xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/X86_64.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/Object/ELF.h"
16 #include "llvm/Support/Endian.h"
17 
18 using namespace llvm;
19 using namespace llvm::object;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24 
25 namespace {
26 class X86_64 : public TargetInfo {
27 public:
28   X86_64();
29   int getTlsGdRelaxSkip(RelType type) const override;
30   RelExpr getRelExpr(RelType type, const Symbol &s,
31                      const uint8_t *loc) const override;
32   RelType getDynRel(RelType type) const override;
33   void writeGotPltHeader(uint8_t *buf) const override;
34   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
35   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
36   void writePltHeader(uint8_t *buf) const override;
37   void writePlt(uint8_t *buf, const Symbol &sym,
38                 uint64_t pltEntryAddr) const override;
39   void relocate(uint8_t *loc, const Relocation &rel,
40                 uint64_t val) const override;
41   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
42   void applyJumpInstrMod(uint8_t *loc, JumpModType type,
43                          unsigned size) const override;
44 
45   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
46                           const uint8_t *loc) const override;
47   void relaxGot(uint8_t *loc, const Relocation &rel,
48                 uint64_t val) const override;
49   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
50                       uint64_t val) const override;
51   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
52                       uint64_t val) const override;
53   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
54                       uint64_t val) const override;
55   void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
56                       uint64_t val) const override;
57   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
58                                         uint8_t stOther) const override;
59   bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
60                              InputSection *nextIS) const override;
61 };
62 } // namespace
63 
64 // This is vector of NOP instructions of sizes from 1 to 8 bytes.  The
65 // appropriately sized instructions are used to fill the gaps between sections
66 // which are executed during fall through.
67 static const std::vector<std::vector<uint8_t>> nopInstructions = {
68     {0x90},
69     {0x66, 0x90},
70     {0x0f, 0x1f, 0x00},
71     {0x0f, 0x1f, 0x40, 0x00},
72     {0x0f, 0x1f, 0x44, 0x00, 0x00},
73     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
74     {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
75     {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
76     {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
77 
78 X86_64::X86_64() {
79   copyRel = R_X86_64_COPY;
80   gotRel = R_X86_64_GLOB_DAT;
81   pltRel = R_X86_64_JUMP_SLOT;
82   relativeRel = R_X86_64_RELATIVE;
83   iRelativeRel = R_X86_64_IRELATIVE;
84   symbolicRel = R_X86_64_64;
85   tlsDescRel = R_X86_64_TLSDESC;
86   tlsGotRel = R_X86_64_TPOFF64;
87   tlsModuleIndexRel = R_X86_64_DTPMOD64;
88   tlsOffsetRel = R_X86_64_DTPOFF64;
89   gotBaseSymInGotPlt = true;
90   gotEntrySize = 8;
91   pltHeaderSize = 16;
92   pltEntrySize = 16;
93   ipltEntrySize = 16;
94   trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
95   nopInstrs = nopInstructions;
96 
97   // Align to the large page size (known as a superpage or huge page).
98   // FreeBSD automatically promotes large, superpage-aligned allocations.
99   defaultImageBase = 0x200000;
100 }
101 
102 int X86_64::getTlsGdRelaxSkip(RelType type) const { return 2; }
103 
104 // Opcodes for the different X86_64 jmp instructions.
105 enum JmpInsnOpcode : uint32_t {
106   J_JMP_32,
107   J_JNE_32,
108   J_JE_32,
109   J_JG_32,
110   J_JGE_32,
111   J_JB_32,
112   J_JBE_32,
113   J_JL_32,
114   J_JLE_32,
115   J_JA_32,
116   J_JAE_32,
117   J_UNKNOWN,
118 };
119 
120 // Given the first (optional) and second byte of the insn's opcode, this
121 // returns the corresponding enum value.
122 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
123                                     const uint8_t *second) {
124   if (*second == 0xe9)
125     return J_JMP_32;
126 
127   if (first == nullptr)
128     return J_UNKNOWN;
129 
130   if (*first == 0x0f) {
131     switch (*second) {
132     case 0x84:
133       return J_JE_32;
134     case 0x85:
135       return J_JNE_32;
136     case 0x8f:
137       return J_JG_32;
138     case 0x8d:
139       return J_JGE_32;
140     case 0x82:
141       return J_JB_32;
142     case 0x86:
143       return J_JBE_32;
144     case 0x8c:
145       return J_JL_32;
146     case 0x8e:
147       return J_JLE_32;
148     case 0x87:
149       return J_JA_32;
150     case 0x83:
151       return J_JAE_32;
152     }
153   }
154   return J_UNKNOWN;
155 }
156 
157 // Return the relocation index for input section IS with a specific Offset.
158 // Returns the maximum size of the vector if no such relocation is found.
159 static unsigned getRelocationWithOffset(const InputSection &is,
160                                         uint64_t offset) {
161   unsigned size = is.relocations.size();
162   for (unsigned i = size - 1; i + 1 > 0; --i) {
163     if (is.relocations[i].offset == offset && is.relocations[i].expr != R_NONE)
164       return i;
165   }
166   return size;
167 }
168 
169 // Returns true if R corresponds to a relocation used for a jump instruction.
170 // TODO: Once special relocations for relaxable jump instructions are available,
171 // this should be modified to use those relocations.
172 static bool isRelocationForJmpInsn(Relocation &R) {
173   return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
174          R.type == R_X86_64_PC8;
175 }
176 
177 // Return true if Relocation R points to the first instruction in the
178 // next section.
179 // TODO: Delete this once psABI reserves a new relocation type for fall thru
180 // jumps.
181 static bool isFallThruRelocation(InputSection &is, InputFile *file,
182                                  InputSection *nextIS, Relocation &r) {
183   if (!isRelocationForJmpInsn(r))
184     return false;
185 
186   uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
187   uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
188       file, r.type, r.addend, addrLoc, *r.sym, r.expr);
189 
190   // If this jmp is a fall thru, the target offset is the beginning of the
191   // next section.
192   uint64_t nextSectionOffset =
193       nextIS->getOutputSection()->addr + nextIS->outSecOff;
194   return (addrLoc + 4 + targetOffset) == nextSectionOffset;
195 }
196 
197 // Return the jmp instruction opcode that is the inverse of the given
198 // opcode.  For example, JE inverted is JNE.
199 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
200   switch (opcode) {
201   case J_JE_32:
202     return J_JNE_32;
203   case J_JNE_32:
204     return J_JE_32;
205   case J_JG_32:
206     return J_JLE_32;
207   case J_JGE_32:
208     return J_JL_32;
209   case J_JB_32:
210     return J_JAE_32;
211   case J_JBE_32:
212     return J_JA_32;
213   case J_JL_32:
214     return J_JGE_32;
215   case J_JLE_32:
216     return J_JG_32;
217   case J_JA_32:
218     return J_JBE_32;
219   case J_JAE_32:
220     return J_JB_32;
221   default:
222     return J_UNKNOWN;
223   }
224 }
225 
226 // Deletes direct jump instruction in input sections that jumps to the
227 // following section as it is not required.  If there are two consecutive jump
228 // instructions, it checks if they can be flipped and one can be deleted.
229 // For example:
230 // .section .text
231 // a.BB.foo:
232 //    ...
233 //    10: jne aa.BB.foo
234 //    16: jmp bar
235 // aa.BB.foo:
236 //    ...
237 //
238 // can be converted to:
239 // a.BB.foo:
240 //   ...
241 //   10: je bar  #jne flipped to je and the jmp is deleted.
242 // aa.BB.foo:
243 //   ...
244 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
245                                    InputSection *nextIS) const {
246   const unsigned sizeOfDirectJmpInsn = 5;
247 
248   if (nextIS == nullptr)
249     return false;
250 
251   if (is.getSize() < sizeOfDirectJmpInsn)
252     return false;
253 
254   // If this jmp insn can be removed, it is the last insn and the
255   // relocation is 4 bytes before the end.
256   unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
257   if (rIndex == is.relocations.size())
258     return false;
259 
260   Relocation &r = is.relocations[rIndex];
261 
262   // Check if the relocation corresponds to a direct jmp.
263   const uint8_t *secContents = is.data().data();
264   // If it is not a direct jmp instruction, there is nothing to do here.
265   if (*(secContents + r.offset - 1) != 0xe9)
266     return false;
267 
268   if (isFallThruRelocation(is, file, nextIS, r)) {
269     // This is a fall thru and can be deleted.
270     r.expr = R_NONE;
271     r.offset = 0;
272     is.drop_back(sizeOfDirectJmpInsn);
273     is.nopFiller = true;
274     return true;
275   }
276 
277   // Now, check if flip and delete is possible.
278   const unsigned sizeOfJmpCCInsn = 6;
279   // To flip, there must be atleast one JmpCC and one direct jmp.
280   if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
281     return 0;
282 
283   unsigned rbIndex =
284       getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
285   if (rbIndex == is.relocations.size())
286     return 0;
287 
288   Relocation &rB = is.relocations[rbIndex];
289 
290   const uint8_t *jmpInsnB = secContents + rB.offset - 1;
291   JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
292   if (jmpOpcodeB == J_UNKNOWN)
293     return false;
294 
295   if (!isFallThruRelocation(is, file, nextIS, rB))
296     return false;
297 
298   // jmpCC jumps to the fall thru block, the branch can be flipped and the
299   // jmp can be deleted.
300   JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
301   if (jInvert == J_UNKNOWN)
302     return false;
303   is.jumpInstrMods.push_back({jInvert, (rB.offset - 1), 4});
304   // Move R's values to rB except the offset.
305   rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
306   // Cancel R
307   r.expr = R_NONE;
308   r.offset = 0;
309   is.drop_back(sizeOfDirectJmpInsn);
310   is.nopFiller = true;
311   return true;
312 }
313 
314 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
315                            const uint8_t *loc) const {
316   if (type == R_X86_64_GOTTPOFF)
317     config->hasStaticTlsModel = true;
318 
319   switch (type) {
320   case R_X86_64_8:
321   case R_X86_64_16:
322   case R_X86_64_32:
323   case R_X86_64_32S:
324   case R_X86_64_64:
325     return R_ABS;
326   case R_X86_64_DTPOFF32:
327   case R_X86_64_DTPOFF64:
328     return R_DTPREL;
329   case R_X86_64_TPOFF32:
330     return R_TPREL;
331   case R_X86_64_TLSDESC_CALL:
332     return R_TLSDESC_CALL;
333   case R_X86_64_TLSLD:
334     return R_TLSLD_PC;
335   case R_X86_64_TLSGD:
336     return R_TLSGD_PC;
337   case R_X86_64_SIZE32:
338   case R_X86_64_SIZE64:
339     return R_SIZE;
340   case R_X86_64_PLT32:
341     return R_PLT_PC;
342   case R_X86_64_PC8:
343   case R_X86_64_PC16:
344   case R_X86_64_PC32:
345   case R_X86_64_PC64:
346     return R_PC;
347   case R_X86_64_GOT32:
348   case R_X86_64_GOT64:
349     return R_GOTPLT;
350   case R_X86_64_GOTPC32_TLSDESC:
351     return R_TLSDESC_PC;
352   case R_X86_64_GOTPCREL:
353   case R_X86_64_GOTPCRELX:
354   case R_X86_64_REX_GOTPCRELX:
355   case R_X86_64_GOTTPOFF:
356     return R_GOT_PC;
357   case R_X86_64_GOTOFF64:
358     return R_GOTPLTREL;
359   case R_X86_64_PLTOFF64:
360     return R_PLT_GOTPLT;
361   case R_X86_64_GOTPC32:
362   case R_X86_64_GOTPC64:
363     return R_GOTPLTONLY_PC;
364   case R_X86_64_NONE:
365     return R_NONE;
366   default:
367     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
368           ") against symbol " + toString(s));
369     return R_NONE;
370   }
371 }
372 
373 void X86_64::writeGotPltHeader(uint8_t *buf) const {
374   // The first entry holds the value of _DYNAMIC. It is not clear why that is
375   // required, but it is documented in the psabi and the glibc dynamic linker
376   // seems to use it (note that this is relevant for linking ld.so, not any
377   // other program).
378   write64le(buf, mainPart->dynamic->getVA());
379 }
380 
381 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
382   // See comments in X86::writeGotPlt.
383   write64le(buf, s.getPltVA() + 6);
384 }
385 
386 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
387   // An x86 entry is the address of the ifunc resolver function (for -z rel).
388   if (config->writeAddends)
389     write64le(buf, s.getVA());
390 }
391 
392 void X86_64::writePltHeader(uint8_t *buf) const {
393   const uint8_t pltData[] = {
394       0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
395       0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
396       0x0f, 0x1f, 0x40, 0x00, // nop
397   };
398   memcpy(buf, pltData, sizeof(pltData));
399   uint64_t gotPlt = in.gotPlt->getVA();
400   uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
401   write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
402   write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
403 }
404 
405 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
406                       uint64_t pltEntryAddr) const {
407   const uint8_t inst[] = {
408       0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
409       0x68, 0, 0, 0, 0,       // pushq <relocation index>
410       0xe9, 0, 0, 0, 0,       // jmpq plt[0]
411   };
412   memcpy(buf, inst, sizeof(inst));
413 
414   write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
415   write32le(buf + 7, sym.pltIndex);
416   write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
417 }
418 
419 RelType X86_64::getDynRel(RelType type) const {
420   if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
421       type == R_X86_64_SIZE64)
422     return type;
423   return R_X86_64_NONE;
424 }
425 
426 void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
427                             uint64_t val) const {
428   if (rel.type == R_X86_64_TLSGD) {
429     // Convert
430     //   .byte 0x66
431     //   leaq x@tlsgd(%rip), %rdi
432     //   .word 0x6666
433     //   rex64
434     //   call __tls_get_addr@plt
435     // to the following two instructions.
436     const uint8_t inst[] = {
437         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
438         0x00, 0x00,                            // mov %fs:0x0,%rax
439         0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
440     };
441     memcpy(loc - 4, inst, sizeof(inst));
442 
443     // The original code used a pc relative relocation and so we have to
444     // compensate for the -4 in had in the addend.
445     write32le(loc + 8, val + 4);
446   } else {
447     // Convert
448     //   lea x@tlsgd(%rip), %rax
449     //   call *(%rax)
450     // to the following two instructions.
451     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
452     if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
453       error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
454                                         "in callq *x@tlsdesc(%rip), %rax");
455       return;
456     }
457     // movq $x@tpoff(%rip),%rax
458     loc[-2] = 0xc7;
459     loc[-1] = 0xc0;
460     write32le(loc, val + 4);
461     // xchg ax,ax
462     loc[4] = 0x66;
463     loc[5] = 0x90;
464   }
465 }
466 
467 void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
468                             uint64_t val) const {
469   if (rel.type == R_X86_64_TLSGD) {
470     // Convert
471     //   .byte 0x66
472     //   leaq x@tlsgd(%rip), %rdi
473     //   .word 0x6666
474     //   rex64
475     //   call __tls_get_addr@plt
476     // to the following two instructions.
477     const uint8_t inst[] = {
478         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
479         0x00, 0x00,                            // mov %fs:0x0,%rax
480         0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
481     };
482     memcpy(loc - 4, inst, sizeof(inst));
483 
484     // Both code sequences are PC relatives, but since we are moving the
485     // constant forward by 8 bytes we have to subtract the value by 8.
486     write32le(loc + 8, val - 8);
487   } else {
488     // Convert
489     //   lea x@tlsgd(%rip), %rax
490     //   call *(%rax)
491     // to the following two instructions.
492     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
493     if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
494       error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
495                                         "in callq *x@tlsdesc(%rip), %rax");
496       return;
497     }
498     // movq x@gottpoff(%rip),%rax
499     loc[-2] = 0x8b;
500     write32le(loc, val);
501     // xchg ax,ax
502     loc[4] = 0x66;
503     loc[5] = 0x90;
504   }
505 }
506 
507 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
508 // R_X86_64_TPOFF32 so that it does not use GOT.
509 void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &,
510                             uint64_t val) const {
511   uint8_t *inst = loc - 3;
512   uint8_t reg = loc[-1] >> 3;
513   uint8_t *regSlot = loc - 1;
514 
515   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
516   // because LEA with these registers needs 4 bytes to encode and thus
517   // wouldn't fit the space.
518 
519   if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
520     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
521     memcpy(inst, "\x48\x81\xc4", 3);
522   } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
523     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
524     memcpy(inst, "\x49\x81\xc4", 3);
525   } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
526     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
527     memcpy(inst, "\x4d\x8d", 2);
528     *regSlot = 0x80 | (reg << 3) | reg;
529   } else if (memcmp(inst, "\x48\x03", 2) == 0) {
530     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
531     memcpy(inst, "\x48\x8d", 2);
532     *regSlot = 0x80 | (reg << 3) | reg;
533   } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
534     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
535     memcpy(inst, "\x49\xc7", 2);
536     *regSlot = 0xc0 | reg;
537   } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
538     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
539     memcpy(inst, "\x48\xc7", 2);
540     *regSlot = 0xc0 | reg;
541   } else {
542     error(getErrorLocation(loc - 3) +
543           "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
544   }
545 
546   // The original code used a PC relative relocation.
547   // Need to compensate for the -4 it had in the addend.
548   write32le(loc, val + 4);
549 }
550 
551 void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
552                             uint64_t val) const {
553   if (rel.type == R_X86_64_DTPOFF64) {
554     write64le(loc, val);
555     return;
556   }
557   if (rel.type == R_X86_64_DTPOFF32) {
558     write32le(loc, val);
559     return;
560   }
561 
562   const uint8_t inst[] = {
563       0x66, 0x66,                                           // .word 0x6666
564       0x66,                                                 // .byte 0x66
565       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
566   };
567 
568   if (loc[4] == 0xe8) {
569     // Convert
570     //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
571     //   callq __tls_get_addr@PLT             # e8 <disp32>
572     //   leaq bar@dtpoff(%rax), %rcx
573     // to
574     //   .word 0x6666
575     //   .byte 0x66
576     //   mov %fs:0,%rax
577     //   leaq bar@tpoff(%rax), %rcx
578     memcpy(loc - 3, inst, sizeof(inst));
579     return;
580   }
581 
582   if (loc[4] == 0xff && loc[5] == 0x15) {
583     // Convert
584     //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
585     //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
586     // to
587     //   .long  0x66666666
588     //   movq   %fs:0,%rax
589     // See "Table 11.9: LD -> LE Code Transition (LP64)" in
590     // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
591     loc[-3] = 0x66;
592     memcpy(loc - 2, inst, sizeof(inst));
593     return;
594   }
595 
596   error(getErrorLocation(loc - 3) +
597         "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
598 }
599 
600 // A JumpInstrMod at a specific offset indicates that the jump instruction
601 // opcode at that offset must be modified.  This is specifically used to relax
602 // jump instructions with basic block sections.  This function looks at the
603 // JumpMod and effects the change.
604 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
605                                unsigned size) const {
606   switch (type) {
607   case J_JMP_32:
608     if (size == 4)
609       *loc = 0xe9;
610     else
611       *loc = 0xeb;
612     break;
613   case J_JE_32:
614     if (size == 4) {
615       loc[-1] = 0x0f;
616       *loc = 0x84;
617     } else
618       *loc = 0x74;
619     break;
620   case J_JNE_32:
621     if (size == 4) {
622       loc[-1] = 0x0f;
623       *loc = 0x85;
624     } else
625       *loc = 0x75;
626     break;
627   case J_JG_32:
628     if (size == 4) {
629       loc[-1] = 0x0f;
630       *loc = 0x8f;
631     } else
632       *loc = 0x7f;
633     break;
634   case J_JGE_32:
635     if (size == 4) {
636       loc[-1] = 0x0f;
637       *loc = 0x8d;
638     } else
639       *loc = 0x7d;
640     break;
641   case J_JB_32:
642     if (size == 4) {
643       loc[-1] = 0x0f;
644       *loc = 0x82;
645     } else
646       *loc = 0x72;
647     break;
648   case J_JBE_32:
649     if (size == 4) {
650       loc[-1] = 0x0f;
651       *loc = 0x86;
652     } else
653       *loc = 0x76;
654     break;
655   case J_JL_32:
656     if (size == 4) {
657       loc[-1] = 0x0f;
658       *loc = 0x8c;
659     } else
660       *loc = 0x7c;
661     break;
662   case J_JLE_32:
663     if (size == 4) {
664       loc[-1] = 0x0f;
665       *loc = 0x8e;
666     } else
667       *loc = 0x7e;
668     break;
669   case J_JA_32:
670     if (size == 4) {
671       loc[-1] = 0x0f;
672       *loc = 0x87;
673     } else
674       *loc = 0x77;
675     break;
676   case J_JAE_32:
677     if (size == 4) {
678       loc[-1] = 0x0f;
679       *loc = 0x83;
680     } else
681       *loc = 0x73;
682     break;
683   case J_UNKNOWN:
684     llvm_unreachable("Unknown Jump Relocation");
685   }
686 }
687 
688 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
689   switch (type) {
690   case R_X86_64_8:
691   case R_X86_64_PC8:
692     return SignExtend64<8>(*buf);
693   case R_X86_64_16:
694   case R_X86_64_PC16:
695     return SignExtend64<16>(read16le(buf));
696   case R_X86_64_32:
697   case R_X86_64_32S:
698   case R_X86_64_TPOFF32:
699   case R_X86_64_GOT32:
700   case R_X86_64_GOTPC32:
701   case R_X86_64_GOTPC32_TLSDESC:
702   case R_X86_64_GOTPCREL:
703   case R_X86_64_GOTPCRELX:
704   case R_X86_64_REX_GOTPCRELX:
705   case R_X86_64_PC32:
706   case R_X86_64_GOTTPOFF:
707   case R_X86_64_PLT32:
708   case R_X86_64_TLSGD:
709   case R_X86_64_TLSLD:
710   case R_X86_64_DTPOFF32:
711   case R_X86_64_SIZE32:
712     return SignExtend64<32>(read32le(buf));
713   case R_X86_64_64:
714   case R_X86_64_TPOFF64:
715   case R_X86_64_DTPOFF64:
716   case R_X86_64_DTPMOD64:
717   case R_X86_64_PC64:
718   case R_X86_64_SIZE64:
719   case R_X86_64_GLOB_DAT:
720   case R_X86_64_GOT64:
721   case R_X86_64_GOTOFF64:
722   case R_X86_64_GOTPC64:
723   case R_X86_64_PLTOFF64:
724   case R_X86_64_IRELATIVE:
725   case R_X86_64_RELATIVE:
726     return read64le(buf);
727   case R_X86_64_TLSDESC:
728     return read64le(buf + 8);
729   case R_X86_64_JUMP_SLOT:
730   case R_X86_64_NONE:
731     // These relocations are defined as not having an implicit addend.
732     return 0;
733   default:
734     internalLinkerError(getErrorLocation(buf),
735                         "cannot read addend for relocation " + toString(type));
736     return 0;
737   }
738 }
739 
740 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
741   switch (rel.type) {
742   case R_X86_64_8:
743     checkIntUInt(loc, val, 8, rel);
744     *loc = val;
745     break;
746   case R_X86_64_PC8:
747     checkInt(loc, val, 8, rel);
748     *loc = val;
749     break;
750   case R_X86_64_16:
751     checkIntUInt(loc, val, 16, rel);
752     write16le(loc, val);
753     break;
754   case R_X86_64_PC16:
755     checkInt(loc, val, 16, rel);
756     write16le(loc, val);
757     break;
758   case R_X86_64_32:
759     checkUInt(loc, val, 32, rel);
760     write32le(loc, val);
761     break;
762   case R_X86_64_32S:
763   case R_X86_64_TPOFF32:
764   case R_X86_64_GOT32:
765   case R_X86_64_GOTPC32:
766   case R_X86_64_GOTPC32_TLSDESC:
767   case R_X86_64_GOTPCREL:
768   case R_X86_64_GOTPCRELX:
769   case R_X86_64_REX_GOTPCRELX:
770   case R_X86_64_PC32:
771   case R_X86_64_GOTTPOFF:
772   case R_X86_64_PLT32:
773   case R_X86_64_TLSGD:
774   case R_X86_64_TLSLD:
775   case R_X86_64_DTPOFF32:
776   case R_X86_64_SIZE32:
777     checkInt(loc, val, 32, rel);
778     write32le(loc, val);
779     break;
780   case R_X86_64_64:
781   case R_X86_64_DTPOFF64:
782   case R_X86_64_PC64:
783   case R_X86_64_SIZE64:
784   case R_X86_64_GOT64:
785   case R_X86_64_GOTOFF64:
786   case R_X86_64_GOTPC64:
787   case R_X86_64_PLTOFF64:
788     write64le(loc, val);
789     break;
790   case R_X86_64_TLSDESC:
791     // The addend is stored in the second 64-bit word.
792     write64le(loc + 8, val);
793     break;
794   default:
795     llvm_unreachable("unknown relocation");
796   }
797 }
798 
799 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
800                                 const uint8_t *loc) const {
801   // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
802   // with addend != -4. Such an instruction does not load the full GOT entry, so
803   // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
804   // (addend=0) loads the high 32 bits of the GOT entry.
805   if (!config->relax || addend != -4 ||
806       (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
807     return R_GOT_PC;
808   const uint8_t op = loc[-2];
809   const uint8_t modRm = loc[-1];
810 
811   // FIXME: When PIC is disabled and foo is defined locally in the
812   // lower 32 bit address space, memory operand in mov can be converted into
813   // immediate operand. Otherwise, mov must be changed to lea. We support only
814   // latter relaxation at this moment.
815   if (op == 0x8b)
816     return R_RELAX_GOT_PC;
817 
818   // Relax call and jmp.
819   if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
820     return R_RELAX_GOT_PC;
821 
822   // We don't support test/binop instructions without a REX prefix.
823   if (type == R_X86_64_GOTPCRELX)
824     return R_GOT_PC;
825 
826   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
827   // If PIC then no relaxation is available.
828   return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
829 }
830 
831 // A subset of relaxations can only be applied for no-PIC. This method
832 // handles such relaxations. Instructions encoding information was taken from:
833 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
834 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
835 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
836 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
837                           uint8_t modRm) {
838   const uint8_t rex = loc[-3];
839   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
840   if (op == 0x85) {
841     // See "TEST-Logical Compare" (4-428 Vol. 2B),
842     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
843 
844     // ModR/M byte has form XX YYY ZZZ, where
845     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
846     // XX has different meanings:
847     // 00: The operand's memory address is in reg1.
848     // 01: The operand's memory address is reg1 + a byte-sized displacement.
849     // 10: The operand's memory address is reg1 + a word-sized displacement.
850     // 11: The operand is reg1 itself.
851     // If an instruction requires only one operand, the unused reg2 field
852     // holds extra opcode bits rather than a register code
853     // 0xC0 == 11 000 000 binary.
854     // 0x38 == 00 111 000 binary.
855     // We transfer reg2 to reg1 here as operand.
856     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
857     loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
858 
859     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
860     // See "TEST-Logical Compare" (4-428 Vol. 2B).
861     loc[-2] = 0xf7;
862 
863     // Move R bit to the B bit in REX byte.
864     // REX byte is encoded as 0100WRXB, where
865     // 0100 is 4bit fixed pattern.
866     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
867     //   default operand size is used (which is 32-bit for most but not all
868     //   instructions).
869     // REX.R This 1-bit value is an extension to the MODRM.reg field.
870     // REX.X This 1-bit value is an extension to the SIB.index field.
871     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
872     // SIB.base field.
873     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
874     loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
875     write32le(loc, val);
876     return;
877   }
878 
879   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
880   // or xor operations.
881 
882   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
883   // Logic is close to one for test instruction above, but we also
884   // write opcode extension here, see below for details.
885   loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
886 
887   // Primary opcode is 0x81, opcode extension is one of:
888   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
889   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
890   // This value was wrote to MODRM.reg in a line above.
891   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
892   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
893   // descriptions about each operation.
894   loc[-2] = 0x81;
895   loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
896   write32le(loc, val);
897 }
898 
899 void X86_64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
900   checkInt(loc, val, 32, rel);
901   const uint8_t op = loc[-2];
902   const uint8_t modRm = loc[-1];
903 
904   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
905   if (op == 0x8b) {
906     loc[-2] = 0x8d;
907     write32le(loc, val);
908     return;
909   }
910 
911   if (op != 0xff) {
912     // We are relaxing a rip relative to an absolute, so compensate
913     // for the old -4 addend.
914     assert(!config->isPic);
915     relaxGotNoPic(loc, val + 4, op, modRm);
916     return;
917   }
918 
919   // Convert call/jmp instructions.
920   if (modRm == 0x15) {
921     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
922     // Instead we convert to "addr32 call foo" where addr32 is an instruction
923     // prefix. That makes result expression to be a single instruction.
924     loc[-2] = 0x67; // addr32 prefix
925     loc[-1] = 0xe8; // call
926     write32le(loc, val);
927     return;
928   }
929 
930   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
931   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
932   assert(modRm == 0x25);
933   loc[-2] = 0xe9; // jmp
934   loc[3] = 0x90;  // nop
935   write32le(loc - 1, val + 1);
936 }
937 
938 // A split-stack prologue starts by checking the amount of stack remaining
939 // in one of two ways:
940 // A) Comparing of the stack pointer to a field in the tcb.
941 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
942 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
943                                               uint8_t stOther) const {
944   if (!config->is64) {
945     error("Target doesn't support split stacks.");
946     return false;
947   }
948 
949   if (loc + 8 >= end)
950     return false;
951 
952   // Replace "cmp %fs:0x70,%rsp" and subsequent branch
953   // with "stc, nopl 0x0(%rax,%rax,1)"
954   if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
955     memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
956     return true;
957   }
958 
959   // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
960   // be r10 or r11. The lea instruction feeds a subsequent compare which checks
961   // if there is X available stack space. Making X larger effectively reserves
962   // that much additional space. The stack grows downward so subtract the value.
963   if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
964       memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
965     // The offset bytes are encoded four bytes after the start of the
966     // instruction.
967     write32le(loc + 4, read32le(loc + 4) - 0x4000);
968     return true;
969   }
970   return false;
971 }
972 
973 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
974 // entries containing endbr64 instructions. A PLT entry will be split into two
975 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
976 namespace {
977 class IntelIBT : public X86_64 {
978 public:
979   IntelIBT();
980   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
981   void writePlt(uint8_t *buf, const Symbol &sym,
982                 uint64_t pltEntryAddr) const override;
983   void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
984 
985   static const unsigned IBTPltHeaderSize = 16;
986 };
987 } // namespace
988 
989 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
990 
991 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
992   uint64_t va =
993       in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize;
994   write64le(buf, va);
995 }
996 
997 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
998                         uint64_t pltEntryAddr) const {
999   const uint8_t Inst[] = {
1000       0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
1001       0xff, 0x25, 0,    0,    0, 0, // jmpq *got(%rip)
1002       0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
1003   };
1004   memcpy(buf, Inst, sizeof(Inst));
1005   write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
1006 }
1007 
1008 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
1009   writePltHeader(buf);
1010   buf += IBTPltHeaderSize;
1011 
1012   const uint8_t inst[] = {
1013       0xf3, 0x0f, 0x1e, 0xfa,    // endbr64
1014       0x68, 0,    0,    0,    0, // pushq <relocation index>
1015       0xe9, 0,    0,    0,    0, // jmpq plt[0]
1016       0x66, 0x90,                // nop
1017   };
1018 
1019   for (size_t i = 0; i < numEntries; ++i) {
1020     memcpy(buf, inst, sizeof(inst));
1021     write32le(buf + 5, i);
1022     write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1023     buf += sizeof(inst);
1024   }
1025 }
1026 
1027 // These nonstandard PLT entries are to migtigate Spectre v2 security
1028 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1029 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1030 // entries, we use a CALL followed by MOV and RET to do the same thing as an
1031 // indirect jump. That instruction sequence is so-called "retpoline".
1032 //
1033 // We have two types of retpoline PLTs as a size optimization. If `-z now`
1034 // is specified, all dynamic symbols are resolved at load-time. Thus, when
1035 // that option is given, we can omit code for symbol lazy resolution.
1036 namespace {
1037 class Retpoline : public X86_64 {
1038 public:
1039   Retpoline();
1040   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1041   void writePltHeader(uint8_t *buf) const override;
1042   void writePlt(uint8_t *buf, const Symbol &sym,
1043                 uint64_t pltEntryAddr) const override;
1044 };
1045 
1046 class RetpolineZNow : public X86_64 {
1047 public:
1048   RetpolineZNow();
1049   void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1050   void writePltHeader(uint8_t *buf) const override;
1051   void writePlt(uint8_t *buf, const Symbol &sym,
1052                 uint64_t pltEntryAddr) const override;
1053 };
1054 } // namespace
1055 
1056 Retpoline::Retpoline() {
1057   pltHeaderSize = 48;
1058   pltEntrySize = 32;
1059   ipltEntrySize = 32;
1060 }
1061 
1062 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1063   write64le(buf, s.getPltVA() + 17);
1064 }
1065 
1066 void Retpoline::writePltHeader(uint8_t *buf) const {
1067   const uint8_t insn[] = {
1068       0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
1069       0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
1070       0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
1071       0xf3, 0x90,                               // 12: loop: pause
1072       0x0f, 0xae, 0xe8,                         // 14:   lfence
1073       0xeb, 0xf9,                               // 17:   jmp loop
1074       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
1075       0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
1076       0xc3,                                     // 24:   ret
1077       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
1078       0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
1079   };
1080   memcpy(buf, insn, sizeof(insn));
1081 
1082   uint64_t gotPlt = in.gotPlt->getVA();
1083   uint64_t plt = in.plt->getVA();
1084   write32le(buf + 2, gotPlt - plt - 6 + 8);
1085   write32le(buf + 9, gotPlt - plt - 13 + 16);
1086 }
1087 
1088 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1089                          uint64_t pltEntryAddr) const {
1090   const uint8_t insn[] = {
1091       0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
1092       0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
1093       0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
1094       0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
1095       0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
1096       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1097   };
1098   memcpy(buf, insn, sizeof(insn));
1099 
1100   uint64_t off = pltEntryAddr - in.plt->getVA();
1101 
1102   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1103   write32le(buf + 8, -off - 12 + 32);
1104   write32le(buf + 13, -off - 17 + 18);
1105   write32le(buf + 18, sym.pltIndex);
1106   write32le(buf + 23, -off - 27);
1107 }
1108 
1109 RetpolineZNow::RetpolineZNow() {
1110   pltHeaderSize = 32;
1111   pltEntrySize = 16;
1112   ipltEntrySize = 16;
1113 }
1114 
1115 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1116   const uint8_t insn[] = {
1117       0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
1118       0xf3, 0x90,                   // 5:  loop: pause
1119       0x0f, 0xae, 0xe8,             // 7:    lfence
1120       0xeb, 0xf9,                   // a:    jmp loop
1121       0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
1122       0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
1123       0xc3,                         // 14:   ret
1124       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
1125       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
1126       0xcc,                         // 1f:   int3; padding
1127   };
1128   memcpy(buf, insn, sizeof(insn));
1129 }
1130 
1131 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1132                              uint64_t pltEntryAddr) const {
1133   const uint8_t insn[] = {
1134       0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1135       0xe9, 0,    0,    0,    0,       // jmp plt+0
1136       0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
1137   };
1138   memcpy(buf, insn, sizeof(insn));
1139 
1140   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1141   write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1142 }
1143 
1144 static TargetInfo *getTargetInfo() {
1145   if (config->zRetpolineplt) {
1146     if (config->zNow) {
1147       static RetpolineZNow t;
1148       return &t;
1149     }
1150     static Retpoline t;
1151     return &t;
1152   }
1153 
1154   if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1155     static IntelIBT t;
1156     return &t;
1157   }
1158 
1159   static X86_64 t;
1160   return &t;
1161 }
1162 
1163 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
1164