1 //===- X86_64.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "OutputSections.h" 11 #include "Symbols.h" 12 #include "SyntheticSections.h" 13 #include "Target.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "llvm/Object/ELF.h" 16 #include "llvm/Support/Endian.h" 17 18 using namespace llvm; 19 using namespace llvm::object; 20 using namespace llvm::support::endian; 21 using namespace llvm::ELF; 22 using namespace lld; 23 using namespace lld::elf; 24 25 namespace { 26 class X86_64 : public TargetInfo { 27 public: 28 X86_64(); 29 int getTlsGdRelaxSkip(RelType type) const override; 30 RelExpr getRelExpr(RelType type, const Symbol &s, 31 const uint8_t *loc) const override; 32 RelType getDynRel(RelType type) const override; 33 void writeGotPltHeader(uint8_t *buf) const override; 34 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 35 void writePltHeader(uint8_t *buf) const override; 36 void writePlt(uint8_t *buf, const Symbol &sym, 37 uint64_t pltEntryAddr) const override; 38 void relocate(uint8_t *loc, const Relocation &rel, 39 uint64_t val) const override; 40 void applyJumpInstrMod(uint8_t *loc, JumpModType type, 41 unsigned size) const override; 42 43 RelExpr adjustRelaxExpr(RelType type, const uint8_t *data, 44 RelExpr expr) const override; 45 void relaxGot(uint8_t *loc, const Relocation &rel, 46 uint64_t val) const override; 47 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 48 uint64_t val) const override; 49 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 50 uint64_t val) const override; 51 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 52 uint64_t val) const override; 53 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 54 uint64_t val) const override; 55 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 56 uint8_t stOther) const override; 57 bool deleteFallThruJmpInsn(InputSection &is, InputFile *file, 58 InputSection *nextIS) const override; 59 }; 60 } // namespace 61 62 // This is vector of NOP instructions of sizes from 1 to 8 bytes. The 63 // appropriately sized instructions are used to fill the gaps between sections 64 // which are executed during fall through. 65 static const std::vector<std::vector<uint8_t>> nopInstructions = { 66 {0x90}, 67 {0x66, 0x90}, 68 {0x0f, 0x1f, 0x00}, 69 {0x0f, 0x1f, 0x40, 0x00}, 70 {0x0f, 0x1f, 0x44, 0x00, 0x00}, 71 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, 72 {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00}, 73 {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, 74 {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}}; 75 76 X86_64::X86_64() { 77 copyRel = R_X86_64_COPY; 78 gotRel = R_X86_64_GLOB_DAT; 79 noneRel = R_X86_64_NONE; 80 pltRel = R_X86_64_JUMP_SLOT; 81 relativeRel = R_X86_64_RELATIVE; 82 iRelativeRel = R_X86_64_IRELATIVE; 83 symbolicRel = R_X86_64_64; 84 tlsDescRel = R_X86_64_TLSDESC; 85 tlsGotRel = R_X86_64_TPOFF64; 86 tlsModuleIndexRel = R_X86_64_DTPMOD64; 87 tlsOffsetRel = R_X86_64_DTPOFF64; 88 pltHeaderSize = 16; 89 pltEntrySize = 16; 90 ipltEntrySize = 16; 91 trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3 92 nopInstrs = nopInstructions; 93 94 // Align to the large page size (known as a superpage or huge page). 95 // FreeBSD automatically promotes large, superpage-aligned allocations. 96 defaultImageBase = 0x200000; 97 } 98 99 int X86_64::getTlsGdRelaxSkip(RelType type) const { return 2; } 100 101 // Opcodes for the different X86_64 jmp instructions. 102 enum JmpInsnOpcode : uint32_t { 103 J_JMP_32, 104 J_JNE_32, 105 J_JE_32, 106 J_JG_32, 107 J_JGE_32, 108 J_JB_32, 109 J_JBE_32, 110 J_JL_32, 111 J_JLE_32, 112 J_JA_32, 113 J_JAE_32, 114 J_UNKNOWN, 115 }; 116 117 // Given the first (optional) and second byte of the insn's opcode, this 118 // returns the corresponding enum value. 119 static JmpInsnOpcode getJmpInsnType(const uint8_t *first, 120 const uint8_t *second) { 121 if (*second == 0xe9) 122 return J_JMP_32; 123 124 if (first == nullptr) 125 return J_UNKNOWN; 126 127 if (*first == 0x0f) { 128 switch (*second) { 129 case 0x84: 130 return J_JE_32; 131 case 0x85: 132 return J_JNE_32; 133 case 0x8f: 134 return J_JG_32; 135 case 0x8d: 136 return J_JGE_32; 137 case 0x82: 138 return J_JB_32; 139 case 0x86: 140 return J_JBE_32; 141 case 0x8c: 142 return J_JL_32; 143 case 0x8e: 144 return J_JLE_32; 145 case 0x87: 146 return J_JA_32; 147 case 0x83: 148 return J_JAE_32; 149 } 150 } 151 return J_UNKNOWN; 152 } 153 154 // Return the relocation index for input section IS with a specific Offset. 155 // Returns the maximum size of the vector if no such relocation is found. 156 static unsigned getRelocationWithOffset(const InputSection &is, 157 uint64_t offset) { 158 unsigned size = is.relocations.size(); 159 for (unsigned i = size - 1; i + 1 > 0; --i) { 160 if (is.relocations[i].offset == offset && is.relocations[i].expr != R_NONE) 161 return i; 162 } 163 return size; 164 } 165 166 // Returns true if R corresponds to a relocation used for a jump instruction. 167 // TODO: Once special relocations for relaxable jump instructions are available, 168 // this should be modified to use those relocations. 169 static bool isRelocationForJmpInsn(Relocation &R) { 170 return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 || 171 R.type == R_X86_64_PC8; 172 } 173 174 // Return true if Relocation R points to the first instruction in the 175 // next section. 176 // TODO: Delete this once psABI reserves a new relocation type for fall thru 177 // jumps. 178 static bool isFallThruRelocation(InputSection &is, InputFile *file, 179 InputSection *nextIS, Relocation &r) { 180 if (!isRelocationForJmpInsn(r)) 181 return false; 182 183 uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset; 184 uint64_t targetOffset = InputSectionBase::getRelocTargetVA( 185 file, r.type, r.addend, addrLoc, *r.sym, r.expr); 186 187 // If this jmp is a fall thru, the target offset is the beginning of the 188 // next section. 189 uint64_t nextSectionOffset = 190 nextIS->getOutputSection()->addr + nextIS->outSecOff; 191 return (addrLoc + 4 + targetOffset) == nextSectionOffset; 192 } 193 194 // Return the jmp instruction opcode that is the inverse of the given 195 // opcode. For example, JE inverted is JNE. 196 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) { 197 switch (opcode) { 198 case J_JE_32: 199 return J_JNE_32; 200 case J_JNE_32: 201 return J_JE_32; 202 case J_JG_32: 203 return J_JLE_32; 204 case J_JGE_32: 205 return J_JL_32; 206 case J_JB_32: 207 return J_JAE_32; 208 case J_JBE_32: 209 return J_JA_32; 210 case J_JL_32: 211 return J_JGE_32; 212 case J_JLE_32: 213 return J_JG_32; 214 case J_JA_32: 215 return J_JBE_32; 216 case J_JAE_32: 217 return J_JB_32; 218 default: 219 return J_UNKNOWN; 220 } 221 } 222 223 // Deletes direct jump instruction in input sections that jumps to the 224 // following section as it is not required. If there are two consecutive jump 225 // instructions, it checks if they can be flipped and one can be deleted. 226 // For example: 227 // .section .text 228 // a.BB.foo: 229 // ... 230 // 10: jne aa.BB.foo 231 // 16: jmp bar 232 // aa.BB.foo: 233 // ... 234 // 235 // can be converted to: 236 // a.BB.foo: 237 // ... 238 // 10: je bar #jne flipped to je and the jmp is deleted. 239 // aa.BB.foo: 240 // ... 241 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file, 242 InputSection *nextIS) const { 243 const unsigned sizeOfDirectJmpInsn = 5; 244 245 if (nextIS == nullptr) 246 return false; 247 248 if (is.getSize() < sizeOfDirectJmpInsn) 249 return false; 250 251 // If this jmp insn can be removed, it is the last insn and the 252 // relocation is 4 bytes before the end. 253 unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4); 254 if (rIndex == is.relocations.size()) 255 return false; 256 257 Relocation &r = is.relocations[rIndex]; 258 259 // Check if the relocation corresponds to a direct jmp. 260 const uint8_t *secContents = is.data().data(); 261 // If it is not a direct jmp instruction, there is nothing to do here. 262 if (*(secContents + r.offset - 1) != 0xe9) 263 return false; 264 265 if (isFallThruRelocation(is, file, nextIS, r)) { 266 // This is a fall thru and can be deleted. 267 r.expr = R_NONE; 268 r.offset = 0; 269 is.drop_back(sizeOfDirectJmpInsn); 270 is.nopFiller = true; 271 return true; 272 } 273 274 // Now, check if flip and delete is possible. 275 const unsigned sizeOfJmpCCInsn = 6; 276 // To flip, there must be atleast one JmpCC and one direct jmp. 277 if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn) 278 return 0; 279 280 unsigned rbIndex = 281 getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4)); 282 if (rbIndex == is.relocations.size()) 283 return 0; 284 285 Relocation &rB = is.relocations[rbIndex]; 286 287 const uint8_t *jmpInsnB = secContents + rB.offset - 1; 288 JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB); 289 if (jmpOpcodeB == J_UNKNOWN) 290 return false; 291 292 if (!isFallThruRelocation(is, file, nextIS, rB)) 293 return false; 294 295 // jmpCC jumps to the fall thru block, the branch can be flipped and the 296 // jmp can be deleted. 297 JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB); 298 if (jInvert == J_UNKNOWN) 299 return false; 300 is.jumpInstrMods.push_back({jInvert, (rB.offset - 1), 4}); 301 // Move R's values to rB except the offset. 302 rB = {r.expr, r.type, rB.offset, r.addend, r.sym}; 303 // Cancel R 304 r.expr = R_NONE; 305 r.offset = 0; 306 is.drop_back(sizeOfDirectJmpInsn); 307 is.nopFiller = true; 308 return true; 309 } 310 311 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s, 312 const uint8_t *loc) const { 313 if (type == R_X86_64_GOTTPOFF) 314 config->hasStaticTlsModel = true; 315 316 switch (type) { 317 case R_X86_64_8: 318 case R_X86_64_16: 319 case R_X86_64_32: 320 case R_X86_64_32S: 321 case R_X86_64_64: 322 return R_ABS; 323 case R_X86_64_DTPOFF32: 324 case R_X86_64_DTPOFF64: 325 return R_DTPREL; 326 case R_X86_64_TPOFF32: 327 return R_TLS; 328 case R_X86_64_TLSDESC_CALL: 329 return R_TLSDESC_CALL; 330 case R_X86_64_TLSLD: 331 return R_TLSLD_PC; 332 case R_X86_64_TLSGD: 333 return R_TLSGD_PC; 334 case R_X86_64_SIZE32: 335 case R_X86_64_SIZE64: 336 return R_SIZE; 337 case R_X86_64_PLT32: 338 return R_PLT_PC; 339 case R_X86_64_PC8: 340 case R_X86_64_PC16: 341 case R_X86_64_PC32: 342 case R_X86_64_PC64: 343 return R_PC; 344 case R_X86_64_GOT32: 345 case R_X86_64_GOT64: 346 return R_GOTPLT; 347 case R_X86_64_GOTPC32_TLSDESC: 348 return R_TLSDESC_PC; 349 case R_X86_64_GOTPCREL: 350 case R_X86_64_GOTPCRELX: 351 case R_X86_64_REX_GOTPCRELX: 352 case R_X86_64_GOTTPOFF: 353 return R_GOT_PC; 354 case R_X86_64_GOTOFF64: 355 return R_GOTPLTREL; 356 case R_X86_64_GOTPC32: 357 case R_X86_64_GOTPC64: 358 return R_GOTPLTONLY_PC; 359 case R_X86_64_NONE: 360 return R_NONE; 361 default: 362 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 363 ") against symbol " + toString(s)); 364 return R_NONE; 365 } 366 } 367 368 void X86_64::writeGotPltHeader(uint8_t *buf) const { 369 // The first entry holds the value of _DYNAMIC. It is not clear why that is 370 // required, but it is documented in the psabi and the glibc dynamic linker 371 // seems to use it (note that this is relevant for linking ld.so, not any 372 // other program). 373 write64le(buf, mainPart->dynamic->getVA()); 374 } 375 376 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const { 377 // See comments in X86::writeGotPlt. 378 write64le(buf, s.getPltVA() + 6); 379 } 380 381 void X86_64::writePltHeader(uint8_t *buf) const { 382 const uint8_t pltData[] = { 383 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) 384 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) 385 0x0f, 0x1f, 0x40, 0x00, // nop 386 }; 387 memcpy(buf, pltData, sizeof(pltData)); 388 uint64_t gotPlt = in.gotPlt->getVA(); 389 uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA(); 390 write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8 391 write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16 392 } 393 394 void X86_64::writePlt(uint8_t *buf, const Symbol &sym, 395 uint64_t pltEntryAddr) const { 396 const uint8_t inst[] = { 397 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) 398 0x68, 0, 0, 0, 0, // pushq <relocation index> 399 0xe9, 0, 0, 0, 0, // jmpq plt[0] 400 }; 401 memcpy(buf, inst, sizeof(inst)); 402 403 write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6); 404 write32le(buf + 7, sym.pltIndex); 405 write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16); 406 } 407 408 RelType X86_64::getDynRel(RelType type) const { 409 if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 || 410 type == R_X86_64_SIZE64) 411 return type; 412 return R_X86_64_NONE; 413 } 414 415 void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 416 uint64_t val) const { 417 if (rel.type == R_X86_64_TLSGD) { 418 // Convert 419 // .byte 0x66 420 // leaq x@tlsgd(%rip), %rdi 421 // .word 0x6666 422 // rex64 423 // call __tls_get_addr@plt 424 // to the following two instructions. 425 const uint8_t inst[] = { 426 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 427 0x00, 0x00, // mov %fs:0x0,%rax 428 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax 429 }; 430 memcpy(loc - 4, inst, sizeof(inst)); 431 432 // The original code used a pc relative relocation and so we have to 433 // compensate for the -4 in had in the addend. 434 write32le(loc + 8, val + 4); 435 } else { 436 // Convert 437 // lea x@tlsgd(%rip), %rax 438 // call *(%rax) 439 // to the following two instructions. 440 assert(rel.type == R_X86_64_GOTPC32_TLSDESC); 441 if (memcmp(loc - 3, "\x48\x8d\x05", 3)) { 442 error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used " 443 "in callq *x@tlsdesc(%rip), %rax"); 444 return; 445 } 446 // movq $x@tpoff(%rip),%rax 447 loc[-2] = 0xc7; 448 loc[-1] = 0xc0; 449 write32le(loc, val + 4); 450 // xchg ax,ax 451 loc[4] = 0x66; 452 loc[5] = 0x90; 453 } 454 } 455 456 void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 457 uint64_t val) const { 458 if (rel.type == R_X86_64_TLSGD) { 459 // Convert 460 // .byte 0x66 461 // leaq x@tlsgd(%rip), %rdi 462 // .word 0x6666 463 // rex64 464 // call __tls_get_addr@plt 465 // to the following two instructions. 466 const uint8_t inst[] = { 467 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 468 0x00, 0x00, // mov %fs:0x0,%rax 469 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax 470 }; 471 memcpy(loc - 4, inst, sizeof(inst)); 472 473 // Both code sequences are PC relatives, but since we are moving the 474 // constant forward by 8 bytes we have to subtract the value by 8. 475 write32le(loc + 8, val - 8); 476 } else { 477 // Convert 478 // lea x@tlsgd(%rip), %rax 479 // call *(%rax) 480 // to the following two instructions. 481 assert(rel.type == R_X86_64_GOTPC32_TLSDESC); 482 if (memcmp(loc - 3, "\x48\x8d\x05", 3)) { 483 error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used " 484 "in callq *x@tlsdesc(%rip), %rax"); 485 return; 486 } 487 // movq x@gottpoff(%rip),%rax 488 loc[-2] = 0x8b; 489 write32le(loc, val); 490 // xchg ax,ax 491 loc[4] = 0x66; 492 loc[5] = 0x90; 493 } 494 } 495 496 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to 497 // R_X86_64_TPOFF32 so that it does not use GOT. 498 void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &, 499 uint64_t val) const { 500 uint8_t *inst = loc - 3; 501 uint8_t reg = loc[-1] >> 3; 502 uint8_t *regSlot = loc - 1; 503 504 // Note that ADD with RSP or R12 is converted to ADD instead of LEA 505 // because LEA with these registers needs 4 bytes to encode and thus 506 // wouldn't fit the space. 507 508 if (memcmp(inst, "\x48\x03\x25", 3) == 0) { 509 // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" 510 memcpy(inst, "\x48\x81\xc4", 3); 511 } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) { 512 // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" 513 memcpy(inst, "\x49\x81\xc4", 3); 514 } else if (memcmp(inst, "\x4c\x03", 2) == 0) { 515 // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" 516 memcpy(inst, "\x4d\x8d", 2); 517 *regSlot = 0x80 | (reg << 3) | reg; 518 } else if (memcmp(inst, "\x48\x03", 2) == 0) { 519 // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" 520 memcpy(inst, "\x48\x8d", 2); 521 *regSlot = 0x80 | (reg << 3) | reg; 522 } else if (memcmp(inst, "\x4c\x8b", 2) == 0) { 523 // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" 524 memcpy(inst, "\x49\xc7", 2); 525 *regSlot = 0xc0 | reg; 526 } else if (memcmp(inst, "\x48\x8b", 2) == 0) { 527 // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" 528 memcpy(inst, "\x48\xc7", 2); 529 *regSlot = 0xc0 | reg; 530 } else { 531 error(getErrorLocation(loc - 3) + 532 "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); 533 } 534 535 // The original code used a PC relative relocation. 536 // Need to compensate for the -4 it had in the addend. 537 write32le(loc, val + 4); 538 } 539 540 void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 541 uint64_t val) const { 542 if (rel.type == R_X86_64_DTPOFF64) { 543 write64le(loc, val); 544 return; 545 } 546 if (rel.type == R_X86_64_DTPOFF32) { 547 write32le(loc, val); 548 return; 549 } 550 551 const uint8_t inst[] = { 552 0x66, 0x66, // .word 0x6666 553 0x66, // .byte 0x66 554 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax 555 }; 556 557 if (loc[4] == 0xe8) { 558 // Convert 559 // leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc> 560 // callq __tls_get_addr@PLT # e8 <disp32> 561 // leaq bar@dtpoff(%rax), %rcx 562 // to 563 // .word 0x6666 564 // .byte 0x66 565 // mov %fs:0,%rax 566 // leaq bar@tpoff(%rax), %rcx 567 memcpy(loc - 3, inst, sizeof(inst)); 568 return; 569 } 570 571 if (loc[4] == 0xff && loc[5] == 0x15) { 572 // Convert 573 // leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc> 574 // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32> 575 // to 576 // .long 0x66666666 577 // movq %fs:0,%rax 578 // See "Table 11.9: LD -> LE Code Transition (LP64)" in 579 // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf 580 loc[-3] = 0x66; 581 memcpy(loc - 2, inst, sizeof(inst)); 582 return; 583 } 584 585 error(getErrorLocation(loc - 3) + 586 "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD"); 587 } 588 589 // A JumpInstrMod at a specific offset indicates that the jump instruction 590 // opcode at that offset must be modified. This is specifically used to relax 591 // jump instructions with basic block sections. This function looks at the 592 // JumpMod and effects the change. 593 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type, 594 unsigned size) const { 595 switch (type) { 596 case J_JMP_32: 597 if (size == 4) 598 *loc = 0xe9; 599 else 600 *loc = 0xeb; 601 break; 602 case J_JE_32: 603 if (size == 4) { 604 loc[-1] = 0x0f; 605 *loc = 0x84; 606 } else 607 *loc = 0x74; 608 break; 609 case J_JNE_32: 610 if (size == 4) { 611 loc[-1] = 0x0f; 612 *loc = 0x85; 613 } else 614 *loc = 0x75; 615 break; 616 case J_JG_32: 617 if (size == 4) { 618 loc[-1] = 0x0f; 619 *loc = 0x8f; 620 } else 621 *loc = 0x7f; 622 break; 623 case J_JGE_32: 624 if (size == 4) { 625 loc[-1] = 0x0f; 626 *loc = 0x8d; 627 } else 628 *loc = 0x7d; 629 break; 630 case J_JB_32: 631 if (size == 4) { 632 loc[-1] = 0x0f; 633 *loc = 0x82; 634 } else 635 *loc = 0x72; 636 break; 637 case J_JBE_32: 638 if (size == 4) { 639 loc[-1] = 0x0f; 640 *loc = 0x86; 641 } else 642 *loc = 0x76; 643 break; 644 case J_JL_32: 645 if (size == 4) { 646 loc[-1] = 0x0f; 647 *loc = 0x8c; 648 } else 649 *loc = 0x7c; 650 break; 651 case J_JLE_32: 652 if (size == 4) { 653 loc[-1] = 0x0f; 654 *loc = 0x8e; 655 } else 656 *loc = 0x7e; 657 break; 658 case J_JA_32: 659 if (size == 4) { 660 loc[-1] = 0x0f; 661 *loc = 0x87; 662 } else 663 *loc = 0x77; 664 break; 665 case J_JAE_32: 666 if (size == 4) { 667 loc[-1] = 0x0f; 668 *loc = 0x83; 669 } else 670 *loc = 0x73; 671 break; 672 case J_UNKNOWN: 673 llvm_unreachable("Unknown Jump Relocation"); 674 } 675 } 676 677 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 678 switch (rel.type) { 679 case R_X86_64_8: 680 checkIntUInt(loc, val, 8, rel); 681 *loc = val; 682 break; 683 case R_X86_64_PC8: 684 checkInt(loc, val, 8, rel); 685 *loc = val; 686 break; 687 case R_X86_64_16: 688 checkIntUInt(loc, val, 16, rel); 689 write16le(loc, val); 690 break; 691 case R_X86_64_PC16: 692 checkInt(loc, val, 16, rel); 693 write16le(loc, val); 694 break; 695 case R_X86_64_32: 696 checkUInt(loc, val, 32, rel); 697 write32le(loc, val); 698 break; 699 case R_X86_64_32S: 700 case R_X86_64_TPOFF32: 701 case R_X86_64_GOT32: 702 case R_X86_64_GOTPC32: 703 case R_X86_64_GOTPC32_TLSDESC: 704 case R_X86_64_GOTPCREL: 705 case R_X86_64_GOTPCRELX: 706 case R_X86_64_REX_GOTPCRELX: 707 case R_X86_64_PC32: 708 case R_X86_64_GOTTPOFF: 709 case R_X86_64_PLT32: 710 case R_X86_64_TLSGD: 711 case R_X86_64_TLSLD: 712 case R_X86_64_DTPOFF32: 713 case R_X86_64_SIZE32: 714 checkInt(loc, val, 32, rel); 715 write32le(loc, val); 716 break; 717 case R_X86_64_64: 718 case R_X86_64_DTPOFF64: 719 case R_X86_64_PC64: 720 case R_X86_64_SIZE64: 721 case R_X86_64_GOT64: 722 case R_X86_64_GOTOFF64: 723 case R_X86_64_GOTPC64: 724 write64le(loc, val); 725 break; 726 default: 727 llvm_unreachable("unknown relocation"); 728 } 729 } 730 731 RelExpr X86_64::adjustRelaxExpr(RelType type, const uint8_t *data, 732 RelExpr relExpr) const { 733 if (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX) 734 return relExpr; 735 const uint8_t op = data[-2]; 736 const uint8_t modRm = data[-1]; 737 738 // FIXME: When PIC is disabled and foo is defined locally in the 739 // lower 32 bit address space, memory operand in mov can be converted into 740 // immediate operand. Otherwise, mov must be changed to lea. We support only 741 // latter relaxation at this moment. 742 if (op == 0x8b) 743 return R_RELAX_GOT_PC; 744 745 // Relax call and jmp. 746 if (op == 0xff && (modRm == 0x15 || modRm == 0x25)) 747 return R_RELAX_GOT_PC; 748 749 // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. 750 // If PIC then no relaxation is available. 751 // We also don't relax test/binop instructions without REX byte, 752 // they are 32bit operations and not common to have. 753 assert(type == R_X86_64_REX_GOTPCRELX); 754 return config->isPic ? relExpr : R_RELAX_GOT_PC_NOPIC; 755 } 756 757 // A subset of relaxations can only be applied for no-PIC. This method 758 // handles such relaxations. Instructions encoding information was taken from: 759 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" 760 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ 761 // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) 762 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op, 763 uint8_t modRm) { 764 const uint8_t rex = loc[-3]; 765 // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". 766 if (op == 0x85) { 767 // See "TEST-Logical Compare" (4-428 Vol. 2B), 768 // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). 769 770 // ModR/M byte has form XX YYY ZZZ, where 771 // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). 772 // XX has different meanings: 773 // 00: The operand's memory address is in reg1. 774 // 01: The operand's memory address is reg1 + a byte-sized displacement. 775 // 10: The operand's memory address is reg1 + a word-sized displacement. 776 // 11: The operand is reg1 itself. 777 // If an instruction requires only one operand, the unused reg2 field 778 // holds extra opcode bits rather than a register code 779 // 0xC0 == 11 000 000 binary. 780 // 0x38 == 00 111 000 binary. 781 // We transfer reg2 to reg1 here as operand. 782 // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). 783 loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte. 784 785 // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 786 // See "TEST-Logical Compare" (4-428 Vol. 2B). 787 loc[-2] = 0xf7; 788 789 // Move R bit to the B bit in REX byte. 790 // REX byte is encoded as 0100WRXB, where 791 // 0100 is 4bit fixed pattern. 792 // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the 793 // default operand size is used (which is 32-bit for most but not all 794 // instructions). 795 // REX.R This 1-bit value is an extension to the MODRM.reg field. 796 // REX.X This 1-bit value is an extension to the SIB.index field. 797 // REX.B This 1-bit value is an extension to the MODRM.rm field or the 798 // SIB.base field. 799 // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). 800 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; 801 write32le(loc, val); 802 return; 803 } 804 805 // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub 806 // or xor operations. 807 808 // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". 809 // Logic is close to one for test instruction above, but we also 810 // write opcode extension here, see below for details. 811 loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte. 812 813 // Primary opcode is 0x81, opcode extension is one of: 814 // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, 815 // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. 816 // This value was wrote to MODRM.reg in a line above. 817 // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), 818 // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for 819 // descriptions about each operation. 820 loc[-2] = 0x81; 821 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; 822 write32le(loc, val); 823 } 824 825 void X86_64::relaxGot(uint8_t *loc, const Relocation &, uint64_t val) const { 826 const uint8_t op = loc[-2]; 827 const uint8_t modRm = loc[-1]; 828 829 // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". 830 if (op == 0x8b) { 831 loc[-2] = 0x8d; 832 write32le(loc, val); 833 return; 834 } 835 836 if (op != 0xff) { 837 // We are relaxing a rip relative to an absolute, so compensate 838 // for the old -4 addend. 839 assert(!config->isPic); 840 relaxGotNoPic(loc, val + 4, op, modRm); 841 return; 842 } 843 844 // Convert call/jmp instructions. 845 if (modRm == 0x15) { 846 // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". 847 // Instead we convert to "addr32 call foo" where addr32 is an instruction 848 // prefix. That makes result expression to be a single instruction. 849 loc[-2] = 0x67; // addr32 prefix 850 loc[-1] = 0xe8; // call 851 write32le(loc, val); 852 return; 853 } 854 855 // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". 856 // jmp doesn't return, so it is fine to use nop here, it is just a stub. 857 assert(modRm == 0x25); 858 loc[-2] = 0xe9; // jmp 859 loc[3] = 0x90; // nop 860 write32le(loc - 1, val + 1); 861 } 862 863 // A split-stack prologue starts by checking the amount of stack remaining 864 // in one of two ways: 865 // A) Comparing of the stack pointer to a field in the tcb. 866 // B) Or a load of a stack pointer offset with an lea to r10 or r11. 867 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 868 uint8_t stOther) const { 869 if (!config->is64) { 870 error("Target doesn't support split stacks."); 871 return false; 872 } 873 874 if (loc + 8 >= end) 875 return false; 876 877 // Replace "cmp %fs:0x70,%rsp" and subsequent branch 878 // with "stc, nopl 0x0(%rax,%rax,1)" 879 if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) { 880 memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8); 881 return true; 882 } 883 884 // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could 885 // be r10 or r11. The lea instruction feeds a subsequent compare which checks 886 // if there is X available stack space. Making X larger effectively reserves 887 // that much additional space. The stack grows downward so subtract the value. 888 if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 || 889 memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) { 890 // The offset bytes are encoded four bytes after the start of the 891 // instruction. 892 write32le(loc + 4, read32le(loc + 4) - 0x4000); 893 return true; 894 } 895 return false; 896 } 897 898 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT 899 // entries containing endbr64 instructions. A PLT entry will be split into two 900 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt). 901 namespace { 902 class IntelIBT : public X86_64 { 903 public: 904 IntelIBT(); 905 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 906 void writePlt(uint8_t *buf, const Symbol &sym, 907 uint64_t pltEntryAddr) const override; 908 void writeIBTPlt(uint8_t *buf, size_t numEntries) const override; 909 910 static const unsigned IBTPltHeaderSize = 16; 911 }; 912 } // namespace 913 914 IntelIBT::IntelIBT() { pltHeaderSize = 0; } 915 916 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const { 917 uint64_t va = 918 in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize; 919 write64le(buf, va); 920 } 921 922 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym, 923 uint64_t pltEntryAddr) const { 924 const uint8_t Inst[] = { 925 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 926 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) 927 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop 928 }; 929 memcpy(buf, Inst, sizeof(Inst)); 930 write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10); 931 } 932 933 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const { 934 writePltHeader(buf); 935 buf += IBTPltHeaderSize; 936 937 const uint8_t inst[] = { 938 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 939 0x68, 0, 0, 0, 0, // pushq <relocation index> 940 0xe9, 0, 0, 0, 0, // jmpq plt[0] 941 0x66, 0x90, // nop 942 }; 943 944 for (size_t i = 0; i < numEntries; ++i) { 945 memcpy(buf, inst, sizeof(inst)); 946 write32le(buf + 5, i); 947 write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30); 948 buf += sizeof(inst); 949 } 950 } 951 952 // These nonstandard PLT entries are to migtigate Spectre v2 security 953 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect 954 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT 955 // entries, we use a CALL followed by MOV and RET to do the same thing as an 956 // indirect jump. That instruction sequence is so-called "retpoline". 957 // 958 // We have two types of retpoline PLTs as a size optimization. If `-z now` 959 // is specified, all dynamic symbols are resolved at load-time. Thus, when 960 // that option is given, we can omit code for symbol lazy resolution. 961 namespace { 962 class Retpoline : public X86_64 { 963 public: 964 Retpoline(); 965 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 966 void writePltHeader(uint8_t *buf) const override; 967 void writePlt(uint8_t *buf, const Symbol &sym, 968 uint64_t pltEntryAddr) const override; 969 }; 970 971 class RetpolineZNow : public X86_64 { 972 public: 973 RetpolineZNow(); 974 void writeGotPlt(uint8_t *buf, const Symbol &s) const override {} 975 void writePltHeader(uint8_t *buf) const override; 976 void writePlt(uint8_t *buf, const Symbol &sym, 977 uint64_t pltEntryAddr) const override; 978 }; 979 } // namespace 980 981 Retpoline::Retpoline() { 982 pltHeaderSize = 48; 983 pltEntrySize = 32; 984 ipltEntrySize = 32; 985 } 986 987 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const { 988 write64le(buf, s.getPltVA() + 17); 989 } 990 991 void Retpoline::writePltHeader(uint8_t *buf) const { 992 const uint8_t insn[] = { 993 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip) 994 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11 995 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next 996 0xf3, 0x90, // 12: loop: pause 997 0x0f, 0xae, 0xe8, // 14: lfence 998 0xeb, 0xf9, // 17: jmp loop 999 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16 1000 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp) 1001 0xc3, // 24: ret 1002 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding 1003 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding 1004 }; 1005 memcpy(buf, insn, sizeof(insn)); 1006 1007 uint64_t gotPlt = in.gotPlt->getVA(); 1008 uint64_t plt = in.plt->getVA(); 1009 write32le(buf + 2, gotPlt - plt - 6 + 8); 1010 write32le(buf + 9, gotPlt - plt - 13 + 16); 1011 } 1012 1013 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym, 1014 uint64_t pltEntryAddr) const { 1015 const uint8_t insn[] = { 1016 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11 1017 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20 1018 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12 1019 0x68, 0, 0, 0, 0, // 11: pushq <relocation index> 1020 0xe9, 0, 0, 0, 0, // 16: jmp plt+0 1021 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding 1022 }; 1023 memcpy(buf, insn, sizeof(insn)); 1024 1025 uint64_t off = pltEntryAddr - in.plt->getVA(); 1026 1027 write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7); 1028 write32le(buf + 8, -off - 12 + 32); 1029 write32le(buf + 13, -off - 17 + 18); 1030 write32le(buf + 18, sym.pltIndex); 1031 write32le(buf + 23, -off - 27); 1032 } 1033 1034 RetpolineZNow::RetpolineZNow() { 1035 pltHeaderSize = 32; 1036 pltEntrySize = 16; 1037 ipltEntrySize = 16; 1038 } 1039 1040 void RetpolineZNow::writePltHeader(uint8_t *buf) const { 1041 const uint8_t insn[] = { 1042 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next 1043 0xf3, 0x90, // 5: loop: pause 1044 0x0f, 0xae, 0xe8, // 7: lfence 1045 0xeb, 0xf9, // a: jmp loop 1046 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16 1047 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp) 1048 0xc3, // 14: ret 1049 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding 1050 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding 1051 0xcc, // 1f: int3; padding 1052 }; 1053 memcpy(buf, insn, sizeof(insn)); 1054 } 1055 1056 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym, 1057 uint64_t pltEntryAddr) const { 1058 const uint8_t insn[] = { 1059 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11 1060 0xe9, 0, 0, 0, 0, // jmp plt+0 1061 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding 1062 }; 1063 memcpy(buf, insn, sizeof(insn)); 1064 1065 write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7); 1066 write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12); 1067 } 1068 1069 static TargetInfo *getTargetInfo() { 1070 if (config->zRetpolineplt) { 1071 if (config->zNow) { 1072 static RetpolineZNow t; 1073 return &t; 1074 } 1075 static Retpoline t; 1076 return &t; 1077 } 1078 1079 if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) { 1080 static IntelIBT t; 1081 return &t; 1082 } 1083 1084 static X86_64 t; 1085 return &t; 1086 } 1087 1088 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); } 1089