xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/X86_64.cpp (revision 7a6dacaca14b62ca4b74406814becb87a3fefac0)
1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "OutputSections.h"
10 #include "Relocations.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/Support/Endian.h"
17 #include "llvm/Support/MathExtras.h"
18 
19 using namespace llvm;
20 using namespace llvm::object;
21 using namespace llvm::support::endian;
22 using namespace llvm::ELF;
23 using namespace lld;
24 using namespace lld::elf;
25 
26 namespace {
27 class X86_64 : public TargetInfo {
28 public:
29   X86_64();
30   int getTlsGdRelaxSkip(RelType type) const override;
31   RelExpr getRelExpr(RelType type, const Symbol &s,
32                      const uint8_t *loc) const override;
33   RelType getDynRel(RelType type) const override;
34   void writeGotPltHeader(uint8_t *buf) const override;
35   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
36   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
37   void writePltHeader(uint8_t *buf) const override;
38   void writePlt(uint8_t *buf, const Symbol &sym,
39                 uint64_t pltEntryAddr) const override;
40   void relocate(uint8_t *loc, const Relocation &rel,
41                 uint64_t val) const override;
42   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
43   void applyJumpInstrMod(uint8_t *loc, JumpModType type,
44                          unsigned size) const override;
45   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
46                           const uint8_t *loc) const override;
47   void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
48   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
49                                         uint8_t stOther) const override;
50   bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
51                              InputSection *nextIS) const override;
52   bool relaxOnce(int pass) const override;
53 };
54 } // namespace
55 
56 // This is vector of NOP instructions of sizes from 1 to 8 bytes.  The
57 // appropriately sized instructions are used to fill the gaps between sections
58 // which are executed during fall through.
59 static const std::vector<std::vector<uint8_t>> nopInstructions = {
60     {0x90},
61     {0x66, 0x90},
62     {0x0f, 0x1f, 0x00},
63     {0x0f, 0x1f, 0x40, 0x00},
64     {0x0f, 0x1f, 0x44, 0x00, 0x00},
65     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
66     {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
67     {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
68     {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
69 
70 X86_64::X86_64() {
71   copyRel = R_X86_64_COPY;
72   gotRel = R_X86_64_GLOB_DAT;
73   pltRel = R_X86_64_JUMP_SLOT;
74   relativeRel = R_X86_64_RELATIVE;
75   iRelativeRel = R_X86_64_IRELATIVE;
76   symbolicRel = R_X86_64_64;
77   tlsDescRel = R_X86_64_TLSDESC;
78   tlsGotRel = R_X86_64_TPOFF64;
79   tlsModuleIndexRel = R_X86_64_DTPMOD64;
80   tlsOffsetRel = R_X86_64_DTPOFF64;
81   gotBaseSymInGotPlt = true;
82   gotEntrySize = 8;
83   pltHeaderSize = 16;
84   pltEntrySize = 16;
85   ipltEntrySize = 16;
86   trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
87   nopInstrs = nopInstructions;
88 
89   // Align to the large page size (known as a superpage or huge page).
90   // FreeBSD automatically promotes large, superpage-aligned allocations.
91   defaultImageBase = 0x200000;
92 }
93 
94 int X86_64::getTlsGdRelaxSkip(RelType type) const {
95   // TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
96   return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1
97                                                                            : 2;
98 }
99 
100 // Opcodes for the different X86_64 jmp instructions.
101 enum JmpInsnOpcode : uint32_t {
102   J_JMP_32,
103   J_JNE_32,
104   J_JE_32,
105   J_JG_32,
106   J_JGE_32,
107   J_JB_32,
108   J_JBE_32,
109   J_JL_32,
110   J_JLE_32,
111   J_JA_32,
112   J_JAE_32,
113   J_UNKNOWN,
114 };
115 
116 // Given the first (optional) and second byte of the insn's opcode, this
117 // returns the corresponding enum value.
118 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
119                                     const uint8_t *second) {
120   if (*second == 0xe9)
121     return J_JMP_32;
122 
123   if (first == nullptr)
124     return J_UNKNOWN;
125 
126   if (*first == 0x0f) {
127     switch (*second) {
128     case 0x84:
129       return J_JE_32;
130     case 0x85:
131       return J_JNE_32;
132     case 0x8f:
133       return J_JG_32;
134     case 0x8d:
135       return J_JGE_32;
136     case 0x82:
137       return J_JB_32;
138     case 0x86:
139       return J_JBE_32;
140     case 0x8c:
141       return J_JL_32;
142     case 0x8e:
143       return J_JLE_32;
144     case 0x87:
145       return J_JA_32;
146     case 0x83:
147       return J_JAE_32;
148     }
149   }
150   return J_UNKNOWN;
151 }
152 
153 // Return the relocation index for input section IS with a specific Offset.
154 // Returns the maximum size of the vector if no such relocation is found.
155 static unsigned getRelocationWithOffset(const InputSection &is,
156                                         uint64_t offset) {
157   unsigned size = is.relocs().size();
158   for (unsigned i = size - 1; i + 1 > 0; --i) {
159     if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE)
160       return i;
161   }
162   return size;
163 }
164 
165 // Returns true if R corresponds to a relocation used for a jump instruction.
166 // TODO: Once special relocations for relaxable jump instructions are available,
167 // this should be modified to use those relocations.
168 static bool isRelocationForJmpInsn(Relocation &R) {
169   return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
170          R.type == R_X86_64_PC8;
171 }
172 
173 // Return true if Relocation R points to the first instruction in the
174 // next section.
175 // TODO: Delete this once psABI reserves a new relocation type for fall thru
176 // jumps.
177 static bool isFallThruRelocation(InputSection &is, InputFile *file,
178                                  InputSection *nextIS, Relocation &r) {
179   if (!isRelocationForJmpInsn(r))
180     return false;
181 
182   uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
183   uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
184       file, r.type, r.addend, addrLoc, *r.sym, r.expr);
185 
186   // If this jmp is a fall thru, the target offset is the beginning of the
187   // next section.
188   uint64_t nextSectionOffset =
189       nextIS->getOutputSection()->addr + nextIS->outSecOff;
190   return (addrLoc + 4 + targetOffset) == nextSectionOffset;
191 }
192 
193 // Return the jmp instruction opcode that is the inverse of the given
194 // opcode.  For example, JE inverted is JNE.
195 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
196   switch (opcode) {
197   case J_JE_32:
198     return J_JNE_32;
199   case J_JNE_32:
200     return J_JE_32;
201   case J_JG_32:
202     return J_JLE_32;
203   case J_JGE_32:
204     return J_JL_32;
205   case J_JB_32:
206     return J_JAE_32;
207   case J_JBE_32:
208     return J_JA_32;
209   case J_JL_32:
210     return J_JGE_32;
211   case J_JLE_32:
212     return J_JG_32;
213   case J_JA_32:
214     return J_JBE_32;
215   case J_JAE_32:
216     return J_JB_32;
217   default:
218     return J_UNKNOWN;
219   }
220 }
221 
222 // Deletes direct jump instruction in input sections that jumps to the
223 // following section as it is not required.  If there are two consecutive jump
224 // instructions, it checks if they can be flipped and one can be deleted.
225 // For example:
226 // .section .text
227 // a.BB.foo:
228 //    ...
229 //    10: jne aa.BB.foo
230 //    16: jmp bar
231 // aa.BB.foo:
232 //    ...
233 //
234 // can be converted to:
235 // a.BB.foo:
236 //   ...
237 //   10: je bar  #jne flipped to je and the jmp is deleted.
238 // aa.BB.foo:
239 //   ...
240 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
241                                    InputSection *nextIS) const {
242   const unsigned sizeOfDirectJmpInsn = 5;
243 
244   if (nextIS == nullptr)
245     return false;
246 
247   if (is.getSize() < sizeOfDirectJmpInsn)
248     return false;
249 
250   // If this jmp insn can be removed, it is the last insn and the
251   // relocation is 4 bytes before the end.
252   unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
253   if (rIndex == is.relocs().size())
254     return false;
255 
256   Relocation &r = is.relocs()[rIndex];
257 
258   // Check if the relocation corresponds to a direct jmp.
259   const uint8_t *secContents = is.content().data();
260   // If it is not a direct jmp instruction, there is nothing to do here.
261   if (*(secContents + r.offset - 1) != 0xe9)
262     return false;
263 
264   if (isFallThruRelocation(is, file, nextIS, r)) {
265     // This is a fall thru and can be deleted.
266     r.expr = R_NONE;
267     r.offset = 0;
268     is.drop_back(sizeOfDirectJmpInsn);
269     is.nopFiller = true;
270     return true;
271   }
272 
273   // Now, check if flip and delete is possible.
274   const unsigned sizeOfJmpCCInsn = 6;
275   // To flip, there must be at least one JmpCC and one direct jmp.
276   if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
277     return false;
278 
279   unsigned rbIndex =
280       getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
281   if (rbIndex == is.relocs().size())
282     return false;
283 
284   Relocation &rB = is.relocs()[rbIndex];
285 
286   const uint8_t *jmpInsnB = secContents + rB.offset - 1;
287   JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
288   if (jmpOpcodeB == J_UNKNOWN)
289     return false;
290 
291   if (!isFallThruRelocation(is, file, nextIS, rB))
292     return false;
293 
294   // jmpCC jumps to the fall thru block, the branch can be flipped and the
295   // jmp can be deleted.
296   JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
297   if (jInvert == J_UNKNOWN)
298     return false;
299   is.jumpInstrMod = make<JumpInstrMod>();
300   *is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
301   // Move R's values to rB except the offset.
302   rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
303   // Cancel R
304   r.expr = R_NONE;
305   r.offset = 0;
306   is.drop_back(sizeOfDirectJmpInsn);
307   is.nopFiller = true;
308   return true;
309 }
310 
311 bool X86_64::relaxOnce(int pass) const {
312   uint64_t minVA = UINT64_MAX, maxVA = 0;
313   for (OutputSection *osec : outputSections) {
314     minVA = std::min(minVA, osec->addr);
315     maxVA = std::max(maxVA, osec->addr + osec->size);
316   }
317   // If the max VA difference is under 2^31, GOT-generating relocations with a 32-bit range cannot overflow.
318   if (isUInt<31>(maxVA - minVA))
319     return false;
320 
321   SmallVector<InputSection *, 0> storage;
322   bool changed = false;
323   for (OutputSection *osec : outputSections) {
324     if (!(osec->flags & SHF_EXECINSTR))
325       continue;
326     for (InputSection *sec : getInputSections(*osec, storage)) {
327       for (Relocation &rel : sec->relocs()) {
328         if (rel.expr != R_RELAX_GOT_PC)
329           continue;
330 
331         uint64_t v = sec->getRelocTargetVA(
332             sec->file, rel.type, rel.addend,
333             sec->getOutputSection()->addr + rel.offset, *rel.sym, rel.expr);
334         if (isInt<32>(v))
335           continue;
336         if (rel.sym->auxIdx == 0) {
337           rel.sym->allocateAux();
338           addGotEntry(*rel.sym);
339           changed = true;
340         }
341         rel.expr = R_GOT_PC;
342       }
343     }
344   }
345   return changed;
346 }
347 
348 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
349                            const uint8_t *loc) const {
350   switch (type) {
351   case R_X86_64_8:
352   case R_X86_64_16:
353   case R_X86_64_32:
354   case R_X86_64_32S:
355   case R_X86_64_64:
356     return R_ABS;
357   case R_X86_64_DTPOFF32:
358   case R_X86_64_DTPOFF64:
359     return R_DTPREL;
360   case R_X86_64_TPOFF32:
361   case R_X86_64_TPOFF64:
362     return R_TPREL;
363   case R_X86_64_TLSDESC_CALL:
364     return R_TLSDESC_CALL;
365   case R_X86_64_TLSLD:
366     return R_TLSLD_PC;
367   case R_X86_64_TLSGD:
368     return R_TLSGD_PC;
369   case R_X86_64_SIZE32:
370   case R_X86_64_SIZE64:
371     return R_SIZE;
372   case R_X86_64_PLT32:
373     return R_PLT_PC;
374   case R_X86_64_PC8:
375   case R_X86_64_PC16:
376   case R_X86_64_PC32:
377   case R_X86_64_PC64:
378     return R_PC;
379   case R_X86_64_GOT32:
380   case R_X86_64_GOT64:
381     return R_GOTPLT;
382   case R_X86_64_GOTPC32_TLSDESC:
383     return R_TLSDESC_PC;
384   case R_X86_64_GOTPCREL:
385   case R_X86_64_GOTPCRELX:
386   case R_X86_64_REX_GOTPCRELX:
387   case R_X86_64_GOTTPOFF:
388     return R_GOT_PC;
389   case R_X86_64_GOTOFF64:
390     return R_GOTPLTREL;
391   case R_X86_64_PLTOFF64:
392     return R_PLT_GOTPLT;
393   case R_X86_64_GOTPC32:
394   case R_X86_64_GOTPC64:
395     return R_GOTPLTONLY_PC;
396   case R_X86_64_NONE:
397     return R_NONE;
398   default:
399     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
400           ") against symbol " + toString(s));
401     return R_NONE;
402   }
403 }
404 
405 void X86_64::writeGotPltHeader(uint8_t *buf) const {
406   // The first entry holds the link-time address of _DYNAMIC. It is documented
407   // in the psABI and glibc before Aug 2021 used the entry to compute run-time
408   // load address of the shared object (note that this is relevant for linking
409   // ld.so, not any other program).
410   write64le(buf, mainPart->dynamic->getVA());
411 }
412 
413 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
414   // See comments in X86::writeGotPlt.
415   write64le(buf, s.getPltVA() + 6);
416 }
417 
418 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
419   // An x86 entry is the address of the ifunc resolver function (for -z rel).
420   if (config->writeAddends)
421     write64le(buf, s.getVA());
422 }
423 
424 void X86_64::writePltHeader(uint8_t *buf) const {
425   const uint8_t pltData[] = {
426       0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
427       0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
428       0x0f, 0x1f, 0x40, 0x00, // nop
429   };
430   memcpy(buf, pltData, sizeof(pltData));
431   uint64_t gotPlt = in.gotPlt->getVA();
432   uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
433   write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
434   write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
435 }
436 
437 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
438                       uint64_t pltEntryAddr) const {
439   const uint8_t inst[] = {
440       0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
441       0x68, 0, 0, 0, 0,       // pushq <relocation index>
442       0xe9, 0, 0, 0, 0,       // jmpq plt[0]
443   };
444   memcpy(buf, inst, sizeof(inst));
445 
446   write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
447   write32le(buf + 7, sym.getPltIdx());
448   write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
449 }
450 
451 RelType X86_64::getDynRel(RelType type) const {
452   if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
453       type == R_X86_64_SIZE64)
454     return type;
455   return R_X86_64_NONE;
456 }
457 
458 static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
459   if (rel.type == R_X86_64_TLSGD) {
460     // Convert
461     //   .byte 0x66
462     //   leaq x@tlsgd(%rip), %rdi
463     //   .word 0x6666
464     //   rex64
465     //   call __tls_get_addr@plt
466     // to the following two instructions.
467     const uint8_t inst[] = {
468         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
469         0x00, 0x00,                            // mov %fs:0x0,%rax
470         0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
471     };
472     memcpy(loc - 4, inst, sizeof(inst));
473 
474     // The original code used a pc relative relocation and so we have to
475     // compensate for the -4 in had in the addend.
476     write32le(loc + 8, val + 4);
477   } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
478     // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
479     if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
480         (loc[-1] & 0xc7) != 0x05) {
481       errorOrWarn(getErrorLocation(loc - 3) +
482                   "R_X86_64_GOTPC32_TLSDESC must be used "
483                   "in leaq x@tlsdesc(%rip), %REG");
484       return;
485     }
486     loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
487     loc[-2] = 0xc7;
488     loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
489     write32le(loc, val + 4);
490   } else {
491     // Convert call *x@tlsdesc(%REG) to xchg ax, ax.
492     assert(rel.type == R_X86_64_TLSDESC_CALL);
493     loc[0] = 0x66;
494     loc[1] = 0x90;
495   }
496 }
497 
498 static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) {
499   if (rel.type == R_X86_64_TLSGD) {
500     // Convert
501     //   .byte 0x66
502     //   leaq x@tlsgd(%rip), %rdi
503     //   .word 0x6666
504     //   rex64
505     //   call __tls_get_addr@plt
506     // to the following two instructions.
507     const uint8_t inst[] = {
508         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
509         0x00, 0x00,                            // mov %fs:0x0,%rax
510         0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
511     };
512     memcpy(loc - 4, inst, sizeof(inst));
513 
514     // Both code sequences are PC relatives, but since we are moving the
515     // constant forward by 8 bytes we have to subtract the value by 8.
516     write32le(loc + 8, val - 8);
517   } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
518     // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
519     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
520     if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
521         (loc[-1] & 0xc7) != 0x05) {
522       errorOrWarn(getErrorLocation(loc - 3) +
523                   "R_X86_64_GOTPC32_TLSDESC must be used "
524                   "in leaq x@tlsdesc(%rip), %REG");
525       return;
526     }
527     loc[-2] = 0x8b;
528     write32le(loc, val);
529   } else {
530     // Convert call *x@tlsdesc(%rax) to xchg ax, ax.
531     assert(rel.type == R_X86_64_TLSDESC_CALL);
532     loc[0] = 0x66;
533     loc[1] = 0x90;
534   }
535 }
536 
537 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
538 // R_X86_64_TPOFF32 so that it does not use GOT.
539 static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) {
540   uint8_t *inst = loc - 3;
541   uint8_t reg = loc[-1] >> 3;
542   uint8_t *regSlot = loc - 1;
543 
544   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
545   // because LEA with these registers needs 4 bytes to encode and thus
546   // wouldn't fit the space.
547 
548   if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
549     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
550     memcpy(inst, "\x48\x81\xc4", 3);
551   } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
552     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
553     memcpy(inst, "\x49\x81\xc4", 3);
554   } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
555     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
556     memcpy(inst, "\x4d\x8d", 2);
557     *regSlot = 0x80 | (reg << 3) | reg;
558   } else if (memcmp(inst, "\x48\x03", 2) == 0) {
559     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
560     memcpy(inst, "\x48\x8d", 2);
561     *regSlot = 0x80 | (reg << 3) | reg;
562   } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
563     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
564     memcpy(inst, "\x49\xc7", 2);
565     *regSlot = 0xc0 | reg;
566   } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
567     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
568     memcpy(inst, "\x48\xc7", 2);
569     *regSlot = 0xc0 | reg;
570   } else {
571     error(getErrorLocation(loc - 3) +
572           "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
573   }
574 
575   // The original code used a PC relative relocation.
576   // Need to compensate for the -4 it had in the addend.
577   write32le(loc, val + 4);
578 }
579 
580 static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
581   const uint8_t inst[] = {
582       0x66, 0x66,                                           // .word 0x6666
583       0x66,                                                 // .byte 0x66
584       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
585   };
586 
587   if (loc[4] == 0xe8) {
588     // Convert
589     //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
590     //   callq __tls_get_addr@PLT             # e8 <disp32>
591     //   leaq bar@dtpoff(%rax), %rcx
592     // to
593     //   .word 0x6666
594     //   .byte 0x66
595     //   mov %fs:0,%rax
596     //   leaq bar@tpoff(%rax), %rcx
597     memcpy(loc - 3, inst, sizeof(inst));
598     return;
599   }
600 
601   if (loc[4] == 0xff && loc[5] == 0x15) {
602     // Convert
603     //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
604     //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
605     // to
606     //   .long  0x66666666
607     //   movq   %fs:0,%rax
608     // See "Table 11.9: LD -> LE Code Transition (LP64)" in
609     // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
610     loc[-3] = 0x66;
611     memcpy(loc - 2, inst, sizeof(inst));
612     return;
613   }
614 
615   error(getErrorLocation(loc - 3) +
616         "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
617 }
618 
619 // A JumpInstrMod at a specific offset indicates that the jump instruction
620 // opcode at that offset must be modified.  This is specifically used to relax
621 // jump instructions with basic block sections.  This function looks at the
622 // JumpMod and effects the change.
623 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
624                                unsigned size) const {
625   switch (type) {
626   case J_JMP_32:
627     if (size == 4)
628       *loc = 0xe9;
629     else
630       *loc = 0xeb;
631     break;
632   case J_JE_32:
633     if (size == 4) {
634       loc[-1] = 0x0f;
635       *loc = 0x84;
636     } else
637       *loc = 0x74;
638     break;
639   case J_JNE_32:
640     if (size == 4) {
641       loc[-1] = 0x0f;
642       *loc = 0x85;
643     } else
644       *loc = 0x75;
645     break;
646   case J_JG_32:
647     if (size == 4) {
648       loc[-1] = 0x0f;
649       *loc = 0x8f;
650     } else
651       *loc = 0x7f;
652     break;
653   case J_JGE_32:
654     if (size == 4) {
655       loc[-1] = 0x0f;
656       *loc = 0x8d;
657     } else
658       *loc = 0x7d;
659     break;
660   case J_JB_32:
661     if (size == 4) {
662       loc[-1] = 0x0f;
663       *loc = 0x82;
664     } else
665       *loc = 0x72;
666     break;
667   case J_JBE_32:
668     if (size == 4) {
669       loc[-1] = 0x0f;
670       *loc = 0x86;
671     } else
672       *loc = 0x76;
673     break;
674   case J_JL_32:
675     if (size == 4) {
676       loc[-1] = 0x0f;
677       *loc = 0x8c;
678     } else
679       *loc = 0x7c;
680     break;
681   case J_JLE_32:
682     if (size == 4) {
683       loc[-1] = 0x0f;
684       *loc = 0x8e;
685     } else
686       *loc = 0x7e;
687     break;
688   case J_JA_32:
689     if (size == 4) {
690       loc[-1] = 0x0f;
691       *loc = 0x87;
692     } else
693       *loc = 0x77;
694     break;
695   case J_JAE_32:
696     if (size == 4) {
697       loc[-1] = 0x0f;
698       *loc = 0x83;
699     } else
700       *loc = 0x73;
701     break;
702   case J_UNKNOWN:
703     llvm_unreachable("Unknown Jump Relocation");
704   }
705 }
706 
707 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
708   switch (type) {
709   case R_X86_64_8:
710   case R_X86_64_PC8:
711     return SignExtend64<8>(*buf);
712   case R_X86_64_16:
713   case R_X86_64_PC16:
714     return SignExtend64<16>(read16le(buf));
715   case R_X86_64_32:
716   case R_X86_64_32S:
717   case R_X86_64_TPOFF32:
718   case R_X86_64_GOT32:
719   case R_X86_64_GOTPC32:
720   case R_X86_64_GOTPC32_TLSDESC:
721   case R_X86_64_GOTPCREL:
722   case R_X86_64_GOTPCRELX:
723   case R_X86_64_REX_GOTPCRELX:
724   case R_X86_64_PC32:
725   case R_X86_64_GOTTPOFF:
726   case R_X86_64_PLT32:
727   case R_X86_64_TLSGD:
728   case R_X86_64_TLSLD:
729   case R_X86_64_DTPOFF32:
730   case R_X86_64_SIZE32:
731     return SignExtend64<32>(read32le(buf));
732   case R_X86_64_64:
733   case R_X86_64_TPOFF64:
734   case R_X86_64_DTPOFF64:
735   case R_X86_64_DTPMOD64:
736   case R_X86_64_PC64:
737   case R_X86_64_SIZE64:
738   case R_X86_64_GLOB_DAT:
739   case R_X86_64_GOT64:
740   case R_X86_64_GOTOFF64:
741   case R_X86_64_GOTPC64:
742   case R_X86_64_PLTOFF64:
743   case R_X86_64_IRELATIVE:
744   case R_X86_64_RELATIVE:
745     return read64le(buf);
746   case R_X86_64_TLSDESC:
747     return read64le(buf + 8);
748   case R_X86_64_JUMP_SLOT:
749   case R_X86_64_NONE:
750     // These relocations are defined as not having an implicit addend.
751     return 0;
752   default:
753     internalLinkerError(getErrorLocation(buf),
754                         "cannot read addend for relocation " + toString(type));
755     return 0;
756   }
757 }
758 
759 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val);
760 
761 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
762   switch (rel.type) {
763   case R_X86_64_8:
764     checkIntUInt(loc, val, 8, rel);
765     *loc = val;
766     break;
767   case R_X86_64_PC8:
768     checkInt(loc, val, 8, rel);
769     *loc = val;
770     break;
771   case R_X86_64_16:
772     checkIntUInt(loc, val, 16, rel);
773     write16le(loc, val);
774     break;
775   case R_X86_64_PC16:
776     checkInt(loc, val, 16, rel);
777     write16le(loc, val);
778     break;
779   case R_X86_64_32:
780     checkUInt(loc, val, 32, rel);
781     write32le(loc, val);
782     break;
783   case R_X86_64_32S:
784   case R_X86_64_GOT32:
785   case R_X86_64_GOTPC32:
786   case R_X86_64_GOTPCREL:
787   case R_X86_64_PC32:
788   case R_X86_64_PLT32:
789   case R_X86_64_DTPOFF32:
790   case R_X86_64_SIZE32:
791     checkInt(loc, val, 32, rel);
792     write32le(loc, val);
793     break;
794   case R_X86_64_64:
795   case R_X86_64_TPOFF64:
796   case R_X86_64_DTPOFF64:
797   case R_X86_64_PC64:
798   case R_X86_64_SIZE64:
799   case R_X86_64_GOT64:
800   case R_X86_64_GOTOFF64:
801   case R_X86_64_GOTPC64:
802   case R_X86_64_PLTOFF64:
803     write64le(loc, val);
804     break;
805   case R_X86_64_GOTPCRELX:
806   case R_X86_64_REX_GOTPCRELX:
807     if (rel.expr != R_GOT_PC) {
808       relaxGot(loc, rel, val);
809     } else {
810       checkInt(loc, val, 32, rel);
811       write32le(loc, val);
812     }
813     break;
814   case R_X86_64_GOTPC32_TLSDESC:
815   case R_X86_64_TLSDESC_CALL:
816   case R_X86_64_TLSGD:
817     if (rel.expr == R_RELAX_TLS_GD_TO_LE) {
818       relaxTlsGdToLe(loc, rel, val);
819     } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) {
820       relaxTlsGdToIe(loc, rel, val);
821     } else {
822       checkInt(loc, val, 32, rel);
823       write32le(loc, val);
824     }
825     break;
826   case R_X86_64_TLSLD:
827     if (rel.expr == R_RELAX_TLS_LD_TO_LE) {
828       relaxTlsLdToLe(loc, rel, val);
829     } else {
830       checkInt(loc, val, 32, rel);
831       write32le(loc, val);
832     }
833     break;
834   case R_X86_64_GOTTPOFF:
835     if (rel.expr == R_RELAX_TLS_IE_TO_LE) {
836       relaxTlsIeToLe(loc, rel, val);
837     } else {
838       checkInt(loc, val, 32, rel);
839       write32le(loc, val);
840     }
841     break;
842   case R_X86_64_TPOFF32:
843     checkInt(loc, val, 32, rel);
844     write32le(loc, val);
845     break;
846 
847   case R_X86_64_TLSDESC:
848     // The addend is stored in the second 64-bit word.
849     write64le(loc + 8, val);
850     break;
851   default:
852     llvm_unreachable("unknown relocation");
853   }
854 }
855 
856 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
857                                 const uint8_t *loc) const {
858   // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
859   // with addend != -4. Such an instruction does not load the full GOT entry, so
860   // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
861   // (addend=0) loads the high 32 bits of the GOT entry.
862   if (!config->relax || addend != -4 ||
863       (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
864     return R_GOT_PC;
865   const uint8_t op = loc[-2];
866   const uint8_t modRm = loc[-1];
867 
868   // FIXME: When PIC is disabled and foo is defined locally in the
869   // lower 32 bit address space, memory operand in mov can be converted into
870   // immediate operand. Otherwise, mov must be changed to lea. We support only
871   // latter relaxation at this moment.
872   if (op == 0x8b)
873     return R_RELAX_GOT_PC;
874 
875   // Relax call and jmp.
876   if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
877     return R_RELAX_GOT_PC;
878 
879   // We don't support test/binop instructions without a REX prefix.
880   if (type == R_X86_64_GOTPCRELX)
881     return R_GOT_PC;
882 
883   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
884   // If PIC then no relaxation is available.
885   return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
886 }
887 
888 // A subset of relaxations can only be applied for no-PIC. This method
889 // handles such relaxations. Instructions encoding information was taken from:
890 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
891 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
892 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
893 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
894                           uint8_t modRm) {
895   const uint8_t rex = loc[-3];
896   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
897   if (op == 0x85) {
898     // See "TEST-Logical Compare" (4-428 Vol. 2B),
899     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
900 
901     // ModR/M byte has form XX YYY ZZZ, where
902     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
903     // XX has different meanings:
904     // 00: The operand's memory address is in reg1.
905     // 01: The operand's memory address is reg1 + a byte-sized displacement.
906     // 10: The operand's memory address is reg1 + a word-sized displacement.
907     // 11: The operand is reg1 itself.
908     // If an instruction requires only one operand, the unused reg2 field
909     // holds extra opcode bits rather than a register code
910     // 0xC0 == 11 000 000 binary.
911     // 0x38 == 00 111 000 binary.
912     // We transfer reg2 to reg1 here as operand.
913     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
914     loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
915 
916     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
917     // See "TEST-Logical Compare" (4-428 Vol. 2B).
918     loc[-2] = 0xf7;
919 
920     // Move R bit to the B bit in REX byte.
921     // REX byte is encoded as 0100WRXB, where
922     // 0100 is 4bit fixed pattern.
923     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
924     //   default operand size is used (which is 32-bit for most but not all
925     //   instructions).
926     // REX.R This 1-bit value is an extension to the MODRM.reg field.
927     // REX.X This 1-bit value is an extension to the SIB.index field.
928     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
929     // SIB.base field.
930     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
931     loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
932     write32le(loc, val);
933     return;
934   }
935 
936   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
937   // or xor operations.
938 
939   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
940   // Logic is close to one for test instruction above, but we also
941   // write opcode extension here, see below for details.
942   loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
943 
944   // Primary opcode is 0x81, opcode extension is one of:
945   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
946   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
947   // This value was wrote to MODRM.reg in a line above.
948   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
949   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
950   // descriptions about each operation.
951   loc[-2] = 0x81;
952   loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
953   write32le(loc, val);
954 }
955 
956 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) {
957   assert(isInt<32>(val) &&
958          "GOTPCRELX should not have been relaxed if it overflows");
959   const uint8_t op = loc[-2];
960   const uint8_t modRm = loc[-1];
961 
962   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
963   if (op == 0x8b) {
964     loc[-2] = 0x8d;
965     write32le(loc, val);
966     return;
967   }
968 
969   if (op != 0xff) {
970     // We are relaxing a rip relative to an absolute, so compensate
971     // for the old -4 addend.
972     assert(!config->isPic);
973     relaxGotNoPic(loc, val + 4, op, modRm);
974     return;
975   }
976 
977   // Convert call/jmp instructions.
978   if (modRm == 0x15) {
979     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
980     // Instead we convert to "addr32 call foo" where addr32 is an instruction
981     // prefix. That makes result expression to be a single instruction.
982     loc[-2] = 0x67; // addr32 prefix
983     loc[-1] = 0xe8; // call
984     write32le(loc, val);
985     return;
986   }
987 
988   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
989   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
990   assert(modRm == 0x25);
991   loc[-2] = 0xe9; // jmp
992   loc[3] = 0x90;  // nop
993   write32le(loc - 1, val + 1);
994 }
995 
996 // A split-stack prologue starts by checking the amount of stack remaining
997 // in one of two ways:
998 // A) Comparing of the stack pointer to a field in the tcb.
999 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
1000 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1001                                               uint8_t stOther) const {
1002   if (!config->is64) {
1003     error("target doesn't support split stacks");
1004     return false;
1005   }
1006 
1007   if (loc + 8 >= end)
1008     return false;
1009 
1010   // Replace "cmp %fs:0x70,%rsp" and subsequent branch
1011   // with "stc, nopl 0x0(%rax,%rax,1)"
1012   if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
1013     memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
1014     return true;
1015   }
1016 
1017   // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
1018   // be r10 or r11. The lea instruction feeds a subsequent compare which checks
1019   // if there is X available stack space. Making X larger effectively reserves
1020   // that much additional space. The stack grows downward so subtract the value.
1021   if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
1022       memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
1023     // The offset bytes are encoded four bytes after the start of the
1024     // instruction.
1025     write32le(loc + 4, read32le(loc + 4) - 0x4000);
1026     return true;
1027   }
1028   return false;
1029 }
1030 
1031 void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1032   uint64_t secAddr = sec.getOutputSection()->addr;
1033   if (auto *s = dyn_cast<InputSection>(&sec))
1034     secAddr += s->outSecOff;
1035   else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
1036     secAddr += ehIn->getParent()->outSecOff;
1037   for (const Relocation &rel : sec.relocs()) {
1038     if (rel.expr == R_NONE) // See deleteFallThruJmpInsn
1039       continue;
1040     uint8_t *loc = buf + rel.offset;
1041     const uint64_t val =
1042         sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
1043                              secAddr + rel.offset, *rel.sym, rel.expr);
1044     relocate(loc, rel, val);
1045   }
1046   if (sec.jumpInstrMod) {
1047     applyJumpInstrMod(buf + sec.jumpInstrMod->offset,
1048                       sec.jumpInstrMod->original, sec.jumpInstrMod->size);
1049   }
1050 }
1051 
1052 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
1053 // entries containing endbr64 instructions. A PLT entry will be split into two
1054 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
1055 namespace {
1056 class IntelIBT : public X86_64 {
1057 public:
1058   IntelIBT();
1059   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1060   void writePlt(uint8_t *buf, const Symbol &sym,
1061                 uint64_t pltEntryAddr) const override;
1062   void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
1063 
1064   static const unsigned IBTPltHeaderSize = 16;
1065 };
1066 } // namespace
1067 
1068 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
1069 
1070 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1071   uint64_t va =
1072       in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize;
1073   write64le(buf, va);
1074 }
1075 
1076 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
1077                         uint64_t pltEntryAddr) const {
1078   const uint8_t Inst[] = {
1079       0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
1080       0xff, 0x25, 0,    0,    0, 0, // jmpq *got(%rip)
1081       0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
1082   };
1083   memcpy(buf, Inst, sizeof(Inst));
1084   write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
1085 }
1086 
1087 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
1088   writePltHeader(buf);
1089   buf += IBTPltHeaderSize;
1090 
1091   const uint8_t inst[] = {
1092       0xf3, 0x0f, 0x1e, 0xfa,    // endbr64
1093       0x68, 0,    0,    0,    0, // pushq <relocation index>
1094       0xe9, 0,    0,    0,    0, // jmpq plt[0]
1095       0x66, 0x90,                // nop
1096   };
1097 
1098   for (size_t i = 0; i < numEntries; ++i) {
1099     memcpy(buf, inst, sizeof(inst));
1100     write32le(buf + 5, i);
1101     write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1102     buf += sizeof(inst);
1103   }
1104 }
1105 
1106 // These nonstandard PLT entries are to migtigate Spectre v2 security
1107 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1108 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1109 // entries, we use a CALL followed by MOV and RET to do the same thing as an
1110 // indirect jump. That instruction sequence is so-called "retpoline".
1111 //
1112 // We have two types of retpoline PLTs as a size optimization. If `-z now`
1113 // is specified, all dynamic symbols are resolved at load-time. Thus, when
1114 // that option is given, we can omit code for symbol lazy resolution.
1115 namespace {
1116 class Retpoline : public X86_64 {
1117 public:
1118   Retpoline();
1119   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1120   void writePltHeader(uint8_t *buf) const override;
1121   void writePlt(uint8_t *buf, const Symbol &sym,
1122                 uint64_t pltEntryAddr) const override;
1123 };
1124 
1125 class RetpolineZNow : public X86_64 {
1126 public:
1127   RetpolineZNow();
1128   void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1129   void writePltHeader(uint8_t *buf) const override;
1130   void writePlt(uint8_t *buf, const Symbol &sym,
1131                 uint64_t pltEntryAddr) const override;
1132 };
1133 } // namespace
1134 
1135 Retpoline::Retpoline() {
1136   pltHeaderSize = 48;
1137   pltEntrySize = 32;
1138   ipltEntrySize = 32;
1139 }
1140 
1141 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1142   write64le(buf, s.getPltVA() + 17);
1143 }
1144 
1145 void Retpoline::writePltHeader(uint8_t *buf) const {
1146   const uint8_t insn[] = {
1147       0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
1148       0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
1149       0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
1150       0xf3, 0x90,                               // 12: loop: pause
1151       0x0f, 0xae, 0xe8,                         // 14:   lfence
1152       0xeb, 0xf9,                               // 17:   jmp loop
1153       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
1154       0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
1155       0xc3,                                     // 24:   ret
1156       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
1157       0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
1158   };
1159   memcpy(buf, insn, sizeof(insn));
1160 
1161   uint64_t gotPlt = in.gotPlt->getVA();
1162   uint64_t plt = in.plt->getVA();
1163   write32le(buf + 2, gotPlt - plt - 6 + 8);
1164   write32le(buf + 9, gotPlt - plt - 13 + 16);
1165 }
1166 
1167 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1168                          uint64_t pltEntryAddr) const {
1169   const uint8_t insn[] = {
1170       0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
1171       0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
1172       0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
1173       0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
1174       0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
1175       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1176   };
1177   memcpy(buf, insn, sizeof(insn));
1178 
1179   uint64_t off = pltEntryAddr - in.plt->getVA();
1180 
1181   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1182   write32le(buf + 8, -off - 12 + 32);
1183   write32le(buf + 13, -off - 17 + 18);
1184   write32le(buf + 18, sym.getPltIdx());
1185   write32le(buf + 23, -off - 27);
1186 }
1187 
1188 RetpolineZNow::RetpolineZNow() {
1189   pltHeaderSize = 32;
1190   pltEntrySize = 16;
1191   ipltEntrySize = 16;
1192 }
1193 
1194 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1195   const uint8_t insn[] = {
1196       0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
1197       0xf3, 0x90,                   // 5:  loop: pause
1198       0x0f, 0xae, 0xe8,             // 7:    lfence
1199       0xeb, 0xf9,                   // a:    jmp loop
1200       0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
1201       0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
1202       0xc3,                         // 14:   ret
1203       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
1204       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
1205       0xcc,                         // 1f:   int3; padding
1206   };
1207   memcpy(buf, insn, sizeof(insn));
1208 }
1209 
1210 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1211                              uint64_t pltEntryAddr) const {
1212   const uint8_t insn[] = {
1213       0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1214       0xe9, 0,    0,    0,    0,       // jmp plt+0
1215       0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
1216   };
1217   memcpy(buf, insn, sizeof(insn));
1218 
1219   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1220   write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1221 }
1222 
1223 static TargetInfo *getTargetInfo() {
1224   if (config->zRetpolineplt) {
1225     if (config->zNow) {
1226       static RetpolineZNow t;
1227       return &t;
1228     }
1229     static Retpoline t;
1230     return &t;
1231   }
1232 
1233   if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1234     static IntelIBT t;
1235     return &t;
1236   }
1237 
1238   static X86_64 t;
1239   return &t;
1240 }
1241 
1242 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
1243