xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/X86_64.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "OutputSections.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/Support/Endian.h"
16 
17 using namespace llvm;
18 using namespace llvm::object;
19 using namespace llvm::support::endian;
20 using namespace llvm::ELF;
21 using namespace lld;
22 using namespace lld::elf;
23 
24 namespace {
25 class X86_64 : public TargetInfo {
26 public:
27   X86_64();
28   int getTlsGdRelaxSkip(RelType type) const override;
29   RelExpr getRelExpr(RelType type, const Symbol &s,
30                      const uint8_t *loc) const override;
31   RelType getDynRel(RelType type) const override;
32   void writeGotPltHeader(uint8_t *buf) const override;
33   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
34   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
35   void writePltHeader(uint8_t *buf) const override;
36   void writePlt(uint8_t *buf, const Symbol &sym,
37                 uint64_t pltEntryAddr) const override;
38   void relocate(uint8_t *loc, const Relocation &rel,
39                 uint64_t val) const override;
40   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
41   void applyJumpInstrMod(uint8_t *loc, JumpModType type,
42                          unsigned size) const override;
43 
44   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
45                           const uint8_t *loc) const override;
46   void relaxGot(uint8_t *loc, const Relocation &rel,
47                 uint64_t val) const override;
48   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
49                       uint64_t val) const override;
50   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
51                       uint64_t val) const override;
52   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
53                       uint64_t val) const override;
54   void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
55                       uint64_t val) const override;
56   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
57                                         uint8_t stOther) const override;
58   bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
59                              InputSection *nextIS) const override;
60 };
61 } // namespace
62 
63 // This is vector of NOP instructions of sizes from 1 to 8 bytes.  The
64 // appropriately sized instructions are used to fill the gaps between sections
65 // which are executed during fall through.
66 static const std::vector<std::vector<uint8_t>> nopInstructions = {
67     {0x90},
68     {0x66, 0x90},
69     {0x0f, 0x1f, 0x00},
70     {0x0f, 0x1f, 0x40, 0x00},
71     {0x0f, 0x1f, 0x44, 0x00, 0x00},
72     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
73     {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
74     {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
75     {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
76 
77 X86_64::X86_64() {
78   copyRel = R_X86_64_COPY;
79   gotRel = R_X86_64_GLOB_DAT;
80   pltRel = R_X86_64_JUMP_SLOT;
81   relativeRel = R_X86_64_RELATIVE;
82   iRelativeRel = R_X86_64_IRELATIVE;
83   symbolicRel = R_X86_64_64;
84   tlsDescRel = R_X86_64_TLSDESC;
85   tlsGotRel = R_X86_64_TPOFF64;
86   tlsModuleIndexRel = R_X86_64_DTPMOD64;
87   tlsOffsetRel = R_X86_64_DTPOFF64;
88   gotBaseSymInGotPlt = true;
89   gotEntrySize = 8;
90   pltHeaderSize = 16;
91   pltEntrySize = 16;
92   ipltEntrySize = 16;
93   trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
94   nopInstrs = nopInstructions;
95 
96   // Align to the large page size (known as a superpage or huge page).
97   // FreeBSD automatically promotes large, superpage-aligned allocations.
98   defaultImageBase = 0x200000;
99 }
100 
101 int X86_64::getTlsGdRelaxSkip(RelType type) const {
102   // TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
103   return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1
104                                                                            : 2;
105 }
106 
107 // Opcodes for the different X86_64 jmp instructions.
108 enum JmpInsnOpcode : uint32_t {
109   J_JMP_32,
110   J_JNE_32,
111   J_JE_32,
112   J_JG_32,
113   J_JGE_32,
114   J_JB_32,
115   J_JBE_32,
116   J_JL_32,
117   J_JLE_32,
118   J_JA_32,
119   J_JAE_32,
120   J_UNKNOWN,
121 };
122 
123 // Given the first (optional) and second byte of the insn's opcode, this
124 // returns the corresponding enum value.
125 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
126                                     const uint8_t *second) {
127   if (*second == 0xe9)
128     return J_JMP_32;
129 
130   if (first == nullptr)
131     return J_UNKNOWN;
132 
133   if (*first == 0x0f) {
134     switch (*second) {
135     case 0x84:
136       return J_JE_32;
137     case 0x85:
138       return J_JNE_32;
139     case 0x8f:
140       return J_JG_32;
141     case 0x8d:
142       return J_JGE_32;
143     case 0x82:
144       return J_JB_32;
145     case 0x86:
146       return J_JBE_32;
147     case 0x8c:
148       return J_JL_32;
149     case 0x8e:
150       return J_JLE_32;
151     case 0x87:
152       return J_JA_32;
153     case 0x83:
154       return J_JAE_32;
155     }
156   }
157   return J_UNKNOWN;
158 }
159 
160 // Return the relocation index for input section IS with a specific Offset.
161 // Returns the maximum size of the vector if no such relocation is found.
162 static unsigned getRelocationWithOffset(const InputSection &is,
163                                         uint64_t offset) {
164   unsigned size = is.relocations.size();
165   for (unsigned i = size - 1; i + 1 > 0; --i) {
166     if (is.relocations[i].offset == offset && is.relocations[i].expr != R_NONE)
167       return i;
168   }
169   return size;
170 }
171 
172 // Returns true if R corresponds to a relocation used for a jump instruction.
173 // TODO: Once special relocations for relaxable jump instructions are available,
174 // this should be modified to use those relocations.
175 static bool isRelocationForJmpInsn(Relocation &R) {
176   return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
177          R.type == R_X86_64_PC8;
178 }
179 
180 // Return true if Relocation R points to the first instruction in the
181 // next section.
182 // TODO: Delete this once psABI reserves a new relocation type for fall thru
183 // jumps.
184 static bool isFallThruRelocation(InputSection &is, InputFile *file,
185                                  InputSection *nextIS, Relocation &r) {
186   if (!isRelocationForJmpInsn(r))
187     return false;
188 
189   uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
190   uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
191       file, r.type, r.addend, addrLoc, *r.sym, r.expr);
192 
193   // If this jmp is a fall thru, the target offset is the beginning of the
194   // next section.
195   uint64_t nextSectionOffset =
196       nextIS->getOutputSection()->addr + nextIS->outSecOff;
197   return (addrLoc + 4 + targetOffset) == nextSectionOffset;
198 }
199 
200 // Return the jmp instruction opcode that is the inverse of the given
201 // opcode.  For example, JE inverted is JNE.
202 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
203   switch (opcode) {
204   case J_JE_32:
205     return J_JNE_32;
206   case J_JNE_32:
207     return J_JE_32;
208   case J_JG_32:
209     return J_JLE_32;
210   case J_JGE_32:
211     return J_JL_32;
212   case J_JB_32:
213     return J_JAE_32;
214   case J_JBE_32:
215     return J_JA_32;
216   case J_JL_32:
217     return J_JGE_32;
218   case J_JLE_32:
219     return J_JG_32;
220   case J_JA_32:
221     return J_JBE_32;
222   case J_JAE_32:
223     return J_JB_32;
224   default:
225     return J_UNKNOWN;
226   }
227 }
228 
229 // Deletes direct jump instruction in input sections that jumps to the
230 // following section as it is not required.  If there are two consecutive jump
231 // instructions, it checks if they can be flipped and one can be deleted.
232 // For example:
233 // .section .text
234 // a.BB.foo:
235 //    ...
236 //    10: jne aa.BB.foo
237 //    16: jmp bar
238 // aa.BB.foo:
239 //    ...
240 //
241 // can be converted to:
242 // a.BB.foo:
243 //   ...
244 //   10: je bar  #jne flipped to je and the jmp is deleted.
245 // aa.BB.foo:
246 //   ...
247 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
248                                    InputSection *nextIS) const {
249   const unsigned sizeOfDirectJmpInsn = 5;
250 
251   if (nextIS == nullptr)
252     return false;
253 
254   if (is.getSize() < sizeOfDirectJmpInsn)
255     return false;
256 
257   // If this jmp insn can be removed, it is the last insn and the
258   // relocation is 4 bytes before the end.
259   unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
260   if (rIndex == is.relocations.size())
261     return false;
262 
263   Relocation &r = is.relocations[rIndex];
264 
265   // Check if the relocation corresponds to a direct jmp.
266   const uint8_t *secContents = is.rawData.data();
267   // If it is not a direct jmp instruction, there is nothing to do here.
268   if (*(secContents + r.offset - 1) != 0xe9)
269     return false;
270 
271   if (isFallThruRelocation(is, file, nextIS, r)) {
272     // This is a fall thru and can be deleted.
273     r.expr = R_NONE;
274     r.offset = 0;
275     is.drop_back(sizeOfDirectJmpInsn);
276     is.nopFiller = true;
277     return true;
278   }
279 
280   // Now, check if flip and delete is possible.
281   const unsigned sizeOfJmpCCInsn = 6;
282   // To flip, there must be at least one JmpCC and one direct jmp.
283   if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
284     return false;
285 
286   unsigned rbIndex =
287       getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
288   if (rbIndex == is.relocations.size())
289     return false;
290 
291   Relocation &rB = is.relocations[rbIndex];
292 
293   const uint8_t *jmpInsnB = secContents + rB.offset - 1;
294   JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
295   if (jmpOpcodeB == J_UNKNOWN)
296     return false;
297 
298   if (!isFallThruRelocation(is, file, nextIS, rB))
299     return false;
300 
301   // jmpCC jumps to the fall thru block, the branch can be flipped and the
302   // jmp can be deleted.
303   JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
304   if (jInvert == J_UNKNOWN)
305     return false;
306   is.jumpInstrMod = make<JumpInstrMod>();
307   *is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
308   // Move R's values to rB except the offset.
309   rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
310   // Cancel R
311   r.expr = R_NONE;
312   r.offset = 0;
313   is.drop_back(sizeOfDirectJmpInsn);
314   is.nopFiller = true;
315   return true;
316 }
317 
318 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
319                            const uint8_t *loc) const {
320   if (type == R_X86_64_GOTTPOFF)
321     config->hasTlsIe = true;
322 
323   switch (type) {
324   case R_X86_64_8:
325   case R_X86_64_16:
326   case R_X86_64_32:
327   case R_X86_64_32S:
328   case R_X86_64_64:
329     return R_ABS;
330   case R_X86_64_DTPOFF32:
331   case R_X86_64_DTPOFF64:
332     return R_DTPREL;
333   case R_X86_64_TPOFF32:
334     return R_TPREL;
335   case R_X86_64_TLSDESC_CALL:
336     return R_TLSDESC_CALL;
337   case R_X86_64_TLSLD:
338     return R_TLSLD_PC;
339   case R_X86_64_TLSGD:
340     return R_TLSGD_PC;
341   case R_X86_64_SIZE32:
342   case R_X86_64_SIZE64:
343     return R_SIZE;
344   case R_X86_64_PLT32:
345     return R_PLT_PC;
346   case R_X86_64_PC8:
347   case R_X86_64_PC16:
348   case R_X86_64_PC32:
349   case R_X86_64_PC64:
350     return R_PC;
351   case R_X86_64_GOT32:
352   case R_X86_64_GOT64:
353     return R_GOTPLT;
354   case R_X86_64_GOTPC32_TLSDESC:
355     return R_TLSDESC_PC;
356   case R_X86_64_GOTPCREL:
357   case R_X86_64_GOTPCRELX:
358   case R_X86_64_REX_GOTPCRELX:
359   case R_X86_64_GOTTPOFF:
360     return R_GOT_PC;
361   case R_X86_64_GOTOFF64:
362     return R_GOTPLTREL;
363   case R_X86_64_PLTOFF64:
364     return R_PLT_GOTPLT;
365   case R_X86_64_GOTPC32:
366   case R_X86_64_GOTPC64:
367     return R_GOTPLTONLY_PC;
368   case R_X86_64_NONE:
369     return R_NONE;
370   default:
371     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
372           ") against symbol " + toString(s));
373     return R_NONE;
374   }
375 }
376 
377 void X86_64::writeGotPltHeader(uint8_t *buf) const {
378   // The first entry holds the value of _DYNAMIC. It is not clear why that is
379   // required, but it is documented in the psabi and the glibc dynamic linker
380   // seems to use it (note that this is relevant for linking ld.so, not any
381   // other program).
382   write64le(buf, mainPart->dynamic->getVA());
383 }
384 
385 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
386   // See comments in X86::writeGotPlt.
387   write64le(buf, s.getPltVA() + 6);
388 }
389 
390 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
391   // An x86 entry is the address of the ifunc resolver function (for -z rel).
392   if (config->writeAddends)
393     write64le(buf, s.getVA());
394 }
395 
396 void X86_64::writePltHeader(uint8_t *buf) const {
397   const uint8_t pltData[] = {
398       0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
399       0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
400       0x0f, 0x1f, 0x40, 0x00, // nop
401   };
402   memcpy(buf, pltData, sizeof(pltData));
403   uint64_t gotPlt = in.gotPlt->getVA();
404   uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
405   write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
406   write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
407 }
408 
409 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
410                       uint64_t pltEntryAddr) const {
411   const uint8_t inst[] = {
412       0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
413       0x68, 0, 0, 0, 0,       // pushq <relocation index>
414       0xe9, 0, 0, 0, 0,       // jmpq plt[0]
415   };
416   memcpy(buf, inst, sizeof(inst));
417 
418   write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
419   write32le(buf + 7, sym.getPltIdx());
420   write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
421 }
422 
423 RelType X86_64::getDynRel(RelType type) const {
424   if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
425       type == R_X86_64_SIZE64)
426     return type;
427   return R_X86_64_NONE;
428 }
429 
430 void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
431                             uint64_t val) const {
432   if (rel.type == R_X86_64_TLSGD) {
433     // Convert
434     //   .byte 0x66
435     //   leaq x@tlsgd(%rip), %rdi
436     //   .word 0x6666
437     //   rex64
438     //   call __tls_get_addr@plt
439     // to the following two instructions.
440     const uint8_t inst[] = {
441         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
442         0x00, 0x00,                            // mov %fs:0x0,%rax
443         0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
444     };
445     memcpy(loc - 4, inst, sizeof(inst));
446 
447     // The original code used a pc relative relocation and so we have to
448     // compensate for the -4 in had in the addend.
449     write32le(loc + 8, val + 4);
450   } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
451     // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
452     if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
453         (loc[-1] & 0xc7) != 0x05) {
454       errorOrWarn(getErrorLocation(loc - 3) +
455                   "R_X86_64_GOTPC32_TLSDESC must be used "
456                   "in leaq x@tlsdesc(%rip), %REG");
457       return;
458     }
459     loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
460     loc[-2] = 0xc7;
461     loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
462     write32le(loc, val + 4);
463   } else {
464     // Convert call *x@tlsdesc(%REG) to xchg ax, ax.
465     assert(rel.type == R_X86_64_TLSDESC_CALL);
466     loc[0] = 0x66;
467     loc[1] = 0x90;
468   }
469 }
470 
471 void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
472                             uint64_t val) const {
473   if (rel.type == R_X86_64_TLSGD) {
474     // Convert
475     //   .byte 0x66
476     //   leaq x@tlsgd(%rip), %rdi
477     //   .word 0x6666
478     //   rex64
479     //   call __tls_get_addr@plt
480     // to the following two instructions.
481     const uint8_t inst[] = {
482         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
483         0x00, 0x00,                            // mov %fs:0x0,%rax
484         0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
485     };
486     memcpy(loc - 4, inst, sizeof(inst));
487 
488     // Both code sequences are PC relatives, but since we are moving the
489     // constant forward by 8 bytes we have to subtract the value by 8.
490     write32le(loc + 8, val - 8);
491   } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
492     // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
493     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
494     if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
495         (loc[-1] & 0xc7) != 0x05) {
496       errorOrWarn(getErrorLocation(loc - 3) +
497                   "R_X86_64_GOTPC32_TLSDESC must be used "
498                   "in leaq x@tlsdesc(%rip), %REG");
499       return;
500     }
501     loc[-2] = 0x8b;
502     write32le(loc, val);
503   } else {
504     // Convert call *x@tlsdesc(%rax) to xchg ax, ax.
505     assert(rel.type == R_X86_64_TLSDESC_CALL);
506     loc[0] = 0x66;
507     loc[1] = 0x90;
508   }
509 }
510 
511 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
512 // R_X86_64_TPOFF32 so that it does not use GOT.
513 void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &,
514                             uint64_t val) const {
515   uint8_t *inst = loc - 3;
516   uint8_t reg = loc[-1] >> 3;
517   uint8_t *regSlot = loc - 1;
518 
519   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
520   // because LEA with these registers needs 4 bytes to encode and thus
521   // wouldn't fit the space.
522 
523   if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
524     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
525     memcpy(inst, "\x48\x81\xc4", 3);
526   } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
527     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
528     memcpy(inst, "\x49\x81\xc4", 3);
529   } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
530     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
531     memcpy(inst, "\x4d\x8d", 2);
532     *regSlot = 0x80 | (reg << 3) | reg;
533   } else if (memcmp(inst, "\x48\x03", 2) == 0) {
534     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
535     memcpy(inst, "\x48\x8d", 2);
536     *regSlot = 0x80 | (reg << 3) | reg;
537   } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
538     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
539     memcpy(inst, "\x49\xc7", 2);
540     *regSlot = 0xc0 | reg;
541   } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
542     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
543     memcpy(inst, "\x48\xc7", 2);
544     *regSlot = 0xc0 | reg;
545   } else {
546     error(getErrorLocation(loc - 3) +
547           "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
548   }
549 
550   // The original code used a PC relative relocation.
551   // Need to compensate for the -4 it had in the addend.
552   write32le(loc, val + 4);
553 }
554 
555 void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
556                             uint64_t val) const {
557   if (rel.type == R_X86_64_DTPOFF64) {
558     write64le(loc, val);
559     return;
560   }
561   if (rel.type == R_X86_64_DTPOFF32) {
562     write32le(loc, val);
563     return;
564   }
565 
566   const uint8_t inst[] = {
567       0x66, 0x66,                                           // .word 0x6666
568       0x66,                                                 // .byte 0x66
569       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
570   };
571 
572   if (loc[4] == 0xe8) {
573     // Convert
574     //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
575     //   callq __tls_get_addr@PLT             # e8 <disp32>
576     //   leaq bar@dtpoff(%rax), %rcx
577     // to
578     //   .word 0x6666
579     //   .byte 0x66
580     //   mov %fs:0,%rax
581     //   leaq bar@tpoff(%rax), %rcx
582     memcpy(loc - 3, inst, sizeof(inst));
583     return;
584   }
585 
586   if (loc[4] == 0xff && loc[5] == 0x15) {
587     // Convert
588     //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
589     //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
590     // to
591     //   .long  0x66666666
592     //   movq   %fs:0,%rax
593     // See "Table 11.9: LD -> LE Code Transition (LP64)" in
594     // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
595     loc[-3] = 0x66;
596     memcpy(loc - 2, inst, sizeof(inst));
597     return;
598   }
599 
600   error(getErrorLocation(loc - 3) +
601         "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
602 }
603 
604 // A JumpInstrMod at a specific offset indicates that the jump instruction
605 // opcode at that offset must be modified.  This is specifically used to relax
606 // jump instructions with basic block sections.  This function looks at the
607 // JumpMod and effects the change.
608 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
609                                unsigned size) const {
610   switch (type) {
611   case J_JMP_32:
612     if (size == 4)
613       *loc = 0xe9;
614     else
615       *loc = 0xeb;
616     break;
617   case J_JE_32:
618     if (size == 4) {
619       loc[-1] = 0x0f;
620       *loc = 0x84;
621     } else
622       *loc = 0x74;
623     break;
624   case J_JNE_32:
625     if (size == 4) {
626       loc[-1] = 0x0f;
627       *loc = 0x85;
628     } else
629       *loc = 0x75;
630     break;
631   case J_JG_32:
632     if (size == 4) {
633       loc[-1] = 0x0f;
634       *loc = 0x8f;
635     } else
636       *loc = 0x7f;
637     break;
638   case J_JGE_32:
639     if (size == 4) {
640       loc[-1] = 0x0f;
641       *loc = 0x8d;
642     } else
643       *loc = 0x7d;
644     break;
645   case J_JB_32:
646     if (size == 4) {
647       loc[-1] = 0x0f;
648       *loc = 0x82;
649     } else
650       *loc = 0x72;
651     break;
652   case J_JBE_32:
653     if (size == 4) {
654       loc[-1] = 0x0f;
655       *loc = 0x86;
656     } else
657       *loc = 0x76;
658     break;
659   case J_JL_32:
660     if (size == 4) {
661       loc[-1] = 0x0f;
662       *loc = 0x8c;
663     } else
664       *loc = 0x7c;
665     break;
666   case J_JLE_32:
667     if (size == 4) {
668       loc[-1] = 0x0f;
669       *loc = 0x8e;
670     } else
671       *loc = 0x7e;
672     break;
673   case J_JA_32:
674     if (size == 4) {
675       loc[-1] = 0x0f;
676       *loc = 0x87;
677     } else
678       *loc = 0x77;
679     break;
680   case J_JAE_32:
681     if (size == 4) {
682       loc[-1] = 0x0f;
683       *loc = 0x83;
684     } else
685       *loc = 0x73;
686     break;
687   case J_UNKNOWN:
688     llvm_unreachable("Unknown Jump Relocation");
689   }
690 }
691 
692 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
693   switch (type) {
694   case R_X86_64_8:
695   case R_X86_64_PC8:
696     return SignExtend64<8>(*buf);
697   case R_X86_64_16:
698   case R_X86_64_PC16:
699     return SignExtend64<16>(read16le(buf));
700   case R_X86_64_32:
701   case R_X86_64_32S:
702   case R_X86_64_TPOFF32:
703   case R_X86_64_GOT32:
704   case R_X86_64_GOTPC32:
705   case R_X86_64_GOTPC32_TLSDESC:
706   case R_X86_64_GOTPCREL:
707   case R_X86_64_GOTPCRELX:
708   case R_X86_64_REX_GOTPCRELX:
709   case R_X86_64_PC32:
710   case R_X86_64_GOTTPOFF:
711   case R_X86_64_PLT32:
712   case R_X86_64_TLSGD:
713   case R_X86_64_TLSLD:
714   case R_X86_64_DTPOFF32:
715   case R_X86_64_SIZE32:
716     return SignExtend64<32>(read32le(buf));
717   case R_X86_64_64:
718   case R_X86_64_TPOFF64:
719   case R_X86_64_DTPOFF64:
720   case R_X86_64_DTPMOD64:
721   case R_X86_64_PC64:
722   case R_X86_64_SIZE64:
723   case R_X86_64_GLOB_DAT:
724   case R_X86_64_GOT64:
725   case R_X86_64_GOTOFF64:
726   case R_X86_64_GOTPC64:
727   case R_X86_64_PLTOFF64:
728   case R_X86_64_IRELATIVE:
729   case R_X86_64_RELATIVE:
730     return read64le(buf);
731   case R_X86_64_TLSDESC:
732     return read64le(buf + 8);
733   case R_X86_64_JUMP_SLOT:
734   case R_X86_64_NONE:
735     // These relocations are defined as not having an implicit addend.
736     return 0;
737   default:
738     internalLinkerError(getErrorLocation(buf),
739                         "cannot read addend for relocation " + toString(type));
740     return 0;
741   }
742 }
743 
744 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
745   switch (rel.type) {
746   case R_X86_64_8:
747     checkIntUInt(loc, val, 8, rel);
748     *loc = val;
749     break;
750   case R_X86_64_PC8:
751     checkInt(loc, val, 8, rel);
752     *loc = val;
753     break;
754   case R_X86_64_16:
755     checkIntUInt(loc, val, 16, rel);
756     write16le(loc, val);
757     break;
758   case R_X86_64_PC16:
759     checkInt(loc, val, 16, rel);
760     write16le(loc, val);
761     break;
762   case R_X86_64_32:
763     checkUInt(loc, val, 32, rel);
764     write32le(loc, val);
765     break;
766   case R_X86_64_32S:
767   case R_X86_64_TPOFF32:
768   case R_X86_64_GOT32:
769   case R_X86_64_GOTPC32:
770   case R_X86_64_GOTPC32_TLSDESC:
771   case R_X86_64_GOTPCREL:
772   case R_X86_64_GOTPCRELX:
773   case R_X86_64_REX_GOTPCRELX:
774   case R_X86_64_PC32:
775   case R_X86_64_GOTTPOFF:
776   case R_X86_64_PLT32:
777   case R_X86_64_TLSGD:
778   case R_X86_64_TLSLD:
779   case R_X86_64_DTPOFF32:
780   case R_X86_64_SIZE32:
781     checkInt(loc, val, 32, rel);
782     write32le(loc, val);
783     break;
784   case R_X86_64_64:
785   case R_X86_64_DTPOFF64:
786   case R_X86_64_PC64:
787   case R_X86_64_SIZE64:
788   case R_X86_64_GOT64:
789   case R_X86_64_GOTOFF64:
790   case R_X86_64_GOTPC64:
791   case R_X86_64_PLTOFF64:
792     write64le(loc, val);
793     break;
794   case R_X86_64_TLSDESC:
795     // The addend is stored in the second 64-bit word.
796     write64le(loc + 8, val);
797     break;
798   default:
799     llvm_unreachable("unknown relocation");
800   }
801 }
802 
803 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
804                                 const uint8_t *loc) const {
805   // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
806   // with addend != -4. Such an instruction does not load the full GOT entry, so
807   // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
808   // (addend=0) loads the high 32 bits of the GOT entry.
809   if (!config->relax || addend != -4 ||
810       (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
811     return R_GOT_PC;
812   const uint8_t op = loc[-2];
813   const uint8_t modRm = loc[-1];
814 
815   // FIXME: When PIC is disabled and foo is defined locally in the
816   // lower 32 bit address space, memory operand in mov can be converted into
817   // immediate operand. Otherwise, mov must be changed to lea. We support only
818   // latter relaxation at this moment.
819   if (op == 0x8b)
820     return R_RELAX_GOT_PC;
821 
822   // Relax call and jmp.
823   if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
824     return R_RELAX_GOT_PC;
825 
826   // We don't support test/binop instructions without a REX prefix.
827   if (type == R_X86_64_GOTPCRELX)
828     return R_GOT_PC;
829 
830   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
831   // If PIC then no relaxation is available.
832   return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
833 }
834 
835 // A subset of relaxations can only be applied for no-PIC. This method
836 // handles such relaxations. Instructions encoding information was taken from:
837 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
838 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
839 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
840 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
841                           uint8_t modRm) {
842   const uint8_t rex = loc[-3];
843   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
844   if (op == 0x85) {
845     // See "TEST-Logical Compare" (4-428 Vol. 2B),
846     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
847 
848     // ModR/M byte has form XX YYY ZZZ, where
849     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
850     // XX has different meanings:
851     // 00: The operand's memory address is in reg1.
852     // 01: The operand's memory address is reg1 + a byte-sized displacement.
853     // 10: The operand's memory address is reg1 + a word-sized displacement.
854     // 11: The operand is reg1 itself.
855     // If an instruction requires only one operand, the unused reg2 field
856     // holds extra opcode bits rather than a register code
857     // 0xC0 == 11 000 000 binary.
858     // 0x38 == 00 111 000 binary.
859     // We transfer reg2 to reg1 here as operand.
860     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
861     loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
862 
863     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
864     // See "TEST-Logical Compare" (4-428 Vol. 2B).
865     loc[-2] = 0xf7;
866 
867     // Move R bit to the B bit in REX byte.
868     // REX byte is encoded as 0100WRXB, where
869     // 0100 is 4bit fixed pattern.
870     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
871     //   default operand size is used (which is 32-bit for most but not all
872     //   instructions).
873     // REX.R This 1-bit value is an extension to the MODRM.reg field.
874     // REX.X This 1-bit value is an extension to the SIB.index field.
875     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
876     // SIB.base field.
877     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
878     loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
879     write32le(loc, val);
880     return;
881   }
882 
883   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
884   // or xor operations.
885 
886   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
887   // Logic is close to one for test instruction above, but we also
888   // write opcode extension here, see below for details.
889   loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
890 
891   // Primary opcode is 0x81, opcode extension is one of:
892   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
893   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
894   // This value was wrote to MODRM.reg in a line above.
895   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
896   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
897   // descriptions about each operation.
898   loc[-2] = 0x81;
899   loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
900   write32le(loc, val);
901 }
902 
903 void X86_64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
904   checkInt(loc, val, 32, rel);
905   const uint8_t op = loc[-2];
906   const uint8_t modRm = loc[-1];
907 
908   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
909   if (op == 0x8b) {
910     loc[-2] = 0x8d;
911     write32le(loc, val);
912     return;
913   }
914 
915   if (op != 0xff) {
916     // We are relaxing a rip relative to an absolute, so compensate
917     // for the old -4 addend.
918     assert(!config->isPic);
919     relaxGotNoPic(loc, val + 4, op, modRm);
920     return;
921   }
922 
923   // Convert call/jmp instructions.
924   if (modRm == 0x15) {
925     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
926     // Instead we convert to "addr32 call foo" where addr32 is an instruction
927     // prefix. That makes result expression to be a single instruction.
928     loc[-2] = 0x67; // addr32 prefix
929     loc[-1] = 0xe8; // call
930     write32le(loc, val);
931     return;
932   }
933 
934   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
935   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
936   assert(modRm == 0x25);
937   loc[-2] = 0xe9; // jmp
938   loc[3] = 0x90;  // nop
939   write32le(loc - 1, val + 1);
940 }
941 
942 // A split-stack prologue starts by checking the amount of stack remaining
943 // in one of two ways:
944 // A) Comparing of the stack pointer to a field in the tcb.
945 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
946 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
947                                               uint8_t stOther) const {
948   if (!config->is64) {
949     error("target doesn't support split stacks");
950     return false;
951   }
952 
953   if (loc + 8 >= end)
954     return false;
955 
956   // Replace "cmp %fs:0x70,%rsp" and subsequent branch
957   // with "stc, nopl 0x0(%rax,%rax,1)"
958   if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
959     memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
960     return true;
961   }
962 
963   // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
964   // be r10 or r11. The lea instruction feeds a subsequent compare which checks
965   // if there is X available stack space. Making X larger effectively reserves
966   // that much additional space. The stack grows downward so subtract the value.
967   if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
968       memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
969     // The offset bytes are encoded four bytes after the start of the
970     // instruction.
971     write32le(loc + 4, read32le(loc + 4) - 0x4000);
972     return true;
973   }
974   return false;
975 }
976 
977 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
978 // entries containing endbr64 instructions. A PLT entry will be split into two
979 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
980 namespace {
981 class IntelIBT : public X86_64 {
982 public:
983   IntelIBT();
984   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
985   void writePlt(uint8_t *buf, const Symbol &sym,
986                 uint64_t pltEntryAddr) const override;
987   void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
988 
989   static const unsigned IBTPltHeaderSize = 16;
990 };
991 } // namespace
992 
993 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
994 
995 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
996   uint64_t va =
997       in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize;
998   write64le(buf, va);
999 }
1000 
1001 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
1002                         uint64_t pltEntryAddr) const {
1003   const uint8_t Inst[] = {
1004       0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
1005       0xff, 0x25, 0,    0,    0, 0, // jmpq *got(%rip)
1006       0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
1007   };
1008   memcpy(buf, Inst, sizeof(Inst));
1009   write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
1010 }
1011 
1012 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
1013   writePltHeader(buf);
1014   buf += IBTPltHeaderSize;
1015 
1016   const uint8_t inst[] = {
1017       0xf3, 0x0f, 0x1e, 0xfa,    // endbr64
1018       0x68, 0,    0,    0,    0, // pushq <relocation index>
1019       0xe9, 0,    0,    0,    0, // jmpq plt[0]
1020       0x66, 0x90,                // nop
1021   };
1022 
1023   for (size_t i = 0; i < numEntries; ++i) {
1024     memcpy(buf, inst, sizeof(inst));
1025     write32le(buf + 5, i);
1026     write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1027     buf += sizeof(inst);
1028   }
1029 }
1030 
1031 // These nonstandard PLT entries are to migtigate Spectre v2 security
1032 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1033 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1034 // entries, we use a CALL followed by MOV and RET to do the same thing as an
1035 // indirect jump. That instruction sequence is so-called "retpoline".
1036 //
1037 // We have two types of retpoline PLTs as a size optimization. If `-z now`
1038 // is specified, all dynamic symbols are resolved at load-time. Thus, when
1039 // that option is given, we can omit code for symbol lazy resolution.
1040 namespace {
1041 class Retpoline : public X86_64 {
1042 public:
1043   Retpoline();
1044   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1045   void writePltHeader(uint8_t *buf) const override;
1046   void writePlt(uint8_t *buf, const Symbol &sym,
1047                 uint64_t pltEntryAddr) const override;
1048 };
1049 
1050 class RetpolineZNow : public X86_64 {
1051 public:
1052   RetpolineZNow();
1053   void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1054   void writePltHeader(uint8_t *buf) const override;
1055   void writePlt(uint8_t *buf, const Symbol &sym,
1056                 uint64_t pltEntryAddr) const override;
1057 };
1058 } // namespace
1059 
1060 Retpoline::Retpoline() {
1061   pltHeaderSize = 48;
1062   pltEntrySize = 32;
1063   ipltEntrySize = 32;
1064 }
1065 
1066 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1067   write64le(buf, s.getPltVA() + 17);
1068 }
1069 
1070 void Retpoline::writePltHeader(uint8_t *buf) const {
1071   const uint8_t insn[] = {
1072       0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
1073       0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
1074       0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
1075       0xf3, 0x90,                               // 12: loop: pause
1076       0x0f, 0xae, 0xe8,                         // 14:   lfence
1077       0xeb, 0xf9,                               // 17:   jmp loop
1078       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
1079       0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
1080       0xc3,                                     // 24:   ret
1081       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
1082       0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
1083   };
1084   memcpy(buf, insn, sizeof(insn));
1085 
1086   uint64_t gotPlt = in.gotPlt->getVA();
1087   uint64_t plt = in.plt->getVA();
1088   write32le(buf + 2, gotPlt - plt - 6 + 8);
1089   write32le(buf + 9, gotPlt - plt - 13 + 16);
1090 }
1091 
1092 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1093                          uint64_t pltEntryAddr) const {
1094   const uint8_t insn[] = {
1095       0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
1096       0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
1097       0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
1098       0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
1099       0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
1100       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1101   };
1102   memcpy(buf, insn, sizeof(insn));
1103 
1104   uint64_t off = pltEntryAddr - in.plt->getVA();
1105 
1106   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1107   write32le(buf + 8, -off - 12 + 32);
1108   write32le(buf + 13, -off - 17 + 18);
1109   write32le(buf + 18, sym.getPltIdx());
1110   write32le(buf + 23, -off - 27);
1111 }
1112 
1113 RetpolineZNow::RetpolineZNow() {
1114   pltHeaderSize = 32;
1115   pltEntrySize = 16;
1116   ipltEntrySize = 16;
1117 }
1118 
1119 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1120   const uint8_t insn[] = {
1121       0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
1122       0xf3, 0x90,                   // 5:  loop: pause
1123       0x0f, 0xae, 0xe8,             // 7:    lfence
1124       0xeb, 0xf9,                   // a:    jmp loop
1125       0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
1126       0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
1127       0xc3,                         // 14:   ret
1128       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
1129       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
1130       0xcc,                         // 1f:   int3; padding
1131   };
1132   memcpy(buf, insn, sizeof(insn));
1133 }
1134 
1135 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1136                              uint64_t pltEntryAddr) const {
1137   const uint8_t insn[] = {
1138       0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1139       0xe9, 0,    0,    0,    0,       // jmp plt+0
1140       0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
1141   };
1142   memcpy(buf, insn, sizeof(insn));
1143 
1144   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1145   write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1146 }
1147 
1148 static TargetInfo *getTargetInfo() {
1149   if (config->zRetpolineplt) {
1150     if (config->zNow) {
1151       static RetpolineZNow t;
1152       return &t;
1153     }
1154     static Retpoline t;
1155     return &t;
1156   }
1157 
1158   if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1159     static IntelIBT t;
1160     return &t;
1161   }
1162 
1163   static X86_64 t;
1164   return &t;
1165 }
1166 
1167 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
1168