1 //===- X86_64.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "OutputSections.h" 10 #include "Relocations.h" 11 #include "Symbols.h" 12 #include "SyntheticSections.h" 13 #include "Target.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/Support/Endian.h" 17 #include "llvm/Support/MathExtras.h" 18 19 using namespace llvm; 20 using namespace llvm::object; 21 using namespace llvm::support::endian; 22 using namespace llvm::ELF; 23 using namespace lld; 24 using namespace lld::elf; 25 26 namespace { 27 class X86_64 : public TargetInfo { 28 public: 29 X86_64(); 30 int getTlsGdRelaxSkip(RelType type) const override; 31 RelExpr getRelExpr(RelType type, const Symbol &s, 32 const uint8_t *loc) const override; 33 RelType getDynRel(RelType type) const override; 34 void writeGotPltHeader(uint8_t *buf) const override; 35 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 36 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; 37 void writePltHeader(uint8_t *buf) const override; 38 void writePlt(uint8_t *buf, const Symbol &sym, 39 uint64_t pltEntryAddr) const override; 40 void relocate(uint8_t *loc, const Relocation &rel, 41 uint64_t val) const override; 42 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; 43 void applyJumpInstrMod(uint8_t *loc, JumpModType type, 44 unsigned size) const override; 45 RelExpr adjustGotPcExpr(RelType type, int64_t addend, 46 const uint8_t *loc) const override; 47 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; 48 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 49 uint8_t stOther) const override; 50 bool deleteFallThruJmpInsn(InputSection &is, InputFile *file, 51 InputSection *nextIS) const override; 52 bool relaxOnce(int pass) const override; 53 }; 54 } // namespace 55 56 // This is vector of NOP instructions of sizes from 1 to 8 bytes. The 57 // appropriately sized instructions are used to fill the gaps between sections 58 // which are executed during fall through. 59 static const std::vector<std::vector<uint8_t>> nopInstructions = { 60 {0x90}, 61 {0x66, 0x90}, 62 {0x0f, 0x1f, 0x00}, 63 {0x0f, 0x1f, 0x40, 0x00}, 64 {0x0f, 0x1f, 0x44, 0x00, 0x00}, 65 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, 66 {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00}, 67 {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, 68 {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}}; 69 70 X86_64::X86_64() { 71 copyRel = R_X86_64_COPY; 72 gotRel = R_X86_64_GLOB_DAT; 73 pltRel = R_X86_64_JUMP_SLOT; 74 relativeRel = R_X86_64_RELATIVE; 75 iRelativeRel = R_X86_64_IRELATIVE; 76 symbolicRel = R_X86_64_64; 77 tlsDescRel = R_X86_64_TLSDESC; 78 tlsGotRel = R_X86_64_TPOFF64; 79 tlsModuleIndexRel = R_X86_64_DTPMOD64; 80 tlsOffsetRel = R_X86_64_DTPOFF64; 81 gotBaseSymInGotPlt = true; 82 gotEntrySize = 8; 83 pltHeaderSize = 16; 84 pltEntrySize = 16; 85 ipltEntrySize = 16; 86 trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3 87 nopInstrs = nopInstructions; 88 89 // Align to the large page size (known as a superpage or huge page). 90 // FreeBSD automatically promotes large, superpage-aligned allocations. 91 defaultImageBase = 0x200000; 92 } 93 94 int X86_64::getTlsGdRelaxSkip(RelType type) const { 95 // TLSDESC relocations are processed separately. See relaxTlsGdToLe below. 96 return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1 97 : 2; 98 } 99 100 // Opcodes for the different X86_64 jmp instructions. 101 enum JmpInsnOpcode : uint32_t { 102 J_JMP_32, 103 J_JNE_32, 104 J_JE_32, 105 J_JG_32, 106 J_JGE_32, 107 J_JB_32, 108 J_JBE_32, 109 J_JL_32, 110 J_JLE_32, 111 J_JA_32, 112 J_JAE_32, 113 J_UNKNOWN, 114 }; 115 116 // Given the first (optional) and second byte of the insn's opcode, this 117 // returns the corresponding enum value. 118 static JmpInsnOpcode getJmpInsnType(const uint8_t *first, 119 const uint8_t *second) { 120 if (*second == 0xe9) 121 return J_JMP_32; 122 123 if (first == nullptr) 124 return J_UNKNOWN; 125 126 if (*first == 0x0f) { 127 switch (*second) { 128 case 0x84: 129 return J_JE_32; 130 case 0x85: 131 return J_JNE_32; 132 case 0x8f: 133 return J_JG_32; 134 case 0x8d: 135 return J_JGE_32; 136 case 0x82: 137 return J_JB_32; 138 case 0x86: 139 return J_JBE_32; 140 case 0x8c: 141 return J_JL_32; 142 case 0x8e: 143 return J_JLE_32; 144 case 0x87: 145 return J_JA_32; 146 case 0x83: 147 return J_JAE_32; 148 } 149 } 150 return J_UNKNOWN; 151 } 152 153 // Return the relocation index for input section IS with a specific Offset. 154 // Returns the maximum size of the vector if no such relocation is found. 155 static unsigned getRelocationWithOffset(const InputSection &is, 156 uint64_t offset) { 157 unsigned size = is.relocs().size(); 158 for (unsigned i = size - 1; i + 1 > 0; --i) { 159 if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE) 160 return i; 161 } 162 return size; 163 } 164 165 // Returns true if R corresponds to a relocation used for a jump instruction. 166 // TODO: Once special relocations for relaxable jump instructions are available, 167 // this should be modified to use those relocations. 168 static bool isRelocationForJmpInsn(Relocation &R) { 169 return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 || 170 R.type == R_X86_64_PC8; 171 } 172 173 // Return true if Relocation R points to the first instruction in the 174 // next section. 175 // TODO: Delete this once psABI reserves a new relocation type for fall thru 176 // jumps. 177 static bool isFallThruRelocation(InputSection &is, InputFile *file, 178 InputSection *nextIS, Relocation &r) { 179 if (!isRelocationForJmpInsn(r)) 180 return false; 181 182 uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset; 183 uint64_t targetOffset = InputSectionBase::getRelocTargetVA( 184 file, r.type, r.addend, addrLoc, *r.sym, r.expr); 185 186 // If this jmp is a fall thru, the target offset is the beginning of the 187 // next section. 188 uint64_t nextSectionOffset = 189 nextIS->getOutputSection()->addr + nextIS->outSecOff; 190 return (addrLoc + 4 + targetOffset) == nextSectionOffset; 191 } 192 193 // Return the jmp instruction opcode that is the inverse of the given 194 // opcode. For example, JE inverted is JNE. 195 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) { 196 switch (opcode) { 197 case J_JE_32: 198 return J_JNE_32; 199 case J_JNE_32: 200 return J_JE_32; 201 case J_JG_32: 202 return J_JLE_32; 203 case J_JGE_32: 204 return J_JL_32; 205 case J_JB_32: 206 return J_JAE_32; 207 case J_JBE_32: 208 return J_JA_32; 209 case J_JL_32: 210 return J_JGE_32; 211 case J_JLE_32: 212 return J_JG_32; 213 case J_JA_32: 214 return J_JBE_32; 215 case J_JAE_32: 216 return J_JB_32; 217 default: 218 return J_UNKNOWN; 219 } 220 } 221 222 // Deletes direct jump instruction in input sections that jumps to the 223 // following section as it is not required. If there are two consecutive jump 224 // instructions, it checks if they can be flipped and one can be deleted. 225 // For example: 226 // .section .text 227 // a.BB.foo: 228 // ... 229 // 10: jne aa.BB.foo 230 // 16: jmp bar 231 // aa.BB.foo: 232 // ... 233 // 234 // can be converted to: 235 // a.BB.foo: 236 // ... 237 // 10: je bar #jne flipped to je and the jmp is deleted. 238 // aa.BB.foo: 239 // ... 240 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file, 241 InputSection *nextIS) const { 242 const unsigned sizeOfDirectJmpInsn = 5; 243 244 if (nextIS == nullptr) 245 return false; 246 247 if (is.getSize() < sizeOfDirectJmpInsn) 248 return false; 249 250 // If this jmp insn can be removed, it is the last insn and the 251 // relocation is 4 bytes before the end. 252 unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4); 253 if (rIndex == is.relocs().size()) 254 return false; 255 256 Relocation &r = is.relocs()[rIndex]; 257 258 // Check if the relocation corresponds to a direct jmp. 259 const uint8_t *secContents = is.content().data(); 260 // If it is not a direct jmp instruction, there is nothing to do here. 261 if (*(secContents + r.offset - 1) != 0xe9) 262 return false; 263 264 if (isFallThruRelocation(is, file, nextIS, r)) { 265 // This is a fall thru and can be deleted. 266 r.expr = R_NONE; 267 r.offset = 0; 268 is.drop_back(sizeOfDirectJmpInsn); 269 is.nopFiller = true; 270 return true; 271 } 272 273 // Now, check if flip and delete is possible. 274 const unsigned sizeOfJmpCCInsn = 6; 275 // To flip, there must be at least one JmpCC and one direct jmp. 276 if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn) 277 return false; 278 279 unsigned rbIndex = 280 getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4)); 281 if (rbIndex == is.relocs().size()) 282 return false; 283 284 Relocation &rB = is.relocs()[rbIndex]; 285 286 const uint8_t *jmpInsnB = secContents + rB.offset - 1; 287 JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB); 288 if (jmpOpcodeB == J_UNKNOWN) 289 return false; 290 291 if (!isFallThruRelocation(is, file, nextIS, rB)) 292 return false; 293 294 // jmpCC jumps to the fall thru block, the branch can be flipped and the 295 // jmp can be deleted. 296 JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB); 297 if (jInvert == J_UNKNOWN) 298 return false; 299 is.jumpInstrMod = make<JumpInstrMod>(); 300 *is.jumpInstrMod = {rB.offset - 1, jInvert, 4}; 301 // Move R's values to rB except the offset. 302 rB = {r.expr, r.type, rB.offset, r.addend, r.sym}; 303 // Cancel R 304 r.expr = R_NONE; 305 r.offset = 0; 306 is.drop_back(sizeOfDirectJmpInsn); 307 is.nopFiller = true; 308 return true; 309 } 310 311 bool X86_64::relaxOnce(int pass) const { 312 uint64_t minVA = UINT64_MAX, maxVA = 0; 313 for (OutputSection *osec : outputSections) { 314 minVA = std::min(minVA, osec->addr); 315 maxVA = std::max(maxVA, osec->addr + osec->size); 316 } 317 // If the max VA is under 2^31, GOTPCRELX relocations cannot overfow. In 318 // -pie/-shared, the condition can be relaxed to test the max VA difference as 319 // there is no R_RELAX_GOT_PC_NOPIC. 320 if (isUInt<31>(maxVA) || (isUInt<31>(maxVA - minVA) && config->isPic)) 321 return false; 322 323 SmallVector<InputSection *, 0> storage; 324 bool changed = false; 325 for (OutputSection *osec : outputSections) { 326 if (!(osec->flags & SHF_EXECINSTR)) 327 continue; 328 for (InputSection *sec : getInputSections(*osec, storage)) { 329 for (Relocation &rel : sec->relocs()) { 330 if (rel.expr != R_RELAX_GOT_PC && rel.expr != R_RELAX_GOT_PC_NOPIC) 331 continue; 332 assert(rel.addend == -4); 333 334 uint64_t v = sec->getRelocTargetVA( 335 sec->file, rel.type, rel.expr == R_RELAX_GOT_PC_NOPIC ? 0 : -4, 336 sec->getOutputSection()->addr + sec->outSecOff + rel.offset, 337 *rel.sym, rel.expr); 338 if (isInt<32>(v)) 339 continue; 340 if (rel.sym->auxIdx == 0) { 341 rel.sym->allocateAux(); 342 addGotEntry(*rel.sym); 343 changed = true; 344 } 345 rel.expr = R_GOT_PC; 346 } 347 } 348 } 349 return changed; 350 } 351 352 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s, 353 const uint8_t *loc) const { 354 switch (type) { 355 case R_X86_64_8: 356 case R_X86_64_16: 357 case R_X86_64_32: 358 case R_X86_64_32S: 359 case R_X86_64_64: 360 return R_ABS; 361 case R_X86_64_DTPOFF32: 362 case R_X86_64_DTPOFF64: 363 return R_DTPREL; 364 case R_X86_64_TPOFF32: 365 case R_X86_64_TPOFF64: 366 return R_TPREL; 367 case R_X86_64_TLSDESC_CALL: 368 return R_TLSDESC_CALL; 369 case R_X86_64_TLSLD: 370 return R_TLSLD_PC; 371 case R_X86_64_TLSGD: 372 return R_TLSGD_PC; 373 case R_X86_64_SIZE32: 374 case R_X86_64_SIZE64: 375 return R_SIZE; 376 case R_X86_64_PLT32: 377 return R_PLT_PC; 378 case R_X86_64_PC8: 379 case R_X86_64_PC16: 380 case R_X86_64_PC32: 381 case R_X86_64_PC64: 382 return R_PC; 383 case R_X86_64_GOT32: 384 case R_X86_64_GOT64: 385 return R_GOTPLT; 386 case R_X86_64_GOTPC32_TLSDESC: 387 return R_TLSDESC_PC; 388 case R_X86_64_GOTPCREL: 389 case R_X86_64_GOTPCRELX: 390 case R_X86_64_REX_GOTPCRELX: 391 case R_X86_64_GOTTPOFF: 392 return R_GOT_PC; 393 case R_X86_64_GOTOFF64: 394 return R_GOTPLTREL; 395 case R_X86_64_PLTOFF64: 396 return R_PLT_GOTPLT; 397 case R_X86_64_GOTPC32: 398 case R_X86_64_GOTPC64: 399 return R_GOTPLTONLY_PC; 400 case R_X86_64_NONE: 401 return R_NONE; 402 default: 403 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 404 ") against symbol " + toString(s)); 405 return R_NONE; 406 } 407 } 408 409 void X86_64::writeGotPltHeader(uint8_t *buf) const { 410 // The first entry holds the link-time address of _DYNAMIC. It is documented 411 // in the psABI and glibc before Aug 2021 used the entry to compute run-time 412 // load address of the shared object (note that this is relevant for linking 413 // ld.so, not any other program). 414 write64le(buf, mainPart->dynamic->getVA()); 415 } 416 417 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const { 418 // See comments in X86::writeGotPlt. 419 write64le(buf, s.getPltVA() + 6); 420 } 421 422 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { 423 // An x86 entry is the address of the ifunc resolver function (for -z rel). 424 if (config->writeAddends) 425 write64le(buf, s.getVA()); 426 } 427 428 void X86_64::writePltHeader(uint8_t *buf) const { 429 const uint8_t pltData[] = { 430 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) 431 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) 432 0x0f, 0x1f, 0x40, 0x00, // nop 433 }; 434 memcpy(buf, pltData, sizeof(pltData)); 435 uint64_t gotPlt = in.gotPlt->getVA(); 436 uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA(); 437 write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8 438 write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16 439 } 440 441 void X86_64::writePlt(uint8_t *buf, const Symbol &sym, 442 uint64_t pltEntryAddr) const { 443 const uint8_t inst[] = { 444 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) 445 0x68, 0, 0, 0, 0, // pushq <relocation index> 446 0xe9, 0, 0, 0, 0, // jmpq plt[0] 447 }; 448 memcpy(buf, inst, sizeof(inst)); 449 450 write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6); 451 write32le(buf + 7, sym.getPltIdx()); 452 write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16); 453 } 454 455 RelType X86_64::getDynRel(RelType type) const { 456 if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 || 457 type == R_X86_64_SIZE64) 458 return type; 459 return R_X86_64_NONE; 460 } 461 462 static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { 463 if (rel.type == R_X86_64_TLSGD) { 464 // Convert 465 // .byte 0x66 466 // leaq x@tlsgd(%rip), %rdi 467 // .word 0x6666 468 // rex64 469 // call __tls_get_addr@plt 470 // to the following two instructions. 471 const uint8_t inst[] = { 472 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 473 0x00, 0x00, // mov %fs:0x0,%rax 474 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax 475 }; 476 memcpy(loc - 4, inst, sizeof(inst)); 477 478 // The original code used a pc relative relocation and so we have to 479 // compensate for the -4 in had in the addend. 480 write32le(loc + 8, val + 4); 481 } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) { 482 // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG. 483 if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || 484 (loc[-1] & 0xc7) != 0x05) { 485 errorOrWarn(getErrorLocation(loc - 3) + 486 "R_X86_64_GOTPC32_TLSDESC must be used " 487 "in leaq x@tlsdesc(%rip), %REG"); 488 return; 489 } 490 loc[-3] = 0x48 | ((loc[-3] >> 2) & 1); 491 loc[-2] = 0xc7; 492 loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7); 493 write32le(loc, val + 4); 494 } else { 495 // Convert call *x@tlsdesc(%REG) to xchg ax, ax. 496 assert(rel.type == R_X86_64_TLSDESC_CALL); 497 loc[0] = 0x66; 498 loc[1] = 0x90; 499 } 500 } 501 502 static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) { 503 if (rel.type == R_X86_64_TLSGD) { 504 // Convert 505 // .byte 0x66 506 // leaq x@tlsgd(%rip), %rdi 507 // .word 0x6666 508 // rex64 509 // call __tls_get_addr@plt 510 // to the following two instructions. 511 const uint8_t inst[] = { 512 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 513 0x00, 0x00, // mov %fs:0x0,%rax 514 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax 515 }; 516 memcpy(loc - 4, inst, sizeof(inst)); 517 518 // Both code sequences are PC relatives, but since we are moving the 519 // constant forward by 8 bytes we have to subtract the value by 8. 520 write32le(loc + 8, val - 8); 521 } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) { 522 // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG. 523 assert(rel.type == R_X86_64_GOTPC32_TLSDESC); 524 if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || 525 (loc[-1] & 0xc7) != 0x05) { 526 errorOrWarn(getErrorLocation(loc - 3) + 527 "R_X86_64_GOTPC32_TLSDESC must be used " 528 "in leaq x@tlsdesc(%rip), %REG"); 529 return; 530 } 531 loc[-2] = 0x8b; 532 write32le(loc, val); 533 } else { 534 // Convert call *x@tlsdesc(%rax) to xchg ax, ax. 535 assert(rel.type == R_X86_64_TLSDESC_CALL); 536 loc[0] = 0x66; 537 loc[1] = 0x90; 538 } 539 } 540 541 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to 542 // R_X86_64_TPOFF32 so that it does not use GOT. 543 static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) { 544 uint8_t *inst = loc - 3; 545 uint8_t reg = loc[-1] >> 3; 546 uint8_t *regSlot = loc - 1; 547 548 // Note that ADD with RSP or R12 is converted to ADD instead of LEA 549 // because LEA with these registers needs 4 bytes to encode and thus 550 // wouldn't fit the space. 551 552 if (memcmp(inst, "\x48\x03\x25", 3) == 0) { 553 // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" 554 memcpy(inst, "\x48\x81\xc4", 3); 555 } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) { 556 // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" 557 memcpy(inst, "\x49\x81\xc4", 3); 558 } else if (memcmp(inst, "\x4c\x03", 2) == 0) { 559 // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" 560 memcpy(inst, "\x4d\x8d", 2); 561 *regSlot = 0x80 | (reg << 3) | reg; 562 } else if (memcmp(inst, "\x48\x03", 2) == 0) { 563 // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" 564 memcpy(inst, "\x48\x8d", 2); 565 *regSlot = 0x80 | (reg << 3) | reg; 566 } else if (memcmp(inst, "\x4c\x8b", 2) == 0) { 567 // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" 568 memcpy(inst, "\x49\xc7", 2); 569 *regSlot = 0xc0 | reg; 570 } else if (memcmp(inst, "\x48\x8b", 2) == 0) { 571 // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" 572 memcpy(inst, "\x48\xc7", 2); 573 *regSlot = 0xc0 | reg; 574 } else { 575 error(getErrorLocation(loc - 3) + 576 "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); 577 } 578 579 // The original code used a PC relative relocation. 580 // Need to compensate for the -4 it had in the addend. 581 write32le(loc, val + 4); 582 } 583 584 static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { 585 const uint8_t inst[] = { 586 0x66, 0x66, // .word 0x6666 587 0x66, // .byte 0x66 588 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax 589 }; 590 591 if (loc[4] == 0xe8) { 592 // Convert 593 // leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc> 594 // callq __tls_get_addr@PLT # e8 <disp32> 595 // leaq bar@dtpoff(%rax), %rcx 596 // to 597 // .word 0x6666 598 // .byte 0x66 599 // mov %fs:0,%rax 600 // leaq bar@tpoff(%rax), %rcx 601 memcpy(loc - 3, inst, sizeof(inst)); 602 return; 603 } 604 605 if (loc[4] == 0xff && loc[5] == 0x15) { 606 // Convert 607 // leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc> 608 // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32> 609 // to 610 // .long 0x66666666 611 // movq %fs:0,%rax 612 // See "Table 11.9: LD -> LE Code Transition (LP64)" in 613 // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf 614 loc[-3] = 0x66; 615 memcpy(loc - 2, inst, sizeof(inst)); 616 return; 617 } 618 619 error(getErrorLocation(loc - 3) + 620 "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD"); 621 } 622 623 // A JumpInstrMod at a specific offset indicates that the jump instruction 624 // opcode at that offset must be modified. This is specifically used to relax 625 // jump instructions with basic block sections. This function looks at the 626 // JumpMod and effects the change. 627 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type, 628 unsigned size) const { 629 switch (type) { 630 case J_JMP_32: 631 if (size == 4) 632 *loc = 0xe9; 633 else 634 *loc = 0xeb; 635 break; 636 case J_JE_32: 637 if (size == 4) { 638 loc[-1] = 0x0f; 639 *loc = 0x84; 640 } else 641 *loc = 0x74; 642 break; 643 case J_JNE_32: 644 if (size == 4) { 645 loc[-1] = 0x0f; 646 *loc = 0x85; 647 } else 648 *loc = 0x75; 649 break; 650 case J_JG_32: 651 if (size == 4) { 652 loc[-1] = 0x0f; 653 *loc = 0x8f; 654 } else 655 *loc = 0x7f; 656 break; 657 case J_JGE_32: 658 if (size == 4) { 659 loc[-1] = 0x0f; 660 *loc = 0x8d; 661 } else 662 *loc = 0x7d; 663 break; 664 case J_JB_32: 665 if (size == 4) { 666 loc[-1] = 0x0f; 667 *loc = 0x82; 668 } else 669 *loc = 0x72; 670 break; 671 case J_JBE_32: 672 if (size == 4) { 673 loc[-1] = 0x0f; 674 *loc = 0x86; 675 } else 676 *loc = 0x76; 677 break; 678 case J_JL_32: 679 if (size == 4) { 680 loc[-1] = 0x0f; 681 *loc = 0x8c; 682 } else 683 *loc = 0x7c; 684 break; 685 case J_JLE_32: 686 if (size == 4) { 687 loc[-1] = 0x0f; 688 *loc = 0x8e; 689 } else 690 *loc = 0x7e; 691 break; 692 case J_JA_32: 693 if (size == 4) { 694 loc[-1] = 0x0f; 695 *loc = 0x87; 696 } else 697 *loc = 0x77; 698 break; 699 case J_JAE_32: 700 if (size == 4) { 701 loc[-1] = 0x0f; 702 *loc = 0x83; 703 } else 704 *loc = 0x73; 705 break; 706 case J_UNKNOWN: 707 llvm_unreachable("Unknown Jump Relocation"); 708 } 709 } 710 711 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const { 712 switch (type) { 713 case R_X86_64_8: 714 case R_X86_64_PC8: 715 return SignExtend64<8>(*buf); 716 case R_X86_64_16: 717 case R_X86_64_PC16: 718 return SignExtend64<16>(read16le(buf)); 719 case R_X86_64_32: 720 case R_X86_64_32S: 721 case R_X86_64_TPOFF32: 722 case R_X86_64_GOT32: 723 case R_X86_64_GOTPC32: 724 case R_X86_64_GOTPC32_TLSDESC: 725 case R_X86_64_GOTPCREL: 726 case R_X86_64_GOTPCRELX: 727 case R_X86_64_REX_GOTPCRELX: 728 case R_X86_64_PC32: 729 case R_X86_64_GOTTPOFF: 730 case R_X86_64_PLT32: 731 case R_X86_64_TLSGD: 732 case R_X86_64_TLSLD: 733 case R_X86_64_DTPOFF32: 734 case R_X86_64_SIZE32: 735 return SignExtend64<32>(read32le(buf)); 736 case R_X86_64_64: 737 case R_X86_64_TPOFF64: 738 case R_X86_64_DTPOFF64: 739 case R_X86_64_DTPMOD64: 740 case R_X86_64_PC64: 741 case R_X86_64_SIZE64: 742 case R_X86_64_GLOB_DAT: 743 case R_X86_64_GOT64: 744 case R_X86_64_GOTOFF64: 745 case R_X86_64_GOTPC64: 746 case R_X86_64_PLTOFF64: 747 case R_X86_64_IRELATIVE: 748 case R_X86_64_RELATIVE: 749 return read64le(buf); 750 case R_X86_64_TLSDESC: 751 return read64le(buf + 8); 752 case R_X86_64_JUMP_SLOT: 753 case R_X86_64_NONE: 754 // These relocations are defined as not having an implicit addend. 755 return 0; 756 default: 757 internalLinkerError(getErrorLocation(buf), 758 "cannot read addend for relocation " + toString(type)); 759 return 0; 760 } 761 } 762 763 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val); 764 765 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 766 switch (rel.type) { 767 case R_X86_64_8: 768 checkIntUInt(loc, val, 8, rel); 769 *loc = val; 770 break; 771 case R_X86_64_PC8: 772 checkInt(loc, val, 8, rel); 773 *loc = val; 774 break; 775 case R_X86_64_16: 776 checkIntUInt(loc, val, 16, rel); 777 write16le(loc, val); 778 break; 779 case R_X86_64_PC16: 780 checkInt(loc, val, 16, rel); 781 write16le(loc, val); 782 break; 783 case R_X86_64_32: 784 checkUInt(loc, val, 32, rel); 785 write32le(loc, val); 786 break; 787 case R_X86_64_32S: 788 case R_X86_64_GOT32: 789 case R_X86_64_GOTPC32: 790 case R_X86_64_GOTPCREL: 791 case R_X86_64_PC32: 792 case R_X86_64_PLT32: 793 case R_X86_64_DTPOFF32: 794 case R_X86_64_SIZE32: 795 checkInt(loc, val, 32, rel); 796 write32le(loc, val); 797 break; 798 case R_X86_64_64: 799 case R_X86_64_TPOFF64: 800 case R_X86_64_DTPOFF64: 801 case R_X86_64_PC64: 802 case R_X86_64_SIZE64: 803 case R_X86_64_GOT64: 804 case R_X86_64_GOTOFF64: 805 case R_X86_64_GOTPC64: 806 case R_X86_64_PLTOFF64: 807 write64le(loc, val); 808 break; 809 case R_X86_64_GOTPCRELX: 810 case R_X86_64_REX_GOTPCRELX: 811 if (rel.expr != R_GOT_PC) { 812 relaxGot(loc, rel, val); 813 } else { 814 checkInt(loc, val, 32, rel); 815 write32le(loc, val); 816 } 817 break; 818 case R_X86_64_GOTPC32_TLSDESC: 819 case R_X86_64_TLSDESC_CALL: 820 case R_X86_64_TLSGD: 821 if (rel.expr == R_RELAX_TLS_GD_TO_LE) { 822 relaxTlsGdToLe(loc, rel, val); 823 } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) { 824 relaxTlsGdToIe(loc, rel, val); 825 } else { 826 checkInt(loc, val, 32, rel); 827 write32le(loc, val); 828 } 829 break; 830 case R_X86_64_TLSLD: 831 if (rel.expr == R_RELAX_TLS_LD_TO_LE) { 832 relaxTlsLdToLe(loc, rel, val); 833 } else { 834 checkInt(loc, val, 32, rel); 835 write32le(loc, val); 836 } 837 break; 838 case R_X86_64_GOTTPOFF: 839 if (rel.expr == R_RELAX_TLS_IE_TO_LE) { 840 relaxTlsIeToLe(loc, rel, val); 841 } else { 842 checkInt(loc, val, 32, rel); 843 write32le(loc, val); 844 } 845 break; 846 case R_X86_64_TPOFF32: 847 checkInt(loc, val, 32, rel); 848 write32le(loc, val); 849 break; 850 851 case R_X86_64_TLSDESC: 852 // The addend is stored in the second 64-bit word. 853 write64le(loc + 8, val); 854 break; 855 default: 856 llvm_unreachable("unknown relocation"); 857 } 858 } 859 860 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend, 861 const uint8_t *loc) const { 862 // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX 863 // with addend != -4. Such an instruction does not load the full GOT entry, so 864 // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax 865 // (addend=0) loads the high 32 bits of the GOT entry. 866 if (!config->relax || addend != -4 || 867 (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX)) 868 return R_GOT_PC; 869 const uint8_t op = loc[-2]; 870 const uint8_t modRm = loc[-1]; 871 872 // FIXME: When PIC is disabled and foo is defined locally in the 873 // lower 32 bit address space, memory operand in mov can be converted into 874 // immediate operand. Otherwise, mov must be changed to lea. We support only 875 // latter relaxation at this moment. 876 if (op == 0x8b) 877 return R_RELAX_GOT_PC; 878 879 // Relax call and jmp. 880 if (op == 0xff && (modRm == 0x15 || modRm == 0x25)) 881 return R_RELAX_GOT_PC; 882 883 // We don't support test/binop instructions without a REX prefix. 884 if (type == R_X86_64_GOTPCRELX) 885 return R_GOT_PC; 886 887 // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. 888 // If PIC then no relaxation is available. 889 return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC; 890 } 891 892 // A subset of relaxations can only be applied for no-PIC. This method 893 // handles such relaxations. Instructions encoding information was taken from: 894 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" 895 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ 896 // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) 897 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op, 898 uint8_t modRm) { 899 const uint8_t rex = loc[-3]; 900 // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". 901 if (op == 0x85) { 902 // See "TEST-Logical Compare" (4-428 Vol. 2B), 903 // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). 904 905 // ModR/M byte has form XX YYY ZZZ, where 906 // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). 907 // XX has different meanings: 908 // 00: The operand's memory address is in reg1. 909 // 01: The operand's memory address is reg1 + a byte-sized displacement. 910 // 10: The operand's memory address is reg1 + a word-sized displacement. 911 // 11: The operand is reg1 itself. 912 // If an instruction requires only one operand, the unused reg2 field 913 // holds extra opcode bits rather than a register code 914 // 0xC0 == 11 000 000 binary. 915 // 0x38 == 00 111 000 binary. 916 // We transfer reg2 to reg1 here as operand. 917 // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). 918 loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte. 919 920 // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 921 // See "TEST-Logical Compare" (4-428 Vol. 2B). 922 loc[-2] = 0xf7; 923 924 // Move R bit to the B bit in REX byte. 925 // REX byte is encoded as 0100WRXB, where 926 // 0100 is 4bit fixed pattern. 927 // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the 928 // default operand size is used (which is 32-bit for most but not all 929 // instructions). 930 // REX.R This 1-bit value is an extension to the MODRM.reg field. 931 // REX.X This 1-bit value is an extension to the SIB.index field. 932 // REX.B This 1-bit value is an extension to the MODRM.rm field or the 933 // SIB.base field. 934 // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). 935 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; 936 write32le(loc, val); 937 return; 938 } 939 940 // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub 941 // or xor operations. 942 943 // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". 944 // Logic is close to one for test instruction above, but we also 945 // write opcode extension here, see below for details. 946 loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte. 947 948 // Primary opcode is 0x81, opcode extension is one of: 949 // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, 950 // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. 951 // This value was wrote to MODRM.reg in a line above. 952 // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), 953 // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for 954 // descriptions about each operation. 955 loc[-2] = 0x81; 956 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; 957 write32le(loc, val); 958 } 959 960 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) { 961 assert(isInt<32>(val) && 962 "GOTPCRELX should not have been relaxed if it overflows"); 963 const uint8_t op = loc[-2]; 964 const uint8_t modRm = loc[-1]; 965 966 // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". 967 if (op == 0x8b) { 968 loc[-2] = 0x8d; 969 write32le(loc, val); 970 return; 971 } 972 973 if (op != 0xff) { 974 // We are relaxing a rip relative to an absolute, so compensate 975 // for the old -4 addend. 976 assert(!config->isPic); 977 relaxGotNoPic(loc, val + 4, op, modRm); 978 return; 979 } 980 981 // Convert call/jmp instructions. 982 if (modRm == 0x15) { 983 // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". 984 // Instead we convert to "addr32 call foo" where addr32 is an instruction 985 // prefix. That makes result expression to be a single instruction. 986 loc[-2] = 0x67; // addr32 prefix 987 loc[-1] = 0xe8; // call 988 write32le(loc, val); 989 return; 990 } 991 992 // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". 993 // jmp doesn't return, so it is fine to use nop here, it is just a stub. 994 assert(modRm == 0x25); 995 loc[-2] = 0xe9; // jmp 996 loc[3] = 0x90; // nop 997 write32le(loc - 1, val + 1); 998 } 999 1000 // A split-stack prologue starts by checking the amount of stack remaining 1001 // in one of two ways: 1002 // A) Comparing of the stack pointer to a field in the tcb. 1003 // B) Or a load of a stack pointer offset with an lea to r10 or r11. 1004 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 1005 uint8_t stOther) const { 1006 if (!config->is64) { 1007 error("target doesn't support split stacks"); 1008 return false; 1009 } 1010 1011 if (loc + 8 >= end) 1012 return false; 1013 1014 // Replace "cmp %fs:0x70,%rsp" and subsequent branch 1015 // with "stc, nopl 0x0(%rax,%rax,1)" 1016 if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) { 1017 memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8); 1018 return true; 1019 } 1020 1021 // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could 1022 // be r10 or r11. The lea instruction feeds a subsequent compare which checks 1023 // if there is X available stack space. Making X larger effectively reserves 1024 // that much additional space. The stack grows downward so subtract the value. 1025 if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 || 1026 memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) { 1027 // The offset bytes are encoded four bytes after the start of the 1028 // instruction. 1029 write32le(loc + 4, read32le(loc + 4) - 0x4000); 1030 return true; 1031 } 1032 return false; 1033 } 1034 1035 void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { 1036 uint64_t secAddr = sec.getOutputSection()->addr; 1037 if (auto *s = dyn_cast<InputSection>(&sec)) 1038 secAddr += s->outSecOff; 1039 else if (auto *ehIn = dyn_cast<EhInputSection>(&sec)) 1040 secAddr += ehIn->getParent()->outSecOff; 1041 for (const Relocation &rel : sec.relocs()) { 1042 if (rel.expr == R_NONE) // See deleteFallThruJmpInsn 1043 continue; 1044 uint8_t *loc = buf + rel.offset; 1045 const uint64_t val = 1046 sec.getRelocTargetVA(sec.file, rel.type, rel.addend, 1047 secAddr + rel.offset, *rel.sym, rel.expr); 1048 relocate(loc, rel, val); 1049 } 1050 if (sec.jumpInstrMod) { 1051 applyJumpInstrMod(buf + sec.jumpInstrMod->offset, 1052 sec.jumpInstrMod->original, sec.jumpInstrMod->size); 1053 } 1054 } 1055 1056 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT 1057 // entries containing endbr64 instructions. A PLT entry will be split into two 1058 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt). 1059 namespace { 1060 class IntelIBT : public X86_64 { 1061 public: 1062 IntelIBT(); 1063 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 1064 void writePlt(uint8_t *buf, const Symbol &sym, 1065 uint64_t pltEntryAddr) const override; 1066 void writeIBTPlt(uint8_t *buf, size_t numEntries) const override; 1067 1068 static const unsigned IBTPltHeaderSize = 16; 1069 }; 1070 } // namespace 1071 1072 IntelIBT::IntelIBT() { pltHeaderSize = 0; } 1073 1074 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const { 1075 uint64_t va = 1076 in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize; 1077 write64le(buf, va); 1078 } 1079 1080 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym, 1081 uint64_t pltEntryAddr) const { 1082 const uint8_t Inst[] = { 1083 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 1084 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) 1085 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop 1086 }; 1087 memcpy(buf, Inst, sizeof(Inst)); 1088 write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10); 1089 } 1090 1091 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const { 1092 writePltHeader(buf); 1093 buf += IBTPltHeaderSize; 1094 1095 const uint8_t inst[] = { 1096 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 1097 0x68, 0, 0, 0, 0, // pushq <relocation index> 1098 0xe9, 0, 0, 0, 0, // jmpq plt[0] 1099 0x66, 0x90, // nop 1100 }; 1101 1102 for (size_t i = 0; i < numEntries; ++i) { 1103 memcpy(buf, inst, sizeof(inst)); 1104 write32le(buf + 5, i); 1105 write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30); 1106 buf += sizeof(inst); 1107 } 1108 } 1109 1110 // These nonstandard PLT entries are to migtigate Spectre v2 security 1111 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect 1112 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT 1113 // entries, we use a CALL followed by MOV and RET to do the same thing as an 1114 // indirect jump. That instruction sequence is so-called "retpoline". 1115 // 1116 // We have two types of retpoline PLTs as a size optimization. If `-z now` 1117 // is specified, all dynamic symbols are resolved at load-time. Thus, when 1118 // that option is given, we can omit code for symbol lazy resolution. 1119 namespace { 1120 class Retpoline : public X86_64 { 1121 public: 1122 Retpoline(); 1123 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 1124 void writePltHeader(uint8_t *buf) const override; 1125 void writePlt(uint8_t *buf, const Symbol &sym, 1126 uint64_t pltEntryAddr) const override; 1127 }; 1128 1129 class RetpolineZNow : public X86_64 { 1130 public: 1131 RetpolineZNow(); 1132 void writeGotPlt(uint8_t *buf, const Symbol &s) const override {} 1133 void writePltHeader(uint8_t *buf) const override; 1134 void writePlt(uint8_t *buf, const Symbol &sym, 1135 uint64_t pltEntryAddr) const override; 1136 }; 1137 } // namespace 1138 1139 Retpoline::Retpoline() { 1140 pltHeaderSize = 48; 1141 pltEntrySize = 32; 1142 ipltEntrySize = 32; 1143 } 1144 1145 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const { 1146 write64le(buf, s.getPltVA() + 17); 1147 } 1148 1149 void Retpoline::writePltHeader(uint8_t *buf) const { 1150 const uint8_t insn[] = { 1151 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip) 1152 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11 1153 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next 1154 0xf3, 0x90, // 12: loop: pause 1155 0x0f, 0xae, 0xe8, // 14: lfence 1156 0xeb, 0xf9, // 17: jmp loop 1157 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16 1158 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp) 1159 0xc3, // 24: ret 1160 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding 1161 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding 1162 }; 1163 memcpy(buf, insn, sizeof(insn)); 1164 1165 uint64_t gotPlt = in.gotPlt->getVA(); 1166 uint64_t plt = in.plt->getVA(); 1167 write32le(buf + 2, gotPlt - plt - 6 + 8); 1168 write32le(buf + 9, gotPlt - plt - 13 + 16); 1169 } 1170 1171 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym, 1172 uint64_t pltEntryAddr) const { 1173 const uint8_t insn[] = { 1174 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11 1175 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20 1176 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12 1177 0x68, 0, 0, 0, 0, // 11: pushq <relocation index> 1178 0xe9, 0, 0, 0, 0, // 16: jmp plt+0 1179 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding 1180 }; 1181 memcpy(buf, insn, sizeof(insn)); 1182 1183 uint64_t off = pltEntryAddr - in.plt->getVA(); 1184 1185 write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7); 1186 write32le(buf + 8, -off - 12 + 32); 1187 write32le(buf + 13, -off - 17 + 18); 1188 write32le(buf + 18, sym.getPltIdx()); 1189 write32le(buf + 23, -off - 27); 1190 } 1191 1192 RetpolineZNow::RetpolineZNow() { 1193 pltHeaderSize = 32; 1194 pltEntrySize = 16; 1195 ipltEntrySize = 16; 1196 } 1197 1198 void RetpolineZNow::writePltHeader(uint8_t *buf) const { 1199 const uint8_t insn[] = { 1200 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next 1201 0xf3, 0x90, // 5: loop: pause 1202 0x0f, 0xae, 0xe8, // 7: lfence 1203 0xeb, 0xf9, // a: jmp loop 1204 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16 1205 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp) 1206 0xc3, // 14: ret 1207 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding 1208 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding 1209 0xcc, // 1f: int3; padding 1210 }; 1211 memcpy(buf, insn, sizeof(insn)); 1212 } 1213 1214 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym, 1215 uint64_t pltEntryAddr) const { 1216 const uint8_t insn[] = { 1217 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11 1218 0xe9, 0, 0, 0, 0, // jmp plt+0 1219 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding 1220 }; 1221 memcpy(buf, insn, sizeof(insn)); 1222 1223 write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7); 1224 write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12); 1225 } 1226 1227 static TargetInfo *getTargetInfo() { 1228 if (config->zRetpolineplt) { 1229 if (config->zNow) { 1230 static RetpolineZNow t; 1231 return &t; 1232 } 1233 static Retpoline t; 1234 return &t; 1235 } 1236 1237 if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) { 1238 static IntelIBT t; 1239 return &t; 1240 } 1241 1242 static X86_64 t; 1243 return &t; 1244 } 1245 1246 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); } 1247