xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/X86_64.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "OutputSections.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/Support/Endian.h"
16 
17 using namespace llvm;
18 using namespace llvm::object;
19 using namespace llvm::support::endian;
20 using namespace llvm::ELF;
21 using namespace lld;
22 using namespace lld::elf;
23 
24 namespace {
25 class X86_64 : public TargetInfo {
26 public:
27   X86_64();
28   int getTlsGdRelaxSkip(RelType type) const override;
29   RelExpr getRelExpr(RelType type, const Symbol &s,
30                      const uint8_t *loc) const override;
31   RelType getDynRel(RelType type) const override;
32   void writeGotPltHeader(uint8_t *buf) const override;
33   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
34   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
35   void writePltHeader(uint8_t *buf) const override;
36   void writePlt(uint8_t *buf, const Symbol &sym,
37                 uint64_t pltEntryAddr) const override;
38   void relocate(uint8_t *loc, const Relocation &rel,
39                 uint64_t val) const override;
40   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
41   void applyJumpInstrMod(uint8_t *loc, JumpModType type,
42                          unsigned size) const override;
43   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
44                           const uint8_t *loc) const override;
45   void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
46   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
47                                         uint8_t stOther) const override;
48   bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
49                              InputSection *nextIS) const override;
50 };
51 } // namespace
52 
53 // This is vector of NOP instructions of sizes from 1 to 8 bytes.  The
54 // appropriately sized instructions are used to fill the gaps between sections
55 // which are executed during fall through.
56 static const std::vector<std::vector<uint8_t>> nopInstructions = {
57     {0x90},
58     {0x66, 0x90},
59     {0x0f, 0x1f, 0x00},
60     {0x0f, 0x1f, 0x40, 0x00},
61     {0x0f, 0x1f, 0x44, 0x00, 0x00},
62     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
63     {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
64     {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
65     {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
66 
67 X86_64::X86_64() {
68   copyRel = R_X86_64_COPY;
69   gotRel = R_X86_64_GLOB_DAT;
70   pltRel = R_X86_64_JUMP_SLOT;
71   relativeRel = R_X86_64_RELATIVE;
72   iRelativeRel = R_X86_64_IRELATIVE;
73   symbolicRel = R_X86_64_64;
74   tlsDescRel = R_X86_64_TLSDESC;
75   tlsGotRel = R_X86_64_TPOFF64;
76   tlsModuleIndexRel = R_X86_64_DTPMOD64;
77   tlsOffsetRel = R_X86_64_DTPOFF64;
78   gotBaseSymInGotPlt = true;
79   gotEntrySize = 8;
80   pltHeaderSize = 16;
81   pltEntrySize = 16;
82   ipltEntrySize = 16;
83   trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
84   nopInstrs = nopInstructions;
85 
86   // Align to the large page size (known as a superpage or huge page).
87   // FreeBSD automatically promotes large, superpage-aligned allocations.
88   defaultImageBase = 0x200000;
89 }
90 
91 int X86_64::getTlsGdRelaxSkip(RelType type) const {
92   // TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
93   return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1
94                                                                            : 2;
95 }
96 
97 // Opcodes for the different X86_64 jmp instructions.
98 enum JmpInsnOpcode : uint32_t {
99   J_JMP_32,
100   J_JNE_32,
101   J_JE_32,
102   J_JG_32,
103   J_JGE_32,
104   J_JB_32,
105   J_JBE_32,
106   J_JL_32,
107   J_JLE_32,
108   J_JA_32,
109   J_JAE_32,
110   J_UNKNOWN,
111 };
112 
113 // Given the first (optional) and second byte of the insn's opcode, this
114 // returns the corresponding enum value.
115 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
116                                     const uint8_t *second) {
117   if (*second == 0xe9)
118     return J_JMP_32;
119 
120   if (first == nullptr)
121     return J_UNKNOWN;
122 
123   if (*first == 0x0f) {
124     switch (*second) {
125     case 0x84:
126       return J_JE_32;
127     case 0x85:
128       return J_JNE_32;
129     case 0x8f:
130       return J_JG_32;
131     case 0x8d:
132       return J_JGE_32;
133     case 0x82:
134       return J_JB_32;
135     case 0x86:
136       return J_JBE_32;
137     case 0x8c:
138       return J_JL_32;
139     case 0x8e:
140       return J_JLE_32;
141     case 0x87:
142       return J_JA_32;
143     case 0x83:
144       return J_JAE_32;
145     }
146   }
147   return J_UNKNOWN;
148 }
149 
150 // Return the relocation index for input section IS with a specific Offset.
151 // Returns the maximum size of the vector if no such relocation is found.
152 static unsigned getRelocationWithOffset(const InputSection &is,
153                                         uint64_t offset) {
154   unsigned size = is.relocs().size();
155   for (unsigned i = size - 1; i + 1 > 0; --i) {
156     if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE)
157       return i;
158   }
159   return size;
160 }
161 
162 // Returns true if R corresponds to a relocation used for a jump instruction.
163 // TODO: Once special relocations for relaxable jump instructions are available,
164 // this should be modified to use those relocations.
165 static bool isRelocationForJmpInsn(Relocation &R) {
166   return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
167          R.type == R_X86_64_PC8;
168 }
169 
170 // Return true if Relocation R points to the first instruction in the
171 // next section.
172 // TODO: Delete this once psABI reserves a new relocation type for fall thru
173 // jumps.
174 static bool isFallThruRelocation(InputSection &is, InputFile *file,
175                                  InputSection *nextIS, Relocation &r) {
176   if (!isRelocationForJmpInsn(r))
177     return false;
178 
179   uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
180   uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
181       file, r.type, r.addend, addrLoc, *r.sym, r.expr);
182 
183   // If this jmp is a fall thru, the target offset is the beginning of the
184   // next section.
185   uint64_t nextSectionOffset =
186       nextIS->getOutputSection()->addr + nextIS->outSecOff;
187   return (addrLoc + 4 + targetOffset) == nextSectionOffset;
188 }
189 
190 // Return the jmp instruction opcode that is the inverse of the given
191 // opcode.  For example, JE inverted is JNE.
192 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
193   switch (opcode) {
194   case J_JE_32:
195     return J_JNE_32;
196   case J_JNE_32:
197     return J_JE_32;
198   case J_JG_32:
199     return J_JLE_32;
200   case J_JGE_32:
201     return J_JL_32;
202   case J_JB_32:
203     return J_JAE_32;
204   case J_JBE_32:
205     return J_JA_32;
206   case J_JL_32:
207     return J_JGE_32;
208   case J_JLE_32:
209     return J_JG_32;
210   case J_JA_32:
211     return J_JBE_32;
212   case J_JAE_32:
213     return J_JB_32;
214   default:
215     return J_UNKNOWN;
216   }
217 }
218 
219 // Deletes direct jump instruction in input sections that jumps to the
220 // following section as it is not required.  If there are two consecutive jump
221 // instructions, it checks if they can be flipped and one can be deleted.
222 // For example:
223 // .section .text
224 // a.BB.foo:
225 //    ...
226 //    10: jne aa.BB.foo
227 //    16: jmp bar
228 // aa.BB.foo:
229 //    ...
230 //
231 // can be converted to:
232 // a.BB.foo:
233 //   ...
234 //   10: je bar  #jne flipped to je and the jmp is deleted.
235 // aa.BB.foo:
236 //   ...
237 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
238                                    InputSection *nextIS) const {
239   const unsigned sizeOfDirectJmpInsn = 5;
240 
241   if (nextIS == nullptr)
242     return false;
243 
244   if (is.getSize() < sizeOfDirectJmpInsn)
245     return false;
246 
247   // If this jmp insn can be removed, it is the last insn and the
248   // relocation is 4 bytes before the end.
249   unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
250   if (rIndex == is.relocs().size())
251     return false;
252 
253   Relocation &r = is.relocs()[rIndex];
254 
255   // Check if the relocation corresponds to a direct jmp.
256   const uint8_t *secContents = is.content().data();
257   // If it is not a direct jmp instruction, there is nothing to do here.
258   if (*(secContents + r.offset - 1) != 0xe9)
259     return false;
260 
261   if (isFallThruRelocation(is, file, nextIS, r)) {
262     // This is a fall thru and can be deleted.
263     r.expr = R_NONE;
264     r.offset = 0;
265     is.drop_back(sizeOfDirectJmpInsn);
266     is.nopFiller = true;
267     return true;
268   }
269 
270   // Now, check if flip and delete is possible.
271   const unsigned sizeOfJmpCCInsn = 6;
272   // To flip, there must be at least one JmpCC and one direct jmp.
273   if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
274     return false;
275 
276   unsigned rbIndex =
277       getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
278   if (rbIndex == is.relocs().size())
279     return false;
280 
281   Relocation &rB = is.relocs()[rbIndex];
282 
283   const uint8_t *jmpInsnB = secContents + rB.offset - 1;
284   JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
285   if (jmpOpcodeB == J_UNKNOWN)
286     return false;
287 
288   if (!isFallThruRelocation(is, file, nextIS, rB))
289     return false;
290 
291   // jmpCC jumps to the fall thru block, the branch can be flipped and the
292   // jmp can be deleted.
293   JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
294   if (jInvert == J_UNKNOWN)
295     return false;
296   is.jumpInstrMod = make<JumpInstrMod>();
297   *is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
298   // Move R's values to rB except the offset.
299   rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
300   // Cancel R
301   r.expr = R_NONE;
302   r.offset = 0;
303   is.drop_back(sizeOfDirectJmpInsn);
304   is.nopFiller = true;
305   return true;
306 }
307 
308 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
309                            const uint8_t *loc) const {
310   switch (type) {
311   case R_X86_64_8:
312   case R_X86_64_16:
313   case R_X86_64_32:
314   case R_X86_64_32S:
315   case R_X86_64_64:
316     return R_ABS;
317   case R_X86_64_DTPOFF32:
318   case R_X86_64_DTPOFF64:
319     return R_DTPREL;
320   case R_X86_64_TPOFF32:
321     return R_TPREL;
322   case R_X86_64_TLSDESC_CALL:
323     return R_TLSDESC_CALL;
324   case R_X86_64_TLSLD:
325     return R_TLSLD_PC;
326   case R_X86_64_TLSGD:
327     return R_TLSGD_PC;
328   case R_X86_64_SIZE32:
329   case R_X86_64_SIZE64:
330     return R_SIZE;
331   case R_X86_64_PLT32:
332     return R_PLT_PC;
333   case R_X86_64_PC8:
334   case R_X86_64_PC16:
335   case R_X86_64_PC32:
336   case R_X86_64_PC64:
337     return R_PC;
338   case R_X86_64_GOT32:
339   case R_X86_64_GOT64:
340     return R_GOTPLT;
341   case R_X86_64_GOTPC32_TLSDESC:
342     return R_TLSDESC_PC;
343   case R_X86_64_GOTPCREL:
344   case R_X86_64_GOTPCRELX:
345   case R_X86_64_REX_GOTPCRELX:
346   case R_X86_64_GOTTPOFF:
347     return R_GOT_PC;
348   case R_X86_64_GOTOFF64:
349     return R_GOTPLTREL;
350   case R_X86_64_PLTOFF64:
351     return R_PLT_GOTPLT;
352   case R_X86_64_GOTPC32:
353   case R_X86_64_GOTPC64:
354     return R_GOTPLTONLY_PC;
355   case R_X86_64_NONE:
356     return R_NONE;
357   default:
358     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
359           ") against symbol " + toString(s));
360     return R_NONE;
361   }
362 }
363 
364 void X86_64::writeGotPltHeader(uint8_t *buf) const {
365   // The first entry holds the value of _DYNAMIC. It is not clear why that is
366   // required, but it is documented in the psabi and the glibc dynamic linker
367   // seems to use it (note that this is relevant for linking ld.so, not any
368   // other program).
369   write64le(buf, mainPart->dynamic->getVA());
370 }
371 
372 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
373   // See comments in X86::writeGotPlt.
374   write64le(buf, s.getPltVA() + 6);
375 }
376 
377 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
378   // An x86 entry is the address of the ifunc resolver function (for -z rel).
379   if (config->writeAddends)
380     write64le(buf, s.getVA());
381 }
382 
383 void X86_64::writePltHeader(uint8_t *buf) const {
384   const uint8_t pltData[] = {
385       0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
386       0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
387       0x0f, 0x1f, 0x40, 0x00, // nop
388   };
389   memcpy(buf, pltData, sizeof(pltData));
390   uint64_t gotPlt = in.gotPlt->getVA();
391   uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
392   write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
393   write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
394 }
395 
396 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
397                       uint64_t pltEntryAddr) const {
398   const uint8_t inst[] = {
399       0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
400       0x68, 0, 0, 0, 0,       // pushq <relocation index>
401       0xe9, 0, 0, 0, 0,       // jmpq plt[0]
402   };
403   memcpy(buf, inst, sizeof(inst));
404 
405   write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
406   write32le(buf + 7, sym.getPltIdx());
407   write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
408 }
409 
410 RelType X86_64::getDynRel(RelType type) const {
411   if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
412       type == R_X86_64_SIZE64)
413     return type;
414   return R_X86_64_NONE;
415 }
416 
417 static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
418   if (rel.type == R_X86_64_TLSGD) {
419     // Convert
420     //   .byte 0x66
421     //   leaq x@tlsgd(%rip), %rdi
422     //   .word 0x6666
423     //   rex64
424     //   call __tls_get_addr@plt
425     // to the following two instructions.
426     const uint8_t inst[] = {
427         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
428         0x00, 0x00,                            // mov %fs:0x0,%rax
429         0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
430     };
431     memcpy(loc - 4, inst, sizeof(inst));
432 
433     // The original code used a pc relative relocation and so we have to
434     // compensate for the -4 in had in the addend.
435     write32le(loc + 8, val + 4);
436   } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
437     // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
438     if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
439         (loc[-1] & 0xc7) != 0x05) {
440       errorOrWarn(getErrorLocation(loc - 3) +
441                   "R_X86_64_GOTPC32_TLSDESC must be used "
442                   "in leaq x@tlsdesc(%rip), %REG");
443       return;
444     }
445     loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
446     loc[-2] = 0xc7;
447     loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
448     write32le(loc, val + 4);
449   } else {
450     // Convert call *x@tlsdesc(%REG) to xchg ax, ax.
451     assert(rel.type == R_X86_64_TLSDESC_CALL);
452     loc[0] = 0x66;
453     loc[1] = 0x90;
454   }
455 }
456 
457 static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) {
458   if (rel.type == R_X86_64_TLSGD) {
459     // Convert
460     //   .byte 0x66
461     //   leaq x@tlsgd(%rip), %rdi
462     //   .word 0x6666
463     //   rex64
464     //   call __tls_get_addr@plt
465     // to the following two instructions.
466     const uint8_t inst[] = {
467         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
468         0x00, 0x00,                            // mov %fs:0x0,%rax
469         0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
470     };
471     memcpy(loc - 4, inst, sizeof(inst));
472 
473     // Both code sequences are PC relatives, but since we are moving the
474     // constant forward by 8 bytes we have to subtract the value by 8.
475     write32le(loc + 8, val - 8);
476   } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
477     // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
478     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
479     if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
480         (loc[-1] & 0xc7) != 0x05) {
481       errorOrWarn(getErrorLocation(loc - 3) +
482                   "R_X86_64_GOTPC32_TLSDESC must be used "
483                   "in leaq x@tlsdesc(%rip), %REG");
484       return;
485     }
486     loc[-2] = 0x8b;
487     write32le(loc, val);
488   } else {
489     // Convert call *x@tlsdesc(%rax) to xchg ax, ax.
490     assert(rel.type == R_X86_64_TLSDESC_CALL);
491     loc[0] = 0x66;
492     loc[1] = 0x90;
493   }
494 }
495 
496 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
497 // R_X86_64_TPOFF32 so that it does not use GOT.
498 static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) {
499   uint8_t *inst = loc - 3;
500   uint8_t reg = loc[-1] >> 3;
501   uint8_t *regSlot = loc - 1;
502 
503   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
504   // because LEA with these registers needs 4 bytes to encode and thus
505   // wouldn't fit the space.
506 
507   if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
508     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
509     memcpy(inst, "\x48\x81\xc4", 3);
510   } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
511     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
512     memcpy(inst, "\x49\x81\xc4", 3);
513   } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
514     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
515     memcpy(inst, "\x4d\x8d", 2);
516     *regSlot = 0x80 | (reg << 3) | reg;
517   } else if (memcmp(inst, "\x48\x03", 2) == 0) {
518     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
519     memcpy(inst, "\x48\x8d", 2);
520     *regSlot = 0x80 | (reg << 3) | reg;
521   } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
522     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
523     memcpy(inst, "\x49\xc7", 2);
524     *regSlot = 0xc0 | reg;
525   } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
526     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
527     memcpy(inst, "\x48\xc7", 2);
528     *regSlot = 0xc0 | reg;
529   } else {
530     error(getErrorLocation(loc - 3) +
531           "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
532   }
533 
534   // The original code used a PC relative relocation.
535   // Need to compensate for the -4 it had in the addend.
536   write32le(loc, val + 4);
537 }
538 
539 static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
540   const uint8_t inst[] = {
541       0x66, 0x66,                                           // .word 0x6666
542       0x66,                                                 // .byte 0x66
543       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
544   };
545 
546   if (loc[4] == 0xe8) {
547     // Convert
548     //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
549     //   callq __tls_get_addr@PLT             # e8 <disp32>
550     //   leaq bar@dtpoff(%rax), %rcx
551     // to
552     //   .word 0x6666
553     //   .byte 0x66
554     //   mov %fs:0,%rax
555     //   leaq bar@tpoff(%rax), %rcx
556     memcpy(loc - 3, inst, sizeof(inst));
557     return;
558   }
559 
560   if (loc[4] == 0xff && loc[5] == 0x15) {
561     // Convert
562     //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
563     //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
564     // to
565     //   .long  0x66666666
566     //   movq   %fs:0,%rax
567     // See "Table 11.9: LD -> LE Code Transition (LP64)" in
568     // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
569     loc[-3] = 0x66;
570     memcpy(loc - 2, inst, sizeof(inst));
571     return;
572   }
573 
574   error(getErrorLocation(loc - 3) +
575         "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
576 }
577 
578 // A JumpInstrMod at a specific offset indicates that the jump instruction
579 // opcode at that offset must be modified.  This is specifically used to relax
580 // jump instructions with basic block sections.  This function looks at the
581 // JumpMod and effects the change.
582 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
583                                unsigned size) const {
584   switch (type) {
585   case J_JMP_32:
586     if (size == 4)
587       *loc = 0xe9;
588     else
589       *loc = 0xeb;
590     break;
591   case J_JE_32:
592     if (size == 4) {
593       loc[-1] = 0x0f;
594       *loc = 0x84;
595     } else
596       *loc = 0x74;
597     break;
598   case J_JNE_32:
599     if (size == 4) {
600       loc[-1] = 0x0f;
601       *loc = 0x85;
602     } else
603       *loc = 0x75;
604     break;
605   case J_JG_32:
606     if (size == 4) {
607       loc[-1] = 0x0f;
608       *loc = 0x8f;
609     } else
610       *loc = 0x7f;
611     break;
612   case J_JGE_32:
613     if (size == 4) {
614       loc[-1] = 0x0f;
615       *loc = 0x8d;
616     } else
617       *loc = 0x7d;
618     break;
619   case J_JB_32:
620     if (size == 4) {
621       loc[-1] = 0x0f;
622       *loc = 0x82;
623     } else
624       *loc = 0x72;
625     break;
626   case J_JBE_32:
627     if (size == 4) {
628       loc[-1] = 0x0f;
629       *loc = 0x86;
630     } else
631       *loc = 0x76;
632     break;
633   case J_JL_32:
634     if (size == 4) {
635       loc[-1] = 0x0f;
636       *loc = 0x8c;
637     } else
638       *loc = 0x7c;
639     break;
640   case J_JLE_32:
641     if (size == 4) {
642       loc[-1] = 0x0f;
643       *loc = 0x8e;
644     } else
645       *loc = 0x7e;
646     break;
647   case J_JA_32:
648     if (size == 4) {
649       loc[-1] = 0x0f;
650       *loc = 0x87;
651     } else
652       *loc = 0x77;
653     break;
654   case J_JAE_32:
655     if (size == 4) {
656       loc[-1] = 0x0f;
657       *loc = 0x83;
658     } else
659       *loc = 0x73;
660     break;
661   case J_UNKNOWN:
662     llvm_unreachable("Unknown Jump Relocation");
663   }
664 }
665 
666 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
667   switch (type) {
668   case R_X86_64_8:
669   case R_X86_64_PC8:
670     return SignExtend64<8>(*buf);
671   case R_X86_64_16:
672   case R_X86_64_PC16:
673     return SignExtend64<16>(read16le(buf));
674   case R_X86_64_32:
675   case R_X86_64_32S:
676   case R_X86_64_TPOFF32:
677   case R_X86_64_GOT32:
678   case R_X86_64_GOTPC32:
679   case R_X86_64_GOTPC32_TLSDESC:
680   case R_X86_64_GOTPCREL:
681   case R_X86_64_GOTPCRELX:
682   case R_X86_64_REX_GOTPCRELX:
683   case R_X86_64_PC32:
684   case R_X86_64_GOTTPOFF:
685   case R_X86_64_PLT32:
686   case R_X86_64_TLSGD:
687   case R_X86_64_TLSLD:
688   case R_X86_64_DTPOFF32:
689   case R_X86_64_SIZE32:
690     return SignExtend64<32>(read32le(buf));
691   case R_X86_64_64:
692   case R_X86_64_TPOFF64:
693   case R_X86_64_DTPOFF64:
694   case R_X86_64_DTPMOD64:
695   case R_X86_64_PC64:
696   case R_X86_64_SIZE64:
697   case R_X86_64_GLOB_DAT:
698   case R_X86_64_GOT64:
699   case R_X86_64_GOTOFF64:
700   case R_X86_64_GOTPC64:
701   case R_X86_64_PLTOFF64:
702   case R_X86_64_IRELATIVE:
703   case R_X86_64_RELATIVE:
704     return read64le(buf);
705   case R_X86_64_TLSDESC:
706     return read64le(buf + 8);
707   case R_X86_64_JUMP_SLOT:
708   case R_X86_64_NONE:
709     // These relocations are defined as not having an implicit addend.
710     return 0;
711   default:
712     internalLinkerError(getErrorLocation(buf),
713                         "cannot read addend for relocation " + toString(type));
714     return 0;
715   }
716 }
717 
718 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val);
719 
720 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
721   switch (rel.type) {
722   case R_X86_64_8:
723     checkIntUInt(loc, val, 8, rel);
724     *loc = val;
725     break;
726   case R_X86_64_PC8:
727     checkInt(loc, val, 8, rel);
728     *loc = val;
729     break;
730   case R_X86_64_16:
731     checkIntUInt(loc, val, 16, rel);
732     write16le(loc, val);
733     break;
734   case R_X86_64_PC16:
735     checkInt(loc, val, 16, rel);
736     write16le(loc, val);
737     break;
738   case R_X86_64_32:
739     checkUInt(loc, val, 32, rel);
740     write32le(loc, val);
741     break;
742   case R_X86_64_32S:
743   case R_X86_64_GOT32:
744   case R_X86_64_GOTPC32:
745   case R_X86_64_GOTPCREL:
746   case R_X86_64_PC32:
747   case R_X86_64_PLT32:
748   case R_X86_64_DTPOFF32:
749   case R_X86_64_SIZE32:
750     checkInt(loc, val, 32, rel);
751     write32le(loc, val);
752     break;
753   case R_X86_64_64:
754   case R_X86_64_DTPOFF64:
755   case R_X86_64_PC64:
756   case R_X86_64_SIZE64:
757   case R_X86_64_GOT64:
758   case R_X86_64_GOTOFF64:
759   case R_X86_64_GOTPC64:
760   case R_X86_64_PLTOFF64:
761     write64le(loc, val);
762     break;
763   case R_X86_64_GOTPCRELX:
764   case R_X86_64_REX_GOTPCRELX:
765     if (rel.expr != R_GOT_PC) {
766       relaxGot(loc, rel, val);
767     } else {
768       checkInt(loc, val, 32, rel);
769       write32le(loc, val);
770     }
771     break;
772   case R_X86_64_GOTPC32_TLSDESC:
773   case R_X86_64_TLSDESC_CALL:
774   case R_X86_64_TLSGD:
775     if (rel.expr == R_RELAX_TLS_GD_TO_LE) {
776       relaxTlsGdToLe(loc, rel, val);
777     } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) {
778       relaxTlsGdToIe(loc, rel, val);
779     } else {
780       checkInt(loc, val, 32, rel);
781       write32le(loc, val);
782     }
783     break;
784   case R_X86_64_TLSLD:
785     if (rel.expr == R_RELAX_TLS_LD_TO_LE) {
786       relaxTlsLdToLe(loc, rel, val);
787     } else {
788       checkInt(loc, val, 32, rel);
789       write32le(loc, val);
790     }
791     break;
792   case R_X86_64_GOTTPOFF:
793     if (rel.expr == R_RELAX_TLS_IE_TO_LE) {
794       relaxTlsIeToLe(loc, rel, val);
795     } else {
796       checkInt(loc, val, 32, rel);
797       write32le(loc, val);
798     }
799     break;
800   case R_X86_64_TPOFF32:
801     checkInt(loc, val, 32, rel);
802     write32le(loc, val);
803     break;
804 
805   case R_X86_64_TLSDESC:
806     // The addend is stored in the second 64-bit word.
807     write64le(loc + 8, val);
808     break;
809   default:
810     llvm_unreachable("unknown relocation");
811   }
812 }
813 
814 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
815                                 const uint8_t *loc) const {
816   // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
817   // with addend != -4. Such an instruction does not load the full GOT entry, so
818   // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
819   // (addend=0) loads the high 32 bits of the GOT entry.
820   if (!config->relax || addend != -4 ||
821       (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
822     return R_GOT_PC;
823   const uint8_t op = loc[-2];
824   const uint8_t modRm = loc[-1];
825 
826   // FIXME: When PIC is disabled and foo is defined locally in the
827   // lower 32 bit address space, memory operand in mov can be converted into
828   // immediate operand. Otherwise, mov must be changed to lea. We support only
829   // latter relaxation at this moment.
830   if (op == 0x8b)
831     return R_RELAX_GOT_PC;
832 
833   // Relax call and jmp.
834   if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
835     return R_RELAX_GOT_PC;
836 
837   // We don't support test/binop instructions without a REX prefix.
838   if (type == R_X86_64_GOTPCRELX)
839     return R_GOT_PC;
840 
841   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
842   // If PIC then no relaxation is available.
843   return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
844 }
845 
846 // A subset of relaxations can only be applied for no-PIC. This method
847 // handles such relaxations. Instructions encoding information was taken from:
848 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
849 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
850 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
851 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
852                           uint8_t modRm) {
853   const uint8_t rex = loc[-3];
854   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
855   if (op == 0x85) {
856     // See "TEST-Logical Compare" (4-428 Vol. 2B),
857     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
858 
859     // ModR/M byte has form XX YYY ZZZ, where
860     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
861     // XX has different meanings:
862     // 00: The operand's memory address is in reg1.
863     // 01: The operand's memory address is reg1 + a byte-sized displacement.
864     // 10: The operand's memory address is reg1 + a word-sized displacement.
865     // 11: The operand is reg1 itself.
866     // If an instruction requires only one operand, the unused reg2 field
867     // holds extra opcode bits rather than a register code
868     // 0xC0 == 11 000 000 binary.
869     // 0x38 == 00 111 000 binary.
870     // We transfer reg2 to reg1 here as operand.
871     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
872     loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
873 
874     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
875     // See "TEST-Logical Compare" (4-428 Vol. 2B).
876     loc[-2] = 0xf7;
877 
878     // Move R bit to the B bit in REX byte.
879     // REX byte is encoded as 0100WRXB, where
880     // 0100 is 4bit fixed pattern.
881     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
882     //   default operand size is used (which is 32-bit for most but not all
883     //   instructions).
884     // REX.R This 1-bit value is an extension to the MODRM.reg field.
885     // REX.X This 1-bit value is an extension to the SIB.index field.
886     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
887     // SIB.base field.
888     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
889     loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
890     write32le(loc, val);
891     return;
892   }
893 
894   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
895   // or xor operations.
896 
897   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
898   // Logic is close to one for test instruction above, but we also
899   // write opcode extension here, see below for details.
900   loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
901 
902   // Primary opcode is 0x81, opcode extension is one of:
903   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
904   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
905   // This value was wrote to MODRM.reg in a line above.
906   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
907   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
908   // descriptions about each operation.
909   loc[-2] = 0x81;
910   loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
911   write32le(loc, val);
912 }
913 
914 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) {
915   checkInt(loc, val, 32, rel);
916   const uint8_t op = loc[-2];
917   const uint8_t modRm = loc[-1];
918 
919   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
920   if (op == 0x8b) {
921     loc[-2] = 0x8d;
922     write32le(loc, val);
923     return;
924   }
925 
926   if (op != 0xff) {
927     // We are relaxing a rip relative to an absolute, so compensate
928     // for the old -4 addend.
929     assert(!config->isPic);
930     relaxGotNoPic(loc, val + 4, op, modRm);
931     return;
932   }
933 
934   // Convert call/jmp instructions.
935   if (modRm == 0x15) {
936     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
937     // Instead we convert to "addr32 call foo" where addr32 is an instruction
938     // prefix. That makes result expression to be a single instruction.
939     loc[-2] = 0x67; // addr32 prefix
940     loc[-1] = 0xe8; // call
941     write32le(loc, val);
942     return;
943   }
944 
945   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
946   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
947   assert(modRm == 0x25);
948   loc[-2] = 0xe9; // jmp
949   loc[3] = 0x90;  // nop
950   write32le(loc - 1, val + 1);
951 }
952 
953 // A split-stack prologue starts by checking the amount of stack remaining
954 // in one of two ways:
955 // A) Comparing of the stack pointer to a field in the tcb.
956 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
957 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
958                                               uint8_t stOther) const {
959   if (!config->is64) {
960     error("target doesn't support split stacks");
961     return false;
962   }
963 
964   if (loc + 8 >= end)
965     return false;
966 
967   // Replace "cmp %fs:0x70,%rsp" and subsequent branch
968   // with "stc, nopl 0x0(%rax,%rax,1)"
969   if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
970     memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
971     return true;
972   }
973 
974   // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
975   // be r10 or r11. The lea instruction feeds a subsequent compare which checks
976   // if there is X available stack space. Making X larger effectively reserves
977   // that much additional space. The stack grows downward so subtract the value.
978   if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
979       memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
980     // The offset bytes are encoded four bytes after the start of the
981     // instruction.
982     write32le(loc + 4, read32le(loc + 4) - 0x4000);
983     return true;
984   }
985   return false;
986 }
987 
988 void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
989   uint64_t secAddr = sec.getOutputSection()->addr;
990   if (auto *s = dyn_cast<InputSection>(&sec))
991     secAddr += s->outSecOff;
992   for (const Relocation &rel : sec.relocs()) {
993     if (rel.expr == R_NONE) // See deleteFallThruJmpInsn
994       continue;
995     uint8_t *loc = buf + rel.offset;
996     const uint64_t val =
997         sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
998                              secAddr + rel.offset, *rel.sym, rel.expr);
999     relocate(loc, rel, val);
1000   }
1001   if (sec.jumpInstrMod) {
1002     applyJumpInstrMod(buf + sec.jumpInstrMod->offset,
1003                       sec.jumpInstrMod->original, sec.jumpInstrMod->size);
1004   }
1005 }
1006 
1007 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
1008 // entries containing endbr64 instructions. A PLT entry will be split into two
1009 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
1010 namespace {
1011 class IntelIBT : public X86_64 {
1012 public:
1013   IntelIBT();
1014   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1015   void writePlt(uint8_t *buf, const Symbol &sym,
1016                 uint64_t pltEntryAddr) const override;
1017   void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
1018 
1019   static const unsigned IBTPltHeaderSize = 16;
1020 };
1021 } // namespace
1022 
1023 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
1024 
1025 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1026   uint64_t va =
1027       in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize;
1028   write64le(buf, va);
1029 }
1030 
1031 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
1032                         uint64_t pltEntryAddr) const {
1033   const uint8_t Inst[] = {
1034       0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
1035       0xff, 0x25, 0,    0,    0, 0, // jmpq *got(%rip)
1036       0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
1037   };
1038   memcpy(buf, Inst, sizeof(Inst));
1039   write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
1040 }
1041 
1042 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
1043   writePltHeader(buf);
1044   buf += IBTPltHeaderSize;
1045 
1046   const uint8_t inst[] = {
1047       0xf3, 0x0f, 0x1e, 0xfa,    // endbr64
1048       0x68, 0,    0,    0,    0, // pushq <relocation index>
1049       0xe9, 0,    0,    0,    0, // jmpq plt[0]
1050       0x66, 0x90,                // nop
1051   };
1052 
1053   for (size_t i = 0; i < numEntries; ++i) {
1054     memcpy(buf, inst, sizeof(inst));
1055     write32le(buf + 5, i);
1056     write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1057     buf += sizeof(inst);
1058   }
1059 }
1060 
1061 // These nonstandard PLT entries are to migtigate Spectre v2 security
1062 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1063 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1064 // entries, we use a CALL followed by MOV and RET to do the same thing as an
1065 // indirect jump. That instruction sequence is so-called "retpoline".
1066 //
1067 // We have two types of retpoline PLTs as a size optimization. If `-z now`
1068 // is specified, all dynamic symbols are resolved at load-time. Thus, when
1069 // that option is given, we can omit code for symbol lazy resolution.
1070 namespace {
1071 class Retpoline : public X86_64 {
1072 public:
1073   Retpoline();
1074   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1075   void writePltHeader(uint8_t *buf) const override;
1076   void writePlt(uint8_t *buf, const Symbol &sym,
1077                 uint64_t pltEntryAddr) const override;
1078 };
1079 
1080 class RetpolineZNow : public X86_64 {
1081 public:
1082   RetpolineZNow();
1083   void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1084   void writePltHeader(uint8_t *buf) const override;
1085   void writePlt(uint8_t *buf, const Symbol &sym,
1086                 uint64_t pltEntryAddr) const override;
1087 };
1088 } // namespace
1089 
1090 Retpoline::Retpoline() {
1091   pltHeaderSize = 48;
1092   pltEntrySize = 32;
1093   ipltEntrySize = 32;
1094 }
1095 
1096 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1097   write64le(buf, s.getPltVA() + 17);
1098 }
1099 
1100 void Retpoline::writePltHeader(uint8_t *buf) const {
1101   const uint8_t insn[] = {
1102       0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
1103       0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
1104       0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
1105       0xf3, 0x90,                               // 12: loop: pause
1106       0x0f, 0xae, 0xe8,                         // 14:   lfence
1107       0xeb, 0xf9,                               // 17:   jmp loop
1108       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
1109       0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
1110       0xc3,                                     // 24:   ret
1111       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
1112       0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
1113   };
1114   memcpy(buf, insn, sizeof(insn));
1115 
1116   uint64_t gotPlt = in.gotPlt->getVA();
1117   uint64_t plt = in.plt->getVA();
1118   write32le(buf + 2, gotPlt - plt - 6 + 8);
1119   write32le(buf + 9, gotPlt - plt - 13 + 16);
1120 }
1121 
1122 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1123                          uint64_t pltEntryAddr) const {
1124   const uint8_t insn[] = {
1125       0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
1126       0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
1127       0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
1128       0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
1129       0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
1130       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1131   };
1132   memcpy(buf, insn, sizeof(insn));
1133 
1134   uint64_t off = pltEntryAddr - in.plt->getVA();
1135 
1136   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1137   write32le(buf + 8, -off - 12 + 32);
1138   write32le(buf + 13, -off - 17 + 18);
1139   write32le(buf + 18, sym.getPltIdx());
1140   write32le(buf + 23, -off - 27);
1141 }
1142 
1143 RetpolineZNow::RetpolineZNow() {
1144   pltHeaderSize = 32;
1145   pltEntrySize = 16;
1146   ipltEntrySize = 16;
1147 }
1148 
1149 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1150   const uint8_t insn[] = {
1151       0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
1152       0xf3, 0x90,                   // 5:  loop: pause
1153       0x0f, 0xae, 0xe8,             // 7:    lfence
1154       0xeb, 0xf9,                   // a:    jmp loop
1155       0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
1156       0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
1157       0xc3,                         // 14:   ret
1158       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
1159       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
1160       0xcc,                         // 1f:   int3; padding
1161   };
1162   memcpy(buf, insn, sizeof(insn));
1163 }
1164 
1165 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1166                              uint64_t pltEntryAddr) const {
1167   const uint8_t insn[] = {
1168       0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1169       0xe9, 0,    0,    0,    0,       // jmp plt+0
1170       0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
1171   };
1172   memcpy(buf, insn, sizeof(insn));
1173 
1174   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1175   write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1176 }
1177 
1178 static TargetInfo *getTargetInfo() {
1179   if (config->zRetpolineplt) {
1180     if (config->zNow) {
1181       static RetpolineZNow t;
1182       return &t;
1183     }
1184     static Retpoline t;
1185     return &t;
1186   }
1187 
1188   if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1189     static IntelIBT t;
1190     return &t;
1191   }
1192 
1193   static X86_64 t;
1194   return &t;
1195 }
1196 
1197 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
1198