_X86_64_32:
355   case R_X86_64_32S:
356   case R_X86_64_64:
357     return R_ABS;
358   case R_X86_64_DTPOFF32:
359   case R_X86_64_DTPOFF64:
360     return R_DTPREL;
361   case R_X86_64_TPOFF32:
362   case R_X86_64_TPOFF64:
363     return R_TPREL;
364   case R_X86_64_TLSDESC_CALL:
365     return R_TLSDESC_CALL;
366   case R_X86_64_TLSLD:
367     return R_TLSLD_PC;
368   case R_X86_64_TLSGD:
369     return R_TLSGD_PC;
370   case R_X86_64_SIZE32:
371   case R_X86_64_SIZE64:
372     return R_SIZE;
373   case R_X86_64_PLT32:
374     return R_PLT_PC;
375   case R_X86_64_PC8:
376   case R_X86_64_PC16:
377   case R_X86_64_PC32:
378   case R_X86_64_PC64:
379     return R_PC;
380   case R_X86_64_GOT32:
381   case R_X86_64_GOT64:
382     return R_GOTPLT;
383   case R_X86_64_GOTPC32_TLSDESC:
384     return R_TLSDESC_PC;
385   case R_X86_64_GOTPCREL:
386   case R_X86_64_GOTPCRELX:
387   case R_X86_64_REX_GOTPCRELX:
388   case R_X86_64_GOTTPOFF:
389     return R_GOT_PC;
390   case R_X86_64_GOTOFF64:
391     return R_GOTPLTREL;
392   case R_X86_64_PLTOFF64:
393     return R_PLT_GOTPLT;
394   case R_X86_64_GOTPC32:
395   case R_X86_64_GOTPC64:
396     return R_GOTPLTONLY_PC;
397   case R_X86_64_NONE:
398     return R_NONE;
399   default:
400     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
401           ") against symbol " + toString(s));
402     return R_NONE;
403   }
404 }
405 
406 void X86_64::writeGotPltHeader(uint8_t *buf) const {
407   // The first entry holds the link-time address of _DYNAMIC. It is documented
408   // in the psABI and glibc before Aug 2021 used the entry to compute run-time
409   // load address of the shared object (note that this is relevant for linking
410   // ld.so, not any other program).
411   write64le(buf, mainPart->dynamic->getVA());
412 }
413 
414 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
415   // See comments in X86::writeGotPlt.
416   write64le(buf, s.getPltVA() + 6);
417 }
418 
419 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
420   // An x86 entry is the address of the ifunc resolver function (for -z rel).
421   if (config->writeAddends)
422     write64le(buf, s.getVA());
423 }
424 
425 void X86_64::writePltHeader(uint8_t *buf) const {
426   const uint8_t pltData[] = {
427       0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
428       0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
429       0x0f, 0x1f, 0x40, 0x00, // nop
430   };
431   memcpy(buf, pltData, sizeof(pltData));
432   uint64_t gotPlt = in.gotPlt->getVA();
433   uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
434   write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
435   write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
436 }
437 
438 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
439                       uint64_t pltEntryAddr) const {
440   const uint8_t inst[] = {
441       0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
442       0x68, 0, 0, 0, 0,       // pushq <relocation index>
443       0xe9, 0, 0, 0, 0,       // jmpq plt[0]
444   };
445   memcpy(buf, inst, sizeof(inst));
446 
447   write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
448   write32le(buf + 7, sym.getPltIdx());
449   write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
450 }
451 
452 RelType X86_64::getDynRel(RelType type) const {
453   if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
454       type == R_X86_64_SIZE64)
455     return type;
456   return R_X86_64_NONE;
457 }
458 
459 static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
460   if (rel.type == R_X86_64_TLSGD) {
461     // Convert
462     //   .byte 0x66
463     //   leaq x@tlsgd(%rip), %rdi
464     //   .word 0x6666
465     //   rex64
466     //   call __tls_get_addr@plt
467     // to the following two instructions.
468     const uint8_t inst[] = {
469         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
470         0x00, 0x00,                            // mov %fs:0x0,%rax
471         0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
472     };
473     memcpy(loc - 4, inst, sizeof(inst));
474 
475     // The original code used a pc relative relocation and so we have to
476     // compensate for the -4 in had in the addend.
477     write32le(loc + 8, val + 4);
478   } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
479     // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
480     if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
481         (loc[-1] & 0xc7) != 0x05) {
482       errorOrWarn(getErrorLocation(loc - 3) +
483                   "R_X86_64_GOTPC32_TLSDESC must be used "
484                   "in leaq x@tlsdesc(%rip), %REG");
485       return;
486     }
487     loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
488     loc[-2] = 0xc7;
489     loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
490     write32le(loc, val + 4);
491   } else {
492     // Convert call *x@tlsdesc(%REG) to xchg ax, ax.
493     assert(rel.type == R_X86_64_TLSDESC_CALL);
494     loc[0] = 0x66;
495     loc[1] = 0x90;
496   }
497 }
498 
499 static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) {
500   if (rel.type == R_X86_64_TLSGD) {
501     // Convert
502     //   .byte 0x66
503     //   leaq x@tlsgd(%rip), %rdi
504     //   .word 0x6666
505     //   rex64
506     //   call __tls_get_addr@plt
507     // to the following two instructions.
508     const uint8_t inst[] = {
509         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
510         0x00, 0x00,                            // mov %fs:0x0,%rax
511         0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
512     };
513     memcpy(loc - 4, inst, sizeof(inst));
514 
515     // Both code sequences are PC relatives, but since we are moving the
516     // constant forward by 8 bytes we have to subtract the value by 8.
517     write32le(loc + 8, val - 8);
518   } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
519     // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
520     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
521     if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
522         (loc[-1] & 0xc7) != 0x05) {
523       errorOrWarn(getErrorLocation(loc - 3) +
524                   "R_X86_64_GOTPC32_TLSDESC must be used "
525                   "in leaq x@tlsdesc(%rip), %REG");
526       return;
527     }
528     loc[-2] = 0x8b;
529     write32le(loc, val);
530   } else {
531     // Convert call *x@tlsdesc(%rax) to xchg ax, ax.
532     assert(rel.type == R_X86_64_TLSDESC_CALL);
533     loc[0] = 0x66;
534     loc[1] = 0x90;
535   }
536 }
537 
538 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
539 // R_X86_64_TPOFF32 so that it does not use GOT.
540 static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) {
541   uint8_t *inst = loc - 3;
542   uint8_t reg = loc[-1] >> 3;
543   uint8_t *regSlot = loc - 1;
544 
545   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
546   // because LEA with these registers needs 4 bytes to encode and thus
547   // wouldn't fit the space.
548 
549   if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
550     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
551     memcpy(inst, "\x48\x81\xc4", 3);
552   } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
553     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
554     memcpy(inst, "\x49\x81\xc4", 3);
555   } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
556     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
557     memcpy(inst, "\x4d\x8d", 2);
558     *regSlot = 0x80 | (reg << 3) | reg;
559   } else if (memcmp(inst, "\x48\x03", 2) == 0) {
560     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
561     memcpy(inst, "\x48\x8d", 2);
562     *regSlot = 0x80 | (reg << 3) | reg;
563   } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
564     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
565     memcpy(inst, "\x49\xc7", 2);
566     *regSlot = 0xc0 | reg;
567   } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
568     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
569     memcpy(inst, "\x48\xc7", 2);
570     *regSlot = 0xc0 | reg;
571   } else {
572     error(getErrorLocation(loc - 3) +
573           "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
574   }
575 
576   // The original code used a PC relative relocation.
577   // Need to compensate for the -4 it had in the addend.
578   write32le(loc, val + 4);
579 }
580 
581 static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
582   const uint8_t inst[] = {
583       0x66, 0x66,                                           // .word 0x6666
584       0x66,                                                 // .byte 0x66
585       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
586   };
587 
588   if (loc[4] == 0xe8) {
589     // Convert
590     //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
591     //   callq __tls_get_addr@PLT             # e8 <disp32>
592     //   leaq bar@dtpoff(%rax), %rcx
593     // to
594     //   .word 0x6666
595     //   .byte 0x66
596     //   mov %fs:0,%rax
597     //   leaq bar@tpoff(%rax), %rcx
598     memcpy(loc - 3, inst, sizeof(inst));
599     return;
600   }
601 
602   if (loc[4] == 0xff && loc[5] == 0x15) {
603     // Convert
604     //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
605     //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
606     // to
607     //   .long  0x66666666
608     //   movq   %fs:0,%rax
609     // See "Table 11.9: LD -> LE Code Transition (LP64)" in
610     // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
611     loc[-3] = 0x66;
612     memcpy(loc - 2, inst, sizeof(inst));
613     return;
614   }
615 
616   error(getErrorLocation(loc - 3) +
617         "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
618 }
619 
620 // A JumpInstrMod at a specific offset indicates that the jump instruction
621 // opcode at that offset must be modified.  This is specifically used to relax
622 // jump instructions with basic block sections.  This function looks at the
623 // JumpMod and effects the change.
624 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
625                                unsigned size) const {
626   switch (type) {
627   case J_JMP_32:
628     if (size == 4)
629       *loc = 0xe9;
630     else
631       *loc = 0xeb;
632     break;
633   case J_JE_32:
634     if (size == 4) {
635       loc[-1] = 0x0f;
636       *loc = 0x84;
637     } else
638       *loc = 0x74;
639     break;
640   case J_JNE_32:
641     if (size == 4) {
642       loc[-1] = 0x0f;
643       *loc = 0x85;
644     } else
645       *loc = 0x75;
646     break;
647   case J_JG_32:
648     if (size == 4) {
649       loc[-1] = 0x0f;
650       *loc = 0x8f;
651     } else
652       *loc = 0x7f;
653     break;
654   case J_JGE_32:
655     if (size == 4) {
656       loc[-1] = 0x0f;
657       *loc = 0x8d;
658     } else
659       *loc = 0x7d;
660     break;
661   case J_JB_32:
662     if (size == 4) {
663       loc[-1] = 0x0f;
664       *loc = 0x82;
665     } else
666       *loc = 0x72;
667     break;
668   case J_JBE_32:
669     if (size == 4) {
670       loc[-1] = 0x0f;
671       *loc = 0x86;
672     } else
673       *loc = 0x76;
674     break;
675   case J_JL_32:
676     if (size == 4) {
677       loc[-1] = 0x0f;
678       *loc = 0x8c;
679     } else
680       *loc = 0x7c;
681     break;
682   case J_JLE_32:
683     if (size == 4) {
684       loc[-1] = 0x0f;
685       *loc = 0x8e;
686     } else
687       *loc = 0x7e;
688     break;
689   case J_JA_32:
690     if (size == 4) {
691       loc[-1] = 0x0f;
692       *loc = 0x87;
693     } else
694       *loc = 0x77;
695     break;
696   case J_JAE_32:
697     if (size == 4) {
698       loc[-1] = 0x0f;
699       *loc = 0x83;
700     } else
701       *loc = 0x73;
702     break;
703   case J_UNKNOWN:
704     llvm_unreachable("Unknown Jump Relocation");
705   }
706 }
707 
708 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
709   switch (type) {
710   case R_X86_64_8:
711   case R_X86_64_PC8:
712     return SignExtend64<8>(*buf);
713   case R_X86_64_16:
714   case R_X86_64_PC16:
715     return SignExtend64<16>(read16le(buf));
716   case R_X86_64_32:
717   case R_X86_64_32S:
718   case R_X86_64_TPOFF32:
719   case R_X86_64_GOT32:
720   case R_X86_64_GOTPC32:
721   case R_X86_64_GOTPC32_TLSDESC:
722   case R_X86_64_GOTPCREL:
723   case R_X86_64_GOTPCRELX:
724   case R_X86_64_REX_GOTPCRELX:
725   case R_X86_64_PC32:
726   case R_X86_64_GOTTPOFF:
727   case R_X86_64_PLT32:
728   case R_X86_64_TLSGD:
729   case R_X86_64_TLSLD:
730   case R_X86_64_DTPOFF32:
731   case R_X86_64_SIZE32:
732     return SignExtend64<32>(read32le(buf));
733   case R_X86_64_64:
734   case R_X86_64_TPOFF64:
735   case R_X86_64_DTPOFF64:
736   case R_X86_64_DTPMOD64:
737   case R_X86_64_PC64:
738   case R_X86_64_SIZE64:
739   case R_X86_64_GLOB_DAT:
740   case R_X86_64_GOT64:
741   case R_X86_64_GOTOFF64:
742   case R_X86_64_GOTPC64:
743   case R_X86_64_PLTOFF64:
744   case R_X86_64_IRELATIVE:
745   case R_X86_64_RELATIVE:
746     return read64le(buf);
747   case R_X86_64_TLSDESC:
748     return read64le(buf + 8);
749   case R_X86_64_JUMP_SLOT:
750   case R_X86_64_NONE:
751     // These relocations are defined as not having an implicit addend.
752     return 0;
753   default:
754     internalLinkerError(getErrorLocation(buf),
755                         "cannot read addend for relocation " + toString(type));
756     return 0;
757   }
758 }
759 
760 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val);
761 
762 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
763   switch (rel.type) {
764   case R_X86_64_8:
765     checkIntUInt(loc, val, 8, rel);
766     *loc = val;
767     break;
768   case R_X86_64_PC8:
769     checkInt(loc, val, 8, rel);
770     *loc = val;
771     break;
772   case R_X86_64_16:
773     checkIntUInt(loc, val, 16, rel);
774     write16le(loc, val);
775     break;
776   case R_X86_64_PC16:
777     checkInt(loc, val, 16, rel);
778     write16le(loc, val);
779     break;
780   case R_X86_64_32:
781     checkUInt(loc, val, 32, rel);
782     write32le(loc, val);
783     break;
784   case R_X86_64_32S:
785   case R_X86_64_GOT32:
786   case R_X86_64_GOTPC32:
787   case R_X86_64_GOTPCREL:
788   case R_X86_64_PC32:
789   case R_X86_64_PLT32:
790   case R_X86_64_DTPOFF32:
791   case R_X86_64_SIZE32:
792     checkInt(loc, val, 32, rel);
793     write32le(loc, val);
794     break;
795   case R_X86_64_64:
796   case R_X86_64_TPOFF64:
797   case R_X86_64_DTPOFF64:
798   case R_X86_64_PC64:
799   case R_X86_64_SIZE64:
800   case R_X86_64_GOT64:
801   case R_X86_64_GOTOFF64:
802   case R_X86_64_GOTPC64:
803   case R_X86_64_PLTOFF64:
804     write64le(loc, val);
805     break;
806   case R_X86_64_GOTPCRELX:
807   case R_X86_64_REX_GOTPCRELX:
808     if (rel.expr != R_GOT_PC) {
809       relaxGot(loc, rel, val);
810     } else {
811       checkInt(loc, val, 32, rel);
812       write32le(loc, val);
813     }
814     break;
815   case R_X86_64_GOTPC32_TLSDESC:
816   case R_X86_64_TLSDESC_CALL:
817   case R_X86_64_TLSGD:
818     if (rel.expr == R_RELAX_TLS_GD_TO_LE) {
819       relaxTlsGdToLe(loc, rel, val);
820     } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) {
821       relaxTlsGdToIe(loc, rel, val);
822     } else {
823       checkInt(loc, val, 32, rel);
824       write32le(loc, val);
825     }
826     break;
827   case R_X86_64_TLSLD:
828     if (rel.expr == R_RELAX_TLS_LD_TO_LE) {
829       relaxTlsLdToLe(loc, rel, val);
830     } else {
831       checkInt(loc, val, 32, rel);
832       write32le(loc, val);
833     }
834     break;
835   case R_X86_64_GOTTPOFF:
836     if (rel.expr == R_RELAX_TLS_IE_TO_LE) {
837       relaxTlsIeToLe(loc, rel, val);
838     } else {
839       checkInt(loc, val, 32, rel);
840       write32le(loc, val);
841     }
842     break;
843   case R_X86_64_TPOFF32:
844     checkInt(loc, val, 32, rel);
845     write32le(loc, val);
846     break;
847 
848   case R_X86_64_TLSDESC:
849     // The addend is stored in the second 64-bit word.
850     write64le(loc + 8, val);
851     break;
852   default:
853     llvm_unreachable("unknown relocation");
854   }
855 }
856 
857 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
858                                 const uint8_t *loc) const {
859   // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
860   // with addend != -4. Such an instruction does not load the full GOT entry, so
861   // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
862   // (addend=0) loads the high 32 bits of the GOT entry.
863   if (!config->relax || addend != -4 ||
864       (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
865     return R_GOT_PC;
866   const uint8_t op = loc[-2];
867   const uint8_t modRm = loc[-1];
868 
869   // FIXME: When PIC is disabled and foo is defined locally in the
870   // lower 32 bit address space, memory operand in mov can be converted into
871   // immediate operand. Otherwise, mov must be changed to lea. We support only
872   // latter relaxation at this moment.
873   if (op == 0x8b)
874     return R_RELAX_GOT_PC;
875 
876   // Relax call and jmp.
877   if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
878     return R_RELAX_GOT_PC;
879 
880   // We don't support test/binop instructions without a REX prefix.
881   if (type == R_X86_64_GOTPCRELX)
882     return R_GOT_PC;
883 
884   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
885   // If PIC then no relaxation is available.
886   return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
887 }
888 
889 // A subset of relaxations can only be applied for no-PIC. This method
890 // handles such relaxations. Instructions encoding information was taken from:
891 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
892 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
893 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
894 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
895                           uint8_t modRm) {
896   const uint8_t rex = loc[-3];
897   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
898   if (op == 0x85) {
899     // See "TEST-Logical Compare" (4-428 Vol. 2B),
900     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
901 
902     // ModR/M byte has form XX YYY ZZZ, where
903     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
904     // XX has different meanings:
905     // 00: The operand's memory address is in reg1.
906     // 01: The operand's memory address is reg1 + a byte-sized displacement.
907     // 10: The operand's memory address is reg1 + a word-sized displacement.
908     // 11: The operand is reg1 itself.
909     // If an instruction requires only one operand, the unused reg2 field
910     // holds extra opcode bits rather than a register code
911     // 0xC0 == 11 000 000 binary.
912     // 0x38 == 00 111 000 binary.
913     // We transfer reg2 to reg1 here as operand.
914     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
915     loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
916 
917     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
918     // See "TEST-Logical Compare" (4-428 Vol. 2B).
919     loc[-2] = 0xf7;
920 
921     // Move R bit to the B bit in REX byte.
922     // REX byte is encoded as 0100WRXB, where
923     // 0100 is 4bit fixed pattern.
924     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
925     //   default operand size is used (which is 32-bit for most but not all
926     //   instructions).
927     // REX.R This 1-bit value is an extension to the MODRM.reg field.
928     // REX.X This 1-bit value is an extension to the SIB.index field.
929     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
930     // SIB.base field.
931     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
932     loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
933     write32le(loc, val);
934     return;
935   }
936 
937   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
938   // or xor operations.
939 
940   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
941   // Logic is close to one for test instruction above, but we also
942   // write opcode extension here, see below for details.
943   loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
944 
945   // Primary opcode is 0x81, opcode extension is one of:
946   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
947   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
948   // This value was wrote to MODRM.reg in a line above.
949   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
950   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
951   // descriptions about each operation.
952   loc[-2] = 0x81;
953   loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
954   write32le(loc, val);
955 }
956 
957 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) {
958   assert(isInt<32>(val) &&
959          "GOTPCRELX should not have been relaxed if it overflows");
960   const uint8_t op = loc[-2];
961   const uint8_t modRm = loc[-1];
962 
963   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
964   if (op == 0x8b) {
965     loc[-2] = 0x8d;
966     write32le(loc, val);
967     return;
968   }
969 
970   if (op != 0xff) {
971     // We are relaxing a rip relative to an absolute, so compensate
972     // for the old -4 addend.
973     assert(!config->isPic);
974     relaxGotNoPic(loc, val + 4, op, modRm);
975     return;
976   }
977 
978   // Convert call/jmp instructions.
979   if (modRm == 0x15) {
980     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
981     // Instead we convert to "addr32 call foo" where addr32 is an instruction
982     // prefix. That makes result expression to be a single instruction.
983     loc[-2] = 0x67; // addr32 prefix
984     loc[-1] = 0xe8; // call
985     write32le(loc, val);
986     return;
987   }
988 
989   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
990   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
991   assert(modRm == 0x25);
992   loc[-2] = 0xe9; // jmp
993   loc[3] = 0x90;  // nop
994   write32le(loc - 1, val + 1);
995 }
996 
997 // A split-stack prologue starts by checking the amount of stack remaining
998 // in one of two ways:
999 // A) Comparing of the stack pointer to a field in the tcb.
1000 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
1001 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1002                                               uint8_t stOther) const {
1003   if (!config->is64) {
1004     error("target doesn't support split stacks");
1005     return false;
1006   }
1007 
1008   if (loc + 8 >= end)
1009     return false;
1010 
1011   // Replace "cmp %fs:0x70,%rsp" and subsequent branch
1012   // with "stc, nopl 0x0(%rax,%rax,1)"
1013   if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
1014     memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
1015     return true;
1016   }
1017 
1018   // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
1019   // be r10 or r11. The lea instruction feeds a subsequent compare which checks
1020   // if there is X available stack space. Making X larger effectively reserves
1021   // that much additional space. The stack grows downward so subtract the value.
1022   if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
1023       memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
1024     // The offset bytes are encoded four bytes after the start of the
1025     // instruction.
1026     write32le(loc + 4, read32le(loc + 4) - 0x4000);
1027     return true;
1028   }
1029   return false;
1030 }
1031 
1032 void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1033   uint64_t secAddr = sec.getOutputSection()->addr;
1034   if (auto *s = dyn_cast<InputSection>(&sec))
1035     secAddr += s->outSecOff;
1036   else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
1037     secAddr += ehIn->getParent()->outSecOff;
1038   for (const Relocation &rel : sec.relocs()) {
1039     if (rel.expr == R_NONE) // See deleteFallThruJmpInsn
1040       continue;
1041     uint8_t *loc = buf + rel.offset;
1042     const uint64_t val =
1043         sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
1044                              secAddr + rel.offset, *rel.sym, rel.expr);
1045     relocate(loc, rel, val);
1046   }
1047   if (sec.jumpInstrMod) {
1048     applyJumpInstrMod(buf + sec.jumpInstrMod->offset,
1049                       sec.jumpInstrMod->original, sec.jumpInstrMod->size);
1050   }
1051 }
1052 
1053 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
1054 // entries containing endbr64 instructions. A PLT entry will be split into two
1055 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
1056 namespace {
1057 class IntelIBT : public X86_64 {
1058 public:
1059   IntelIBT();
1060   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1061   void writePlt(uint8_t *buf, const Symbol &sym,
1062                 uint64_t pltEntryAddr) const override;
1063   void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
1064 
1065   static const unsigned IBTPltHeaderSize = 16;
1066 };
1067 } // namespace
1068 
1069 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
1070 
1071 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1072   uint64_t va =
1073       in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize;
1074   write64le(buf, va);
1075 }
1076 
1077 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
1078                         uint64_t pltEntryAddr) const {
1079   const uint8_t Inst[] = {
1080       0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
1081       0xff, 0x25, 0,    0,    0, 0, // jmpq *got(%rip)
1082       0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
1083   };
1084   memcpy(buf, Inst, sizeof(Inst));
1085   write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
1086 }
1087 
1088 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
1089   writePltHeader(buf);
1090   buf += IBTPltHeaderSize;
1091 
1092   const uint8_t inst[] = {
1093       0xf3, 0x0f, 0x1e, 0xfa,    // endbr64
1094       0x68, 0,    0,    0,    0, // pushq <relocation index>
1095       0xe9, 0,    0,    0,    0, // jmpq plt[0]
1096       0x66, 0x90,                // nop
1097   };
1098 
1099   for (size_t i = 0; i < numEntries; ++i) {
1100     memcpy(buf, inst, sizeof(inst));
1101     write32le(buf + 5, i);
1102     write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1103     buf += sizeof(inst);
1104   }
1105 }
1106 
1107 // These nonstandard PLT entries are to migtigate Spectre v2 security
1108 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1109 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1110 // entries, we use a CALL followed by MOV and RET to do the same thing as an
1111 // indirect jump. That instruction sequence is so-called "retpoline".
1112 //
1113 // We have two types of retpoline PLTs as a size optimization. If `-z now`
1114 // is specified, all dynamic symbols are resolved at load-time. Thus, when
1115 // that option is given, we can omit code for symbol lazy resolution.
1116 namespace {
1117 class Retpoline : public X86_64 {
1118 public:
1119   Retpoline();
1120   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1121   void writePltHeader(uint8_t *buf) const override;
1122   void writePlt(uint8_t *buf, const Symbol &sym,
1123                 uint64_t pltEntryAddr) const override;
1124 };
1125 
1126 class RetpolineZNow : public X86_64 {
1127 public:
1128   RetpolineZNow();
1129   void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1130   void writePltHeader(uint8_t *buf) const override;
1131   void writePlt(uint8_t *buf, const Symbol &sym,
1132                 uint64_t pltEntryAddr) const override;
1133 };
1134 } // namespace
1135 
1136 Retpoline::Retpoline() {
1137   pltHeaderSize = 48;
1138   pltEntrySize = 32;
1139   ipltEntrySize = 32;
1140 }
1141 
1142 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1143   write64le(buf, s.getPltVA() + 17);
1144 }
1145 
1146 void Retpoline::writePltHeader(uint8_t *buf) const {
1147   const uint8_t insn[] = {
1148       0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
1149       0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
1150       0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
1151       0xf3, 0x90,                               // 12: loop: pause
1152       0x0f, 0xae, 0xe8,                         // 14:   lfence
1153       0xeb, 0xf9,                               // 17:   jmp loop
1154       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
1155       0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
1156       0xc3,                                     // 24:   ret
1157       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
1158       0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
1159   };
1160   memcpy(buf, insn, sizeof(insn));
1161 
1162   uint64_t gotPlt = in.gotPlt->getVA();
1163   uint64_t plt = in.plt->getVA();
1164   write32le(buf + 2, gotPlt - plt - 6 + 8);
1165   write32le(buf + 9, gotPlt - plt - 13 + 16);
1166 }
1167 
1168 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1169                          uint64_t pltEntryAddr) const {
1170   const uint8_t insn[] = {
1171       0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
1172       0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
1173       0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
1174       0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
1175       0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
1176       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1177   };
1178   memcpy(buf, insn, sizeof(insn));
1179 
1180   uint64_t off = pltEntryAddr - in.plt->getVA();
1181 
1182   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1183   write32le(buf + 8, -off - 12 + 32);
1184   write32le(buf + 13, -off - 17 + 18);
1185   write32le(buf + 18, sym.getPltIdx());
1186   write32le(buf + 23, -off - 27);
1187 }
1188 
1189 RetpolineZNow::RetpolineZNow() {
1190   pltHeaderSize = 32;
1191   pltEntrySize = 16;
1192   ipltEntrySize = 16;
1193 }
1194 
1195 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1196   const uint8_t insn[] = {
1197       0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
1198       0xf3, 0x90,                   // 5:  loop: pause
1199       0x0f, 0xae, 0xe8,             // 7:    lfence
1200       0xeb, 0xf9,                   // a:    jmp loop
1201       0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
1202       0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
1203       0xc3,                         // 14:   ret
1204       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
1205       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
1206       0xcc,                         // 1f:   int3; padding
1207   };
1208   memcpy(buf, insn, sizeof(insn));
1209 }
1210 
1211 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1212                              uint64_t pltEntryAddr) const {
1213   const uint8_t insn[] = {
1214       0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1215       0xe9, 0,    0,    0,    0,       // jmp plt+0
1216       0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
1217   };
1218   memcpy(buf, insn, sizeof(insn));
1219 
1220   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1221   write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1222 }
1223 
1224 static TargetInfo *getTargetInfo() {
1225   if (config->zRetpolineplt) {
1226     if (config->zNow) {
1227       static RetpolineZNow t;
1228       return &t;
1229     }
1230     static Retpoline t;
1231     return &t;
1232   }
1233 
1234   if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1235     static IntelIBT t;
1236     return &t;
1237   }
1238 
1239   static X86_64 t;
1240   return &t;
1241 }
1242 
1243 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
1244