xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/X86_64.cpp (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/Object/ELF.h"
16 #include "llvm/Support/Endian.h"
17 
18 using namespace llvm;
19 using namespace llvm::object;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24 
25 namespace {
26 class X86_64 : public TargetInfo {
27 public:
28   X86_64();
29   int getTlsGdRelaxSkip(RelType type) const override;
30   RelExpr getRelExpr(RelType type, const Symbol &s,
31                      const uint8_t *loc) const override;
32   RelType getDynRel(RelType type) const override;
33   void writeGotPltHeader(uint8_t *buf) const override;
34   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
35   void writePltHeader(uint8_t *buf) const override;
36   void writePlt(uint8_t *buf, const Symbol &sym,
37                 uint64_t pltEntryAddr) const override;
38   void relocate(uint8_t *loc, const Relocation &rel,
39                 uint64_t val) const override;
40   void applyJumpInstrMod(uint8_t *loc, JumpModType type,
41                          unsigned size) const override;
42 
43   RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
44                           RelExpr expr) const override;
45   void relaxGot(uint8_t *loc, const Relocation &rel,
46                 uint64_t val) const override;
47   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
48                       uint64_t val) const override;
49   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
50                       uint64_t val) const override;
51   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
52                       uint64_t val) const override;
53   void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
54                       uint64_t val) const override;
55   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
56                                         uint8_t stOther) const override;
57   bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
58                              InputSection *nextIS) const override;
59 };
60 } // namespace
61 
62 // This is vector of NOP instructions of sizes from 1 to 8 bytes.  The
63 // appropriately sized instructions are used to fill the gaps between sections
64 // which are executed during fall through.
65 static const std::vector<std::vector<uint8_t>> nopInstructions = {
66     {0x90},
67     {0x66, 0x90},
68     {0x0f, 0x1f, 0x00},
69     {0x0f, 0x1f, 0x40, 0x00},
70     {0x0f, 0x1f, 0x44, 0x00, 0x00},
71     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
72     {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
73     {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
74     {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
75 
76 X86_64::X86_64() {
77   copyRel = R_X86_64_COPY;
78   gotRel = R_X86_64_GLOB_DAT;
79   noneRel = R_X86_64_NONE;
80   pltRel = R_X86_64_JUMP_SLOT;
81   relativeRel = R_X86_64_RELATIVE;
82   iRelativeRel = R_X86_64_IRELATIVE;
83   symbolicRel = R_X86_64_64;
84   tlsDescRel = R_X86_64_TLSDESC;
85   tlsGotRel = R_X86_64_TPOFF64;
86   tlsModuleIndexRel = R_X86_64_DTPMOD64;
87   tlsOffsetRel = R_X86_64_DTPOFF64;
88   pltHeaderSize = 16;
89   pltEntrySize = 16;
90   ipltEntrySize = 16;
91   trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
92   nopInstrs = nopInstructions;
93 
94   // Align to the large page size (known as a superpage or huge page).
95   // FreeBSD automatically promotes large, superpage-aligned allocations.
96   defaultImageBase = 0x200000;
97 }
98 
99 int X86_64::getTlsGdRelaxSkip(RelType type) const { return 2; }
100 
101 // Opcodes for the different X86_64 jmp instructions.
102 enum JmpInsnOpcode : uint32_t {
103   J_JMP_32,
104   J_JNE_32,
105   J_JE_32,
106   J_JG_32,
107   J_JGE_32,
108   J_JB_32,
109   J_JBE_32,
110   J_JL_32,
111   J_JLE_32,
112   J_JA_32,
113   J_JAE_32,
114   J_UNKNOWN,
115 };
116 
117 // Given the first (optional) and second byte of the insn's opcode, this
118 // returns the corresponding enum value.
119 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
120                                     const uint8_t *second) {
121   if (*second == 0xe9)
122     return J_JMP_32;
123 
124   if (first == nullptr)
125     return J_UNKNOWN;
126 
127   if (*first == 0x0f) {
128     switch (*second) {
129     case 0x84:
130       return J_JE_32;
131     case 0x85:
132       return J_JNE_32;
133     case 0x8f:
134       return J_JG_32;
135     case 0x8d:
136       return J_JGE_32;
137     case 0x82:
138       return J_JB_32;
139     case 0x86:
140       return J_JBE_32;
141     case 0x8c:
142       return J_JL_32;
143     case 0x8e:
144       return J_JLE_32;
145     case 0x87:
146       return J_JA_32;
147     case 0x83:
148       return J_JAE_32;
149     }
150   }
151   return J_UNKNOWN;
152 }
153 
154 // Return the relocation index for input section IS with a specific Offset.
155 // Returns the maximum size of the vector if no such relocation is found.
156 static unsigned getRelocationWithOffset(const InputSection &is,
157                                         uint64_t offset) {
158   unsigned size = is.relocations.size();
159   for (unsigned i = size - 1; i + 1 > 0; --i) {
160     if (is.relocations[i].offset == offset && is.relocations[i].expr != R_NONE)
161       return i;
162   }
163   return size;
164 }
165 
166 // Returns true if R corresponds to a relocation used for a jump instruction.
167 // TODO: Once special relocations for relaxable jump instructions are available,
168 // this should be modified to use those relocations.
169 static bool isRelocationForJmpInsn(Relocation &R) {
170   return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
171          R.type == R_X86_64_PC8;
172 }
173 
174 // Return true if Relocation R points to the first instruction in the
175 // next section.
176 // TODO: Delete this once psABI reserves a new relocation type for fall thru
177 // jumps.
178 static bool isFallThruRelocation(InputSection &is, InputFile *file,
179                                  InputSection *nextIS, Relocation &r) {
180   if (!isRelocationForJmpInsn(r))
181     return false;
182 
183   uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
184   uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
185       file, r.type, r.addend, addrLoc, *r.sym, r.expr);
186 
187   // If this jmp is a fall thru, the target offset is the beginning of the
188   // next section.
189   uint64_t nextSectionOffset =
190       nextIS->getOutputSection()->addr + nextIS->outSecOff;
191   return (addrLoc + 4 + targetOffset) == nextSectionOffset;
192 }
193 
194 // Return the jmp instruction opcode that is the inverse of the given
195 // opcode.  For example, JE inverted is JNE.
196 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
197   switch (opcode) {
198   case J_JE_32:
199     return J_JNE_32;
200   case J_JNE_32:
201     return J_JE_32;
202   case J_JG_32:
203     return J_JLE_32;
204   case J_JGE_32:
205     return J_JL_32;
206   case J_JB_32:
207     return J_JAE_32;
208   case J_JBE_32:
209     return J_JA_32;
210   case J_JL_32:
211     return J_JGE_32;
212   case J_JLE_32:
213     return J_JG_32;
214   case J_JA_32:
215     return J_JBE_32;
216   case J_JAE_32:
217     return J_JB_32;
218   default:
219     return J_UNKNOWN;
220   }
221 }
222 
223 // Deletes direct jump instruction in input sections that jumps to the
224 // following section as it is not required.  If there are two consecutive jump
225 // instructions, it checks if they can be flipped and one can be deleted.
226 // For example:
227 // .section .text
228 // a.BB.foo:
229 //    ...
230 //    10: jne aa.BB.foo
231 //    16: jmp bar
232 // aa.BB.foo:
233 //    ...
234 //
235 // can be converted to:
236 // a.BB.foo:
237 //   ...
238 //   10: je bar  #jne flipped to je and the jmp is deleted.
239 // aa.BB.foo:
240 //   ...
241 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
242                                    InputSection *nextIS) const {
243   const unsigned sizeOfDirectJmpInsn = 5;
244 
245   if (nextIS == nullptr)
246     return false;
247 
248   if (is.getSize() < sizeOfDirectJmpInsn)
249     return false;
250 
251   // If this jmp insn can be removed, it is the last insn and the
252   // relocation is 4 bytes before the end.
253   unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
254   if (rIndex == is.relocations.size())
255     return false;
256 
257   Relocation &r = is.relocations[rIndex];
258 
259   // Check if the relocation corresponds to a direct jmp.
260   const uint8_t *secContents = is.data().data();
261   // If it is not a direct jmp instruction, there is nothing to do here.
262   if (*(secContents + r.offset - 1) != 0xe9)
263     return false;
264 
265   if (isFallThruRelocation(is, file, nextIS, r)) {
266     // This is a fall thru and can be deleted.
267     r.expr = R_NONE;
268     r.offset = 0;
269     is.drop_back(sizeOfDirectJmpInsn);
270     is.nopFiller = true;
271     return true;
272   }
273 
274   // Now, check if flip and delete is possible.
275   const unsigned sizeOfJmpCCInsn = 6;
276   // To flip, there must be atleast one JmpCC and one direct jmp.
277   if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
278     return 0;
279 
280   unsigned rbIndex =
281       getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
282   if (rbIndex == is.relocations.size())
283     return 0;
284 
285   Relocation &rB = is.relocations[rbIndex];
286 
287   const uint8_t *jmpInsnB = secContents + rB.offset - 1;
288   JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
289   if (jmpOpcodeB == J_UNKNOWN)
290     return false;
291 
292   if (!isFallThruRelocation(is, file, nextIS, rB))
293     return false;
294 
295   // jmpCC jumps to the fall thru block, the branch can be flipped and the
296   // jmp can be deleted.
297   JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
298   if (jInvert == J_UNKNOWN)
299     return false;
300   is.jumpInstrMods.push_back({jInvert, (rB.offset - 1), 4});
301   // Move R's values to rB except the offset.
302   rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
303   // Cancel R
304   r.expr = R_NONE;
305   r.offset = 0;
306   is.drop_back(sizeOfDirectJmpInsn);
307   is.nopFiller = true;
308   return true;
309 }
310 
311 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
312                            const uint8_t *loc) const {
313   if (type == R_X86_64_GOTTPOFF)
314     config->hasStaticTlsModel = true;
315 
316   switch (type) {
317   case R_X86_64_8:
318   case R_X86_64_16:
319   case R_X86_64_32:
320   case R_X86_64_32S:
321   case R_X86_64_64:
322     return R_ABS;
323   case R_X86_64_DTPOFF32:
324   case R_X86_64_DTPOFF64:
325     return R_DTPREL;
326   case R_X86_64_TPOFF32:
327     return R_TLS;
328   case R_X86_64_TLSDESC_CALL:
329     return R_TLSDESC_CALL;
330   case R_X86_64_TLSLD:
331     return R_TLSLD_PC;
332   case R_X86_64_TLSGD:
333     return R_TLSGD_PC;
334   case R_X86_64_SIZE32:
335   case R_X86_64_SIZE64:
336     return R_SIZE;
337   case R_X86_64_PLT32:
338     return R_PLT_PC;
339   case R_X86_64_PC8:
340   case R_X86_64_PC16:
341   case R_X86_64_PC32:
342   case R_X86_64_PC64:
343     return R_PC;
344   case R_X86_64_GOT32:
345   case R_X86_64_GOT64:
346     return R_GOTPLT;
347   case R_X86_64_GOTPC32_TLSDESC:
348     return R_TLSDESC_PC;
349   case R_X86_64_GOTPCREL:
350   case R_X86_64_GOTPCRELX:
351   case R_X86_64_REX_GOTPCRELX:
352   case R_X86_64_GOTTPOFF:
353     return R_GOT_PC;
354   case R_X86_64_GOTOFF64:
355     return R_GOTPLTREL;
356   case R_X86_64_GOTPC32:
357   case R_X86_64_GOTPC64:
358     return R_GOTPLTONLY_PC;
359   case R_X86_64_NONE:
360     return R_NONE;
361   default:
362     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
363           ") against symbol " + toString(s));
364     return R_NONE;
365   }
366 }
367 
368 void X86_64::writeGotPltHeader(uint8_t *buf) const {
369   // The first entry holds the value of _DYNAMIC. It is not clear why that is
370   // required, but it is documented in the psabi and the glibc dynamic linker
371   // seems to use it (note that this is relevant for linking ld.so, not any
372   // other program).
373   write64le(buf, mainPart->dynamic->getVA());
374 }
375 
376 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
377   // See comments in X86::writeGotPlt.
378   write64le(buf, s.getPltVA() + 6);
379 }
380 
381 void X86_64::writePltHeader(uint8_t *buf) const {
382   const uint8_t pltData[] = {
383       0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
384       0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
385       0x0f, 0x1f, 0x40, 0x00, // nop
386   };
387   memcpy(buf, pltData, sizeof(pltData));
388   uint64_t gotPlt = in.gotPlt->getVA();
389   uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
390   write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
391   write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
392 }
393 
394 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
395                       uint64_t pltEntryAddr) const {
396   const uint8_t inst[] = {
397       0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
398       0x68, 0, 0, 0, 0,       // pushq <relocation index>
399       0xe9, 0, 0, 0, 0,       // jmpq plt[0]
400   };
401   memcpy(buf, inst, sizeof(inst));
402 
403   write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
404   write32le(buf + 7, sym.pltIndex);
405   write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
406 }
407 
408 RelType X86_64::getDynRel(RelType type) const {
409   if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
410       type == R_X86_64_SIZE64)
411     return type;
412   return R_X86_64_NONE;
413 }
414 
415 void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
416                             uint64_t val) const {
417   if (rel.type == R_X86_64_TLSGD) {
418     // Convert
419     //   .byte 0x66
420     //   leaq x@tlsgd(%rip), %rdi
421     //   .word 0x6666
422     //   rex64
423     //   call __tls_get_addr@plt
424     // to the following two instructions.
425     const uint8_t inst[] = {
426         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
427         0x00, 0x00,                            // mov %fs:0x0,%rax
428         0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
429     };
430     memcpy(loc - 4, inst, sizeof(inst));
431 
432     // The original code used a pc relative relocation and so we have to
433     // compensate for the -4 in had in the addend.
434     write32le(loc + 8, val + 4);
435   } else {
436     // Convert
437     //   lea x@tlsgd(%rip), %rax
438     //   call *(%rax)
439     // to the following two instructions.
440     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
441     if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
442       error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
443                                         "in callq *x@tlsdesc(%rip), %rax");
444       return;
445     }
446     // movq $x@tpoff(%rip),%rax
447     loc[-2] = 0xc7;
448     loc[-1] = 0xc0;
449     write32le(loc, val + 4);
450     // xchg ax,ax
451     loc[4] = 0x66;
452     loc[5] = 0x90;
453   }
454 }
455 
456 void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
457                             uint64_t val) const {
458   if (rel.type == R_X86_64_TLSGD) {
459     // Convert
460     //   .byte 0x66
461     //   leaq x@tlsgd(%rip), %rdi
462     //   .word 0x6666
463     //   rex64
464     //   call __tls_get_addr@plt
465     // to the following two instructions.
466     const uint8_t inst[] = {
467         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
468         0x00, 0x00,                            // mov %fs:0x0,%rax
469         0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
470     };
471     memcpy(loc - 4, inst, sizeof(inst));
472 
473     // Both code sequences are PC relatives, but since we are moving the
474     // constant forward by 8 bytes we have to subtract the value by 8.
475     write32le(loc + 8, val - 8);
476   } else {
477     // Convert
478     //   lea x@tlsgd(%rip), %rax
479     //   call *(%rax)
480     // to the following two instructions.
481     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
482     if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
483       error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
484                                         "in callq *x@tlsdesc(%rip), %rax");
485       return;
486     }
487     // movq x@gottpoff(%rip),%rax
488     loc[-2] = 0x8b;
489     write32le(loc, val);
490     // xchg ax,ax
491     loc[4] = 0x66;
492     loc[5] = 0x90;
493   }
494 }
495 
496 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
497 // R_X86_64_TPOFF32 so that it does not use GOT.
498 void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &,
499                             uint64_t val) const {
500   uint8_t *inst = loc - 3;
501   uint8_t reg = loc[-1] >> 3;
502   uint8_t *regSlot = loc - 1;
503 
504   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
505   // because LEA with these registers needs 4 bytes to encode and thus
506   // wouldn't fit the space.
507 
508   if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
509     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
510     memcpy(inst, "\x48\x81\xc4", 3);
511   } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
512     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
513     memcpy(inst, "\x49\x81\xc4", 3);
514   } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
515     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
516     memcpy(inst, "\x4d\x8d", 2);
517     *regSlot = 0x80 | (reg << 3) | reg;
518   } else if (memcmp(inst, "\x48\x03", 2) == 0) {
519     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
520     memcpy(inst, "\x48\x8d", 2);
521     *regSlot = 0x80 | (reg << 3) | reg;
522   } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
523     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
524     memcpy(inst, "\x49\xc7", 2);
525     *regSlot = 0xc0 | reg;
526   } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
527     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
528     memcpy(inst, "\x48\xc7", 2);
529     *regSlot = 0xc0 | reg;
530   } else {
531     error(getErrorLocation(loc - 3) +
532           "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
533   }
534 
535   // The original code used a PC relative relocation.
536   // Need to compensate for the -4 it had in the addend.
537   write32le(loc, val + 4);
538 }
539 
540 void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
541                             uint64_t val) const {
542   if (rel.type == R_X86_64_DTPOFF64) {
543     write64le(loc, val);
544     return;
545   }
546   if (rel.type == R_X86_64_DTPOFF32) {
547     write32le(loc, val);
548     return;
549   }
550 
551   const uint8_t inst[] = {
552       0x66, 0x66,                                           // .word 0x6666
553       0x66,                                                 // .byte 0x66
554       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
555   };
556 
557   if (loc[4] == 0xe8) {
558     // Convert
559     //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
560     //   callq __tls_get_addr@PLT             # e8 <disp32>
561     //   leaq bar@dtpoff(%rax), %rcx
562     // to
563     //   .word 0x6666
564     //   .byte 0x66
565     //   mov %fs:0,%rax
566     //   leaq bar@tpoff(%rax), %rcx
567     memcpy(loc - 3, inst, sizeof(inst));
568     return;
569   }
570 
571   if (loc[4] == 0xff && loc[5] == 0x15) {
572     // Convert
573     //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
574     //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
575     // to
576     //   .long  0x66666666
577     //   movq   %fs:0,%rax
578     // See "Table 11.9: LD -> LE Code Transition (LP64)" in
579     // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
580     loc[-3] = 0x66;
581     memcpy(loc - 2, inst, sizeof(inst));
582     return;
583   }
584 
585   error(getErrorLocation(loc - 3) +
586         "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
587 }
588 
589 // A JumpInstrMod at a specific offset indicates that the jump instruction
590 // opcode at that offset must be modified.  This is specifically used to relax
591 // jump instructions with basic block sections.  This function looks at the
592 // JumpMod and effects the change.
593 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
594                                unsigned size) const {
595   switch (type) {
596   case J_JMP_32:
597     if (size == 4)
598       *loc = 0xe9;
599     else
600       *loc = 0xeb;
601     break;
602   case J_JE_32:
603     if (size == 4) {
604       loc[-1] = 0x0f;
605       *loc = 0x84;
606     } else
607       *loc = 0x74;
608     break;
609   case J_JNE_32:
610     if (size == 4) {
611       loc[-1] = 0x0f;
612       *loc = 0x85;
613     } else
614       *loc = 0x75;
615     break;
616   case J_JG_32:
617     if (size == 4) {
618       loc[-1] = 0x0f;
619       *loc = 0x8f;
620     } else
621       *loc = 0x7f;
622     break;
623   case J_JGE_32:
624     if (size == 4) {
625       loc[-1] = 0x0f;
626       *loc = 0x8d;
627     } else
628       *loc = 0x7d;
629     break;
630   case J_JB_32:
631     if (size == 4) {
632       loc[-1] = 0x0f;
633       *loc = 0x82;
634     } else
635       *loc = 0x72;
636     break;
637   case J_JBE_32:
638     if (size == 4) {
639       loc[-1] = 0x0f;
640       *loc = 0x86;
641     } else
642       *loc = 0x76;
643     break;
644   case J_JL_32:
645     if (size == 4) {
646       loc[-1] = 0x0f;
647       *loc = 0x8c;
648     } else
649       *loc = 0x7c;
650     break;
651   case J_JLE_32:
652     if (size == 4) {
653       loc[-1] = 0x0f;
654       *loc = 0x8e;
655     } else
656       *loc = 0x7e;
657     break;
658   case J_JA_32:
659     if (size == 4) {
660       loc[-1] = 0x0f;
661       *loc = 0x87;
662     } else
663       *loc = 0x77;
664     break;
665   case J_JAE_32:
666     if (size == 4) {
667       loc[-1] = 0x0f;
668       *loc = 0x83;
669     } else
670       *loc = 0x73;
671     break;
672   case J_UNKNOWN:
673     llvm_unreachable("Unknown Jump Relocation");
674   }
675 }
676 
677 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
678   switch (rel.type) {
679   case R_X86_64_8:
680     checkIntUInt(loc, val, 8, rel);
681     *loc = val;
682     break;
683   case R_X86_64_PC8:
684     checkInt(loc, val, 8, rel);
685     *loc = val;
686     break;
687   case R_X86_64_16:
688     checkIntUInt(loc, val, 16, rel);
689     write16le(loc, val);
690     break;
691   case R_X86_64_PC16:
692     checkInt(loc, val, 16, rel);
693     write16le(loc, val);
694     break;
695   case R_X86_64_32:
696     checkUInt(loc, val, 32, rel);
697     write32le(loc, val);
698     break;
699   case R_X86_64_32S:
700   case R_X86_64_TPOFF32:
701   case R_X86_64_GOT32:
702   case R_X86_64_GOTPC32:
703   case R_X86_64_GOTPC32_TLSDESC:
704   case R_X86_64_GOTPCREL:
705   case R_X86_64_GOTPCRELX:
706   case R_X86_64_REX_GOTPCRELX:
707   case R_X86_64_PC32:
708   case R_X86_64_GOTTPOFF:
709   case R_X86_64_PLT32:
710   case R_X86_64_TLSGD:
711   case R_X86_64_TLSLD:
712   case R_X86_64_DTPOFF32:
713   case R_X86_64_SIZE32:
714     checkInt(loc, val, 32, rel);
715     write32le(loc, val);
716     break;
717   case R_X86_64_64:
718   case R_X86_64_DTPOFF64:
719   case R_X86_64_PC64:
720   case R_X86_64_SIZE64:
721   case R_X86_64_GOT64:
722   case R_X86_64_GOTOFF64:
723   case R_X86_64_GOTPC64:
724     write64le(loc, val);
725     break;
726   default:
727     llvm_unreachable("unknown relocation");
728   }
729 }
730 
731 RelExpr X86_64::adjustRelaxExpr(RelType type, const uint8_t *data,
732                                 RelExpr relExpr) const {
733   if (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX)
734     return relExpr;
735   const uint8_t op = data[-2];
736   const uint8_t modRm = data[-1];
737 
738   // FIXME: When PIC is disabled and foo is defined locally in the
739   // lower 32 bit address space, memory operand in mov can be converted into
740   // immediate operand. Otherwise, mov must be changed to lea. We support only
741   // latter relaxation at this moment.
742   if (op == 0x8b)
743     return R_RELAX_GOT_PC;
744 
745   // Relax call and jmp.
746   if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
747     return R_RELAX_GOT_PC;
748 
749   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
750   // If PIC then no relaxation is available.
751   // We also don't relax test/binop instructions without REX byte,
752   // they are 32bit operations and not common to have.
753   assert(type == R_X86_64_REX_GOTPCRELX);
754   return config->isPic ? relExpr : R_RELAX_GOT_PC_NOPIC;
755 }
756 
757 // A subset of relaxations can only be applied for no-PIC. This method
758 // handles such relaxations. Instructions encoding information was taken from:
759 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
760 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
761 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
762 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
763                           uint8_t modRm) {
764   const uint8_t rex = loc[-3];
765   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
766   if (op == 0x85) {
767     // See "TEST-Logical Compare" (4-428 Vol. 2B),
768     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
769 
770     // ModR/M byte has form XX YYY ZZZ, where
771     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
772     // XX has different meanings:
773     // 00: The operand's memory address is in reg1.
774     // 01: The operand's memory address is reg1 + a byte-sized displacement.
775     // 10: The operand's memory address is reg1 + a word-sized displacement.
776     // 11: The operand is reg1 itself.
777     // If an instruction requires only one operand, the unused reg2 field
778     // holds extra opcode bits rather than a register code
779     // 0xC0 == 11 000 000 binary.
780     // 0x38 == 00 111 000 binary.
781     // We transfer reg2 to reg1 here as operand.
782     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
783     loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
784 
785     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
786     // See "TEST-Logical Compare" (4-428 Vol. 2B).
787     loc[-2] = 0xf7;
788 
789     // Move R bit to the B bit in REX byte.
790     // REX byte is encoded as 0100WRXB, where
791     // 0100 is 4bit fixed pattern.
792     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
793     //   default operand size is used (which is 32-bit for most but not all
794     //   instructions).
795     // REX.R This 1-bit value is an extension to the MODRM.reg field.
796     // REX.X This 1-bit value is an extension to the SIB.index field.
797     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
798     // SIB.base field.
799     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
800     loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
801     write32le(loc, val);
802     return;
803   }
804 
805   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
806   // or xor operations.
807 
808   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
809   // Logic is close to one for test instruction above, but we also
810   // write opcode extension here, see below for details.
811   loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
812 
813   // Primary opcode is 0x81, opcode extension is one of:
814   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
815   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
816   // This value was wrote to MODRM.reg in a line above.
817   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
818   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
819   // descriptions about each operation.
820   loc[-2] = 0x81;
821   loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
822   write32le(loc, val);
823 }
824 
825 void X86_64::relaxGot(uint8_t *loc, const Relocation &, uint64_t val) const {
826   const uint8_t op = loc[-2];
827   const uint8_t modRm = loc[-1];
828 
829   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
830   if (op == 0x8b) {
831     loc[-2] = 0x8d;
832     write32le(loc, val);
833     return;
834   }
835 
836   if (op != 0xff) {
837     // We are relaxing a rip relative to an absolute, so compensate
838     // for the old -4 addend.
839     assert(!config->isPic);
840     relaxGotNoPic(loc, val + 4, op, modRm);
841     return;
842   }
843 
844   // Convert call/jmp instructions.
845   if (modRm == 0x15) {
846     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
847     // Instead we convert to "addr32 call foo" where addr32 is an instruction
848     // prefix. That makes result expression to be a single instruction.
849     loc[-2] = 0x67; // addr32 prefix
850     loc[-1] = 0xe8; // call
851     write32le(loc, val);
852     return;
853   }
854 
855   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
856   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
857   assert(modRm == 0x25);
858   loc[-2] = 0xe9; // jmp
859   loc[3] = 0x90;  // nop
860   write32le(loc - 1, val + 1);
861 }
862 
863 // A split-stack prologue starts by checking the amount of stack remaining
864 // in one of two ways:
865 // A) Comparing of the stack pointer to a field in the tcb.
866 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
867 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
868                                               uint8_t stOther) const {
869   if (!config->is64) {
870     error("Target doesn't support split stacks.");
871     return false;
872   }
873 
874   if (loc + 8 >= end)
875     return false;
876 
877   // Replace "cmp %fs:0x70,%rsp" and subsequent branch
878   // with "stc, nopl 0x0(%rax,%rax,1)"
879   if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
880     memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
881     return true;
882   }
883 
884   // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
885   // be r10 or r11. The lea instruction feeds a subsequent compare which checks
886   // if there is X available stack space. Making X larger effectively reserves
887   // that much additional space. The stack grows downward so subtract the value.
888   if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
889       memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
890     // The offset bytes are encoded four bytes after the start of the
891     // instruction.
892     write32le(loc + 4, read32le(loc + 4) - 0x4000);
893     return true;
894   }
895   return false;
896 }
897 
898 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
899 // entries containing endbr64 instructions. A PLT entry will be split into two
900 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
901 namespace {
902 class IntelIBT : public X86_64 {
903 public:
904   IntelIBT();
905   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
906   void writePlt(uint8_t *buf, const Symbol &sym,
907                 uint64_t pltEntryAddr) const override;
908   void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
909 
910   static const unsigned IBTPltHeaderSize = 16;
911 };
912 } // namespace
913 
914 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
915 
916 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
917   uint64_t va =
918       in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize;
919   write64le(buf, va);
920 }
921 
922 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
923                         uint64_t pltEntryAddr) const {
924   const uint8_t Inst[] = {
925       0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
926       0xff, 0x25, 0,    0,    0, 0, // jmpq *got(%rip)
927       0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
928   };
929   memcpy(buf, Inst, sizeof(Inst));
930   write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
931 }
932 
933 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
934   writePltHeader(buf);
935   buf += IBTPltHeaderSize;
936 
937   const uint8_t inst[] = {
938       0xf3, 0x0f, 0x1e, 0xfa,    // endbr64
939       0x68, 0,    0,    0,    0, // pushq <relocation index>
940       0xe9, 0,    0,    0,    0, // jmpq plt[0]
941       0x66, 0x90,                // nop
942   };
943 
944   for (size_t i = 0; i < numEntries; ++i) {
945     memcpy(buf, inst, sizeof(inst));
946     write32le(buf + 5, i);
947     write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
948     buf += sizeof(inst);
949   }
950 }
951 
952 // These nonstandard PLT entries are to migtigate Spectre v2 security
953 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
954 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
955 // entries, we use a CALL followed by MOV and RET to do the same thing as an
956 // indirect jump. That instruction sequence is so-called "retpoline".
957 //
958 // We have two types of retpoline PLTs as a size optimization. If `-z now`
959 // is specified, all dynamic symbols are resolved at load-time. Thus, when
960 // that option is given, we can omit code for symbol lazy resolution.
961 namespace {
962 class Retpoline : public X86_64 {
963 public:
964   Retpoline();
965   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
966   void writePltHeader(uint8_t *buf) const override;
967   void writePlt(uint8_t *buf, const Symbol &sym,
968                 uint64_t pltEntryAddr) const override;
969 };
970 
971 class RetpolineZNow : public X86_64 {
972 public:
973   RetpolineZNow();
974   void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
975   void writePltHeader(uint8_t *buf) const override;
976   void writePlt(uint8_t *buf, const Symbol &sym,
977                 uint64_t pltEntryAddr) const override;
978 };
979 } // namespace
980 
981 Retpoline::Retpoline() {
982   pltHeaderSize = 48;
983   pltEntrySize = 32;
984   ipltEntrySize = 32;
985 }
986 
987 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
988   write64le(buf, s.getPltVA() + 17);
989 }
990 
991 void Retpoline::writePltHeader(uint8_t *buf) const {
992   const uint8_t insn[] = {
993       0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
994       0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
995       0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
996       0xf3, 0x90,                               // 12: loop: pause
997       0x0f, 0xae, 0xe8,                         // 14:   lfence
998       0xeb, 0xf9,                               // 17:   jmp loop
999       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
1000       0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
1001       0xc3,                                     // 24:   ret
1002       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
1003       0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
1004   };
1005   memcpy(buf, insn, sizeof(insn));
1006 
1007   uint64_t gotPlt = in.gotPlt->getVA();
1008   uint64_t plt = in.plt->getVA();
1009   write32le(buf + 2, gotPlt - plt - 6 + 8);
1010   write32le(buf + 9, gotPlt - plt - 13 + 16);
1011 }
1012 
1013 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1014                          uint64_t pltEntryAddr) const {
1015   const uint8_t insn[] = {
1016       0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
1017       0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
1018       0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
1019       0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
1020       0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
1021       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1022   };
1023   memcpy(buf, insn, sizeof(insn));
1024 
1025   uint64_t off = pltEntryAddr - in.plt->getVA();
1026 
1027   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1028   write32le(buf + 8, -off - 12 + 32);
1029   write32le(buf + 13, -off - 17 + 18);
1030   write32le(buf + 18, sym.pltIndex);
1031   write32le(buf + 23, -off - 27);
1032 }
1033 
1034 RetpolineZNow::RetpolineZNow() {
1035   pltHeaderSize = 32;
1036   pltEntrySize = 16;
1037   ipltEntrySize = 16;
1038 }
1039 
1040 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1041   const uint8_t insn[] = {
1042       0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
1043       0xf3, 0x90,                   // 5:  loop: pause
1044       0x0f, 0xae, 0xe8,             // 7:    lfence
1045       0xeb, 0xf9,                   // a:    jmp loop
1046       0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
1047       0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
1048       0xc3,                         // 14:   ret
1049       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
1050       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
1051       0xcc,                         // 1f:   int3; padding
1052   };
1053   memcpy(buf, insn, sizeof(insn));
1054 }
1055 
1056 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1057                              uint64_t pltEntryAddr) const {
1058   const uint8_t insn[] = {
1059       0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1060       0xe9, 0,    0,    0,    0,       // jmp plt+0
1061       0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
1062   };
1063   memcpy(buf, insn, sizeof(insn));
1064 
1065   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1066   write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1067 }
1068 
1069 static TargetInfo *getTargetInfo() {
1070   if (config->zRetpolineplt) {
1071     if (config->zNow) {
1072       static RetpolineZNow t;
1073       return &t;
1074     }
1075     static Retpoline t;
1076     return &t;
1077   }
1078 
1079   if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1080     static IntelIBT t;
1081     return &t;
1082   }
1083 
1084   static X86_64 t;
1085   return &t;
1086 }
1087 
1088 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
1089