1 //===- PPC64.cpp ----------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SymbolTable.h" 10 #include "Symbols.h" 11 #include "SyntheticSections.h" 12 #include "Target.h" 13 #include "Thunks.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "lld/Common/Memory.h" 16 #include "llvm/Support/Endian.h" 17 18 using namespace llvm; 19 using namespace llvm::object; 20 using namespace llvm::support::endian; 21 using namespace llvm::ELF; 22 using namespace lld; 23 using namespace lld::elf; 24 25 static uint64_t ppc64TocOffset = 0x8000; 26 static uint64_t dynamicThreadPointerOffset = 0x8000; 27 28 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform 29 // instructions that can be used as part of the initial exec TLS sequence. 30 enum XFormOpcd { 31 LBZX = 87, 32 LHZX = 279, 33 LWZX = 23, 34 LDX = 21, 35 STBX = 215, 36 STHX = 407, 37 STWX = 151, 38 STDX = 149, 39 ADD = 266, 40 }; 41 42 enum DFormOpcd { 43 LBZ = 34, 44 LBZU = 35, 45 LHZ = 40, 46 LHZU = 41, 47 LHAU = 43, 48 LWZ = 32, 49 LWZU = 33, 50 LFSU = 49, 51 LD = 58, 52 LFDU = 51, 53 STB = 38, 54 STBU = 39, 55 STH = 44, 56 STHU = 45, 57 STW = 36, 58 STWU = 37, 59 STFSU = 53, 60 STFDU = 55, 61 STD = 62, 62 ADDI = 14 63 }; 64 65 uint64_t elf::getPPC64TocBase() { 66 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 67 // TOC starts where the first of these sections starts. We always create a 68 // .got when we see a relocation that uses it, so for us the start is always 69 // the .got. 70 uint64_t tocVA = in.got->getVA(); 71 72 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 73 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 74 // code (crt1.o) assumes that you can get from the TOC base to the 75 // start of the .toc section with only a single (signed) 16-bit relocation. 76 return tocVA + ppc64TocOffset; 77 } 78 79 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) { 80 // The offset is encoded into the 3 most significant bits of the st_other 81 // field, with some special values described in section 3.4.1 of the ABI: 82 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use 83 // the TOC pointer (r2). r2 will hold the same value on returning from 84 // the function as it did on entering the function. 85 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a 86 // caller-saved register for all callers. 87 // 2-6 --> The binary logarithm of the offset eg: 88 // 2 --> 2^2 = 4 bytes --> 1 instruction. 89 // 6 --> 2^6 = 64 bytes --> 16 instructions. 90 // 7 --> Reserved. 91 uint8_t gepToLep = (stOther >> 5) & 7; 92 if (gepToLep < 2) 93 return 0; 94 95 // The value encoded in the st_other bits is the 96 // log-base-2(offset). 97 if (gepToLep < 7) 98 return 1 << gepToLep; 99 100 error("reserved value of 7 in the 3 most-significant-bits of st_other"); 101 return 0; 102 } 103 104 bool elf::isPPC64SmallCodeModelTocReloc(RelType type) { 105 // The only small code model relocations that access the .toc section. 106 return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS; 107 } 108 109 static bool addOptional(StringRef name, uint64_t value, 110 std::vector<Defined *> &defined) { 111 Symbol *sym = symtab->find(name); 112 if (!sym || sym->isDefined()) 113 return false; 114 sym->resolve(Defined{/*file=*/nullptr, saver.save(name), STB_GLOBAL, 115 STV_HIDDEN, STT_FUNC, value, 116 /*size=*/0, /*section=*/nullptr}); 117 defined.push_back(cast<Defined>(sym)); 118 return true; 119 } 120 121 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15: 122 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail 123 // The labels are defined only if they exist in the symbol table. 124 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix, 125 int from, uint32_t firstInsn, 126 ArrayRef<uint32_t> tail) { 127 std::vector<Defined *> defined; 128 char name[16]; 129 int first; 130 uint32_t *ptr = buf.data(); 131 for (int r = from; r < 32; ++r) { 132 format("%s%d", prefix, r).snprint(name, sizeof(name)); 133 if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1) 134 first = r - from; 135 write32(ptr++, firstInsn + 0x200008 * (r - from)); 136 } 137 for (uint32_t insn : tail) 138 write32(ptr++, insn); 139 assert(ptr == &*buf.end()); 140 141 if (defined.empty()) 142 return; 143 // The full section content has the extent of [begin, end). We drop unused 144 // instructions and write [first,end). 145 auto *sec = make<InputSection>( 146 nullptr, SHF_ALLOC, SHT_PROGBITS, 4, 147 makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first), 148 4 * (buf.size() - first)), 149 ".text"); 150 inputSections.push_back(sec); 151 for (Defined *sym : defined) { 152 sym->section = sec; 153 sym->value -= 4 * first; 154 } 155 } 156 157 // Implements some save and restore functions as described by ELF V2 ABI to be 158 // compatible with GCC. With GCC -Os, when the number of call-saved registers 159 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and 160 // expects the linker to define them. See 161 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and 162 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is 163 // weird because libgcc.a would be the natural place. The linker generation 164 // approach has the advantage that the linker can generate multiple copies to 165 // avoid long branch thunks. However, we don't consider the advantage 166 // significant enough to complicate our trunk implementation, so we take the 167 // simple approach and synthesize .text sections providing the implementation. 168 void elf::addPPC64SaveRestore() { 169 static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19]; 170 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6; 171 172 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ... 173 // Tail: ld 0, 16(1); mtlr 0; blr 174 writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70, 175 {0xe8010010, mtlr_0, blr}); 176 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ... 177 // Tail: blr 178 writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr}); 179 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ... 180 // Tail: std 0, 16(1); blr 181 writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr}); 182 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ... 183 // Tail: blr 184 writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr}); 185 } 186 187 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset. 188 template <typename ELFT> 189 static std::pair<Defined *, int64_t> 190 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) { 191 if (tocSec->numRelocations == 0) 192 return {}; 193 194 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by 195 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the 196 // relocation index in most cases. 197 // 198 // In rare cases a TOC entry may store a constant that doesn't need an 199 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8 200 // points to a relocation with larger r_offset. Do a linear probe then. 201 // Constants are extremely uncommon in .toc and the extra number of array 202 // accesses can be seen as a small constant. 203 ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>(); 204 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1); 205 for (;;) { 206 if (relas[index].r_offset == offset) { 207 Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]); 208 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])}; 209 } 210 if (relas[index].r_offset < offset || index == 0) 211 break; 212 --index; 213 } 214 return {}; 215 } 216 217 // When accessing a symbol defined in another translation unit, compilers 218 // reserve a .toc entry, allocate a local label and generate toc-indirect 219 // instructions: 220 // 221 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA 222 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry 223 // ld/lwa 3, 0(3) # load the value from the address 224 // 225 // .section .toc,"aw",@progbits 226 // .LC0: .tc var[TC],var 227 // 228 // If var is defined, non-preemptable and addressable with a 32-bit signed 229 // offset from the toc base, the address of var can be computed by adding an 230 // offset to the toc base, saving a load. 231 // 232 // addis 3,2,var@toc@ha # this may be relaxed to a nop, 233 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc 234 // ld/lwa 3, 0(3) # load the value from the address 235 // 236 // Returns true if the relaxation is performed. 237 bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) { 238 assert(config->tocOptimize); 239 if (rel.addend < 0) 240 return false; 241 242 // If the symbol is not the .toc section, this isn't a toc-indirection. 243 Defined *defSym = dyn_cast<Defined>(rel.sym); 244 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc") 245 return false; 246 247 Defined *d; 248 int64_t addend; 249 auto *tocISB = cast<InputSectionBase>(defSym->section); 250 std::tie(d, addend) = 251 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend) 252 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend); 253 254 // Only non-preemptable defined symbols can be relaxed. 255 if (!d || d->isPreemptible) 256 return false; 257 258 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable 259 // ifunc and changed its type to STT_FUNC. 260 assert(!d->isGnuIFunc()); 261 262 // Two instructions can materialize a 32-bit signed offset from the toc base. 263 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase(); 264 if (!isInt<32>(tocRelative)) 265 return false; 266 267 // Add PPC64TocOffset that will be subtracted by PPC64::relocate(). 268 target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset); 269 return true; 270 } 271 272 namespace { 273 class PPC64 final : public TargetInfo { 274 public: 275 PPC64(); 276 int getTlsGdRelaxSkip(RelType type) const override; 277 uint32_t calcEFlags() const override; 278 RelExpr getRelExpr(RelType type, const Symbol &s, 279 const uint8_t *loc) const override; 280 RelType getDynRel(RelType type) const override; 281 void writePltHeader(uint8_t *buf) const override; 282 void writePlt(uint8_t *buf, const Symbol &sym, 283 uint64_t pltEntryAddr) const override; 284 void writeIplt(uint8_t *buf, const Symbol &sym, 285 uint64_t pltEntryAddr) const override; 286 void relocate(uint8_t *loc, const Relocation &rel, 287 uint64_t val) const override; 288 void writeGotHeader(uint8_t *buf) const override; 289 bool needsThunk(RelExpr expr, RelType type, const InputFile *file, 290 uint64_t branchAddr, const Symbol &s, 291 int64_t a) const override; 292 uint32_t getThunkSectionSpacing() const override; 293 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; 294 RelExpr adjustRelaxExpr(RelType type, const uint8_t *data, 295 RelExpr expr) const override; 296 void relaxGot(uint8_t *loc, const Relocation &rel, 297 uint64_t val) const override; 298 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 299 uint64_t val) const override; 300 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 301 uint64_t val) const override; 302 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 303 uint64_t val) const override; 304 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 305 uint64_t val) const override; 306 307 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 308 uint8_t stOther) const override; 309 }; 310 } // namespace 311 312 // Relocation masks following the #lo(value), #hi(value), #ha(value), 313 // #higher(value), #highera(value), #highest(value), and #highesta(value) 314 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 315 // document. 316 static uint16_t lo(uint64_t v) { return v; } 317 static uint16_t hi(uint64_t v) { return v >> 16; } 318 static uint16_t ha(uint64_t v) { return (v + 0x8000) >> 16; } 319 static uint16_t higher(uint64_t v) { return v >> 32; } 320 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; } 321 static uint16_t highest(uint64_t v) { return v >> 48; } 322 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; } 323 324 // Extracts the 'PO' field of an instruction encoding. 325 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); } 326 327 static bool isDQFormInstruction(uint32_t encoding) { 328 switch (getPrimaryOpCode(encoding)) { 329 default: 330 return false; 331 case 56: 332 // The only instruction with a primary opcode of 56 is `lq`. 333 return true; 334 case 61: 335 // There are both DS and DQ instruction forms with this primary opcode. 336 // Namely `lxv` and `stxv` are the DQ-forms that use it. 337 // The DS 'XO' bits being set to 01 is restricted to DQ form. 338 return (encoding & 3) == 0x1; 339 } 340 } 341 342 static bool isInstructionUpdateForm(uint32_t encoding) { 343 switch (getPrimaryOpCode(encoding)) { 344 default: 345 return false; 346 case LBZU: 347 case LHAU: 348 case LHZU: 349 case LWZU: 350 case LFSU: 351 case LFDU: 352 case STBU: 353 case STHU: 354 case STWU: 355 case STFSU: 356 case STFDU: 357 return true; 358 // LWA has the same opcode as LD, and the DS bits is what differentiates 359 // between LD/LDU/LWA 360 case LD: 361 case STD: 362 return (encoding & 3) == 1; 363 } 364 } 365 366 // There are a number of places when we either want to read or write an 367 // instruction when handling a half16 relocation type. On big-endian the buffer 368 // pointer is pointing into the middle of the word we want to extract, and on 369 // little-endian it is pointing to the start of the word. These 2 helpers are to 370 // simplify reading and writing in that context. 371 static void writeFromHalf16(uint8_t *loc, uint32_t insn) { 372 write32(config->isLE ? loc : loc - 2, insn); 373 } 374 375 static uint32_t readFromHalf16(const uint8_t *loc) { 376 return read32(config->isLE ? loc : loc - 2); 377 } 378 379 // The prefixed instruction is always a 4 byte prefix followed by a 4 byte 380 // instruction. Therefore, the prefix is always in lower memory than the 381 // instruction (regardless of endianness). 382 // As a result, we need to shift the pieces around on little endian machines. 383 static void writePrefixedInstruction(uint8_t *loc, uint64_t insn) { 384 insn = config->isLE ? insn << 32 | insn >> 32 : insn; 385 write64(loc, insn); 386 } 387 388 static uint64_t readPrefixedInstruction(const uint8_t *loc) { 389 uint64_t fullInstr = read64(loc); 390 return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr; 391 } 392 393 PPC64::PPC64() { 394 copyRel = R_PPC64_COPY; 395 gotRel = R_PPC64_GLOB_DAT; 396 noneRel = R_PPC64_NONE; 397 pltRel = R_PPC64_JMP_SLOT; 398 relativeRel = R_PPC64_RELATIVE; 399 iRelativeRel = R_PPC64_IRELATIVE; 400 symbolicRel = R_PPC64_ADDR64; 401 pltHeaderSize = 60; 402 pltEntrySize = 4; 403 ipltEntrySize = 16; // PPC64PltCallStub::size 404 gotBaseSymInGotPlt = false; 405 gotHeaderEntriesNum = 1; 406 gotPltHeaderEntriesNum = 2; 407 needsThunks = true; 408 409 tlsModuleIndexRel = R_PPC64_DTPMOD64; 410 tlsOffsetRel = R_PPC64_DTPREL64; 411 412 tlsGotRel = R_PPC64_TPREL64; 413 414 needsMoreStackNonSplit = false; 415 416 // We need 64K pages (at least under glibc/Linux, the loader won't 417 // set different permissions on a finer granularity than that). 418 defaultMaxPageSize = 65536; 419 420 // The PPC64 ELF ABI v1 spec, says: 421 // 422 // It is normally desirable to put segments with different characteristics 423 // in separate 256 Mbyte portions of the address space, to give the 424 // operating system full paging flexibility in the 64-bit address space. 425 // 426 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 427 // use 0x10000000 as the starting address. 428 defaultImageBase = 0x10000000; 429 430 write32(trapInstr.data(), 0x7fe00008); 431 } 432 433 int PPC64::getTlsGdRelaxSkip(RelType type) const { 434 // A __tls_get_addr call instruction is marked with 2 relocations: 435 // 436 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation 437 // R_PPC64_REL24: __tls_get_addr 438 // 439 // After the relaxation we no longer call __tls_get_addr and should skip both 440 // relocations to not create a false dependence on __tls_get_addr being 441 // defined. 442 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD) 443 return 2; 444 return 1; 445 } 446 447 static uint32_t getEFlags(InputFile *file) { 448 if (config->ekind == ELF64BEKind) 449 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader()->e_flags; 450 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader()->e_flags; 451 } 452 453 // This file implements v2 ABI. This function makes sure that all 454 // object files have v2 or an unspecified version as an ABI version. 455 uint32_t PPC64::calcEFlags() const { 456 for (InputFile *f : objectFiles) { 457 uint32_t flag = getEFlags(f); 458 if (flag == 1) 459 error(toString(f) + ": ABI version 1 is not supported"); 460 else if (flag > 2) 461 error(toString(f) + ": unrecognized e_flags: " + Twine(flag)); 462 } 463 return 2; 464 } 465 466 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const { 467 switch (rel.type) { 468 case R_PPC64_TOC16_HA: 469 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop". 470 relocate(loc, rel, val); 471 break; 472 case R_PPC64_TOC16_LO_DS: { 473 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or 474 // "addi reg, 2, var@toc". 475 uint32_t insn = readFromHalf16(loc); 476 if (getPrimaryOpCode(insn) != LD) 477 error("expected a 'ld' for got-indirect to toc-relative relaxing"); 478 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000); 479 relocateNoSym(loc, R_PPC64_TOC16_LO, val); 480 break; 481 } 482 default: 483 llvm_unreachable("unexpected relocation type"); 484 } 485 } 486 487 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 488 uint64_t val) const { 489 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. 490 // The general dynamic code sequence for a global `x` will look like: 491 // Instruction Relocation Symbol 492 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 493 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 494 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 495 // R_PPC64_REL24 __tls_get_addr 496 // nop None None 497 498 // Relaxing to local exec entails converting: 499 // addis r3, r2, x@got@tlsgd@ha into nop 500 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha 501 // bl __tls_get_addr(x@tlsgd) into nop 502 // nop into addi r3, r3, x@tprel@l 503 504 switch (rel.type) { 505 case R_PPC64_GOT_TLSGD16_HA: 506 writeFromHalf16(loc, 0x60000000); // nop 507 break; 508 case R_PPC64_GOT_TLSGD16: 509 case R_PPC64_GOT_TLSGD16_LO: 510 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13 511 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 512 break; 513 case R_PPC64_TLSGD: 514 write32(loc, 0x60000000); // nop 515 write32(loc + 4, 0x38630000); // addi r3, r3 516 // Since we are relocating a half16 type relocation and Loc + 4 points to 517 // the start of an instruction we need to advance the buffer by an extra 518 // 2 bytes on BE. 519 relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0), 520 R_PPC64_TPREL16_LO, val); 521 break; 522 default: 523 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 524 } 525 } 526 527 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 528 uint64_t val) const { 529 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. 530 // The local dynamic code sequence for a global `x` will look like: 531 // Instruction Relocation Symbol 532 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x 533 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x 534 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x 535 // R_PPC64_REL24 __tls_get_addr 536 // nop None None 537 538 // Relaxing to local exec entails converting: 539 // addis r3, r2, x@got@tlsld@ha into nop 540 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 541 // bl __tls_get_addr(x@tlsgd) into nop 542 // nop into addi r3, r3, 4096 543 544 switch (rel.type) { 545 case R_PPC64_GOT_TLSLD16_HA: 546 writeFromHalf16(loc, 0x60000000); // nop 547 break; 548 case R_PPC64_GOT_TLSLD16_LO: 549 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0 550 break; 551 case R_PPC64_TLSLD: 552 write32(loc, 0x60000000); // nop 553 write32(loc + 4, 0x38631000); // addi r3, r3, 4096 554 break; 555 case R_PPC64_DTPREL16: 556 case R_PPC64_DTPREL16_HA: 557 case R_PPC64_DTPREL16_HI: 558 case R_PPC64_DTPREL16_DS: 559 case R_PPC64_DTPREL16_LO: 560 case R_PPC64_DTPREL16_LO_DS: 561 relocate(loc, rel, val); 562 break; 563 default: 564 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); 565 } 566 } 567 568 unsigned elf::getPPCDFormOp(unsigned secondaryOp) { 569 switch (secondaryOp) { 570 case LBZX: 571 return LBZ; 572 case LHZX: 573 return LHZ; 574 case LWZX: 575 return LWZ; 576 case LDX: 577 return LD; 578 case STBX: 579 return STB; 580 case STHX: 581 return STH; 582 case STWX: 583 return STW; 584 case STDX: 585 return STD; 586 case ADD: 587 return ADDI; 588 default: 589 return 0; 590 } 591 } 592 593 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 594 uint64_t val) const { 595 // The initial exec code sequence for a global `x` will look like: 596 // Instruction Relocation Symbol 597 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x 598 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x 599 // add r9, r9, x@tls R_PPC64_TLS x 600 601 // Relaxing to local exec entails converting: 602 // addis r9, r2, x@got@tprel@ha into nop 603 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha 604 // add r9, r9, x@tls into addi r9, r9, x@tprel@l 605 606 // x@tls R_PPC64_TLS is a relocation which does not compute anything, 607 // it is replaced with r13 (thread pointer). 608 609 // The add instruction in the initial exec sequence has multiple variations 610 // that need to be handled. If we are building an address it will use an add 611 // instruction, if we are accessing memory it will use any of the X-form 612 // indexed load or store instructions. 613 614 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0; 615 switch (rel.type) { 616 case R_PPC64_GOT_TPREL16_HA: 617 write32(loc - offset, 0x60000000); // nop 618 break; 619 case R_PPC64_GOT_TPREL16_LO_DS: 620 case R_PPC64_GOT_TPREL16_DS: { 621 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10 622 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13 623 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 624 break; 625 } 626 case R_PPC64_TLS: { 627 uint32_t primaryOp = getPrimaryOpCode(read32(loc)); 628 if (primaryOp != 31) 629 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 630 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30 631 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 632 if (dFormOp == 0) 633 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 634 write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF))); 635 relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val); 636 break; 637 } 638 default: 639 llvm_unreachable("unknown relocation for IE to LE"); 640 break; 641 } 642 } 643 644 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s, 645 const uint8_t *loc) const { 646 switch (type) { 647 case R_PPC64_NONE: 648 return R_NONE; 649 case R_PPC64_ADDR16: 650 case R_PPC64_ADDR16_DS: 651 case R_PPC64_ADDR16_HA: 652 case R_PPC64_ADDR16_HI: 653 case R_PPC64_ADDR16_HIGHER: 654 case R_PPC64_ADDR16_HIGHERA: 655 case R_PPC64_ADDR16_HIGHEST: 656 case R_PPC64_ADDR16_HIGHESTA: 657 case R_PPC64_ADDR16_LO: 658 case R_PPC64_ADDR16_LO_DS: 659 case R_PPC64_ADDR32: 660 case R_PPC64_ADDR64: 661 return R_ABS; 662 case R_PPC64_GOT16: 663 case R_PPC64_GOT16_DS: 664 case R_PPC64_GOT16_HA: 665 case R_PPC64_GOT16_HI: 666 case R_PPC64_GOT16_LO: 667 case R_PPC64_GOT16_LO_DS: 668 return R_GOT_OFF; 669 case R_PPC64_TOC16: 670 case R_PPC64_TOC16_DS: 671 case R_PPC64_TOC16_HI: 672 case R_PPC64_TOC16_LO: 673 return R_GOTREL; 674 case R_PPC64_GOT_PCREL34: 675 return R_GOT_PC; 676 case R_PPC64_TOC16_HA: 677 case R_PPC64_TOC16_LO_DS: 678 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL; 679 case R_PPC64_TOC: 680 return R_PPC64_TOCBASE; 681 case R_PPC64_REL14: 682 case R_PPC64_REL24: 683 return R_PPC64_CALL_PLT; 684 case R_PPC64_REL24_NOTOC: 685 return R_PLT_PC; 686 case R_PPC64_REL16_LO: 687 case R_PPC64_REL16_HA: 688 case R_PPC64_REL16_HI: 689 case R_PPC64_REL32: 690 case R_PPC64_REL64: 691 case R_PPC64_PCREL34: 692 return R_PC; 693 case R_PPC64_GOT_TLSGD16: 694 case R_PPC64_GOT_TLSGD16_HA: 695 case R_PPC64_GOT_TLSGD16_HI: 696 case R_PPC64_GOT_TLSGD16_LO: 697 return R_TLSGD_GOT; 698 case R_PPC64_GOT_TLSLD16: 699 case R_PPC64_GOT_TLSLD16_HA: 700 case R_PPC64_GOT_TLSLD16_HI: 701 case R_PPC64_GOT_TLSLD16_LO: 702 return R_TLSLD_GOT; 703 case R_PPC64_GOT_TPREL16_HA: 704 case R_PPC64_GOT_TPREL16_LO_DS: 705 case R_PPC64_GOT_TPREL16_DS: 706 case R_PPC64_GOT_TPREL16_HI: 707 return R_GOT_OFF; 708 case R_PPC64_GOT_DTPREL16_HA: 709 case R_PPC64_GOT_DTPREL16_LO_DS: 710 case R_PPC64_GOT_DTPREL16_DS: 711 case R_PPC64_GOT_DTPREL16_HI: 712 return R_TLSLD_GOT_OFF; 713 case R_PPC64_TPREL16: 714 case R_PPC64_TPREL16_HA: 715 case R_PPC64_TPREL16_LO: 716 case R_PPC64_TPREL16_HI: 717 case R_PPC64_TPREL16_DS: 718 case R_PPC64_TPREL16_LO_DS: 719 case R_PPC64_TPREL16_HIGHER: 720 case R_PPC64_TPREL16_HIGHERA: 721 case R_PPC64_TPREL16_HIGHEST: 722 case R_PPC64_TPREL16_HIGHESTA: 723 return R_TLS; 724 case R_PPC64_DTPREL16: 725 case R_PPC64_DTPREL16_DS: 726 case R_PPC64_DTPREL16_HA: 727 case R_PPC64_DTPREL16_HI: 728 case R_PPC64_DTPREL16_HIGHER: 729 case R_PPC64_DTPREL16_HIGHERA: 730 case R_PPC64_DTPREL16_HIGHEST: 731 case R_PPC64_DTPREL16_HIGHESTA: 732 case R_PPC64_DTPREL16_LO: 733 case R_PPC64_DTPREL16_LO_DS: 734 case R_PPC64_DTPREL64: 735 return R_DTPREL; 736 case R_PPC64_TLSGD: 737 return R_TLSDESC_CALL; 738 case R_PPC64_TLSLD: 739 return R_TLSLD_HINT; 740 case R_PPC64_TLS: 741 return R_TLSIE_HINT; 742 default: 743 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 744 ") against symbol " + toString(s)); 745 return R_NONE; 746 } 747 } 748 749 RelType PPC64::getDynRel(RelType type) const { 750 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC) 751 return R_PPC64_ADDR64; 752 return R_PPC64_NONE; 753 } 754 755 void PPC64::writeGotHeader(uint8_t *buf) const { 756 write64(buf, getPPC64TocBase()); 757 } 758 759 void PPC64::writePltHeader(uint8_t *buf) const { 760 // The generic resolver stub goes first. 761 write32(buf + 0, 0x7c0802a6); // mflr r0 762 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> 763 write32(buf + 8, 0x7d6802a6); // mflr r11 764 write32(buf + 12, 0x7c0803a6); // mtlr r0 765 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12 766 write32(buf + 20, 0x380cffcc); // subi r0,r12,52 767 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2 768 write32(buf + 28, 0xe98b002c); // ld r12,44(r11) 769 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11 770 write32(buf + 36, 0xe98b0000); // ld r12,0(r11) 771 write32(buf + 40, 0xe96b0008); // ld r11,8(r11) 772 write32(buf + 44, 0x7d8903a6); // mtctr r12 773 write32(buf + 48, 0x4e800420); // bctr 774 775 // The 'bcl' instruction will set the link register to the address of the 776 // following instruction ('mflr r11'). Here we store the offset from that 777 // instruction to the first entry in the GotPlt section. 778 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8); 779 write64(buf + 52, gotPltOffset); 780 } 781 782 void PPC64::writePlt(uint8_t *buf, const Symbol &sym, 783 uint64_t /*pltEntryAddr*/) const { 784 int32_t offset = pltHeaderSize + sym.pltIndex * pltEntrySize; 785 // bl __glink_PLTresolve 786 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc)); 787 } 788 789 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym, 790 uint64_t /*pltEntryAddr*/) const { 791 writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase()); 792 } 793 794 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) { 795 // Relocations relative to the toc-base need to be adjusted by the Toc offset. 796 uint64_t tocBiasedVal = val - ppc64TocOffset; 797 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. 798 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset; 799 800 switch (type) { 801 // TOC biased relocation. 802 case R_PPC64_GOT16: 803 case R_PPC64_GOT_TLSGD16: 804 case R_PPC64_GOT_TLSLD16: 805 case R_PPC64_TOC16: 806 return {R_PPC64_ADDR16, tocBiasedVal}; 807 case R_PPC64_GOT16_DS: 808 case R_PPC64_TOC16_DS: 809 case R_PPC64_GOT_TPREL16_DS: 810 case R_PPC64_GOT_DTPREL16_DS: 811 return {R_PPC64_ADDR16_DS, tocBiasedVal}; 812 case R_PPC64_GOT16_HA: 813 case R_PPC64_GOT_TLSGD16_HA: 814 case R_PPC64_GOT_TLSLD16_HA: 815 case R_PPC64_GOT_TPREL16_HA: 816 case R_PPC64_GOT_DTPREL16_HA: 817 case R_PPC64_TOC16_HA: 818 return {R_PPC64_ADDR16_HA, tocBiasedVal}; 819 case R_PPC64_GOT16_HI: 820 case R_PPC64_GOT_TLSGD16_HI: 821 case R_PPC64_GOT_TLSLD16_HI: 822 case R_PPC64_GOT_TPREL16_HI: 823 case R_PPC64_GOT_DTPREL16_HI: 824 case R_PPC64_TOC16_HI: 825 return {R_PPC64_ADDR16_HI, tocBiasedVal}; 826 case R_PPC64_GOT16_LO: 827 case R_PPC64_GOT_TLSGD16_LO: 828 case R_PPC64_GOT_TLSLD16_LO: 829 case R_PPC64_TOC16_LO: 830 return {R_PPC64_ADDR16_LO, tocBiasedVal}; 831 case R_PPC64_GOT16_LO_DS: 832 case R_PPC64_TOC16_LO_DS: 833 case R_PPC64_GOT_TPREL16_LO_DS: 834 case R_PPC64_GOT_DTPREL16_LO_DS: 835 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal}; 836 837 // Dynamic Thread pointer biased relocation types. 838 case R_PPC64_DTPREL16: 839 return {R_PPC64_ADDR16, dtpBiasedVal}; 840 case R_PPC64_DTPREL16_DS: 841 return {R_PPC64_ADDR16_DS, dtpBiasedVal}; 842 case R_PPC64_DTPREL16_HA: 843 return {R_PPC64_ADDR16_HA, dtpBiasedVal}; 844 case R_PPC64_DTPREL16_HI: 845 return {R_PPC64_ADDR16_HI, dtpBiasedVal}; 846 case R_PPC64_DTPREL16_HIGHER: 847 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal}; 848 case R_PPC64_DTPREL16_HIGHERA: 849 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal}; 850 case R_PPC64_DTPREL16_HIGHEST: 851 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal}; 852 case R_PPC64_DTPREL16_HIGHESTA: 853 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal}; 854 case R_PPC64_DTPREL16_LO: 855 return {R_PPC64_ADDR16_LO, dtpBiasedVal}; 856 case R_PPC64_DTPREL16_LO_DS: 857 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal}; 858 case R_PPC64_DTPREL64: 859 return {R_PPC64_ADDR64, dtpBiasedVal}; 860 861 default: 862 return {type, val}; 863 } 864 } 865 866 static bool isTocOptType(RelType type) { 867 switch (type) { 868 case R_PPC64_GOT16_HA: 869 case R_PPC64_GOT16_LO_DS: 870 case R_PPC64_TOC16_HA: 871 case R_PPC64_TOC16_LO_DS: 872 case R_PPC64_TOC16_LO: 873 return true; 874 default: 875 return false; 876 } 877 } 878 879 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 880 RelType type = rel.type; 881 bool shouldTocOptimize = isTocOptType(type); 882 // For dynamic thread pointer relative, toc-relative, and got-indirect 883 // relocations, proceed in terms of the corresponding ADDR16 relocation type. 884 std::tie(type, val) = toAddr16Rel(type, val); 885 886 switch (type) { 887 case R_PPC64_ADDR14: { 888 checkAlignment(loc, val, 4, rel); 889 // Preserve the AA/LK bits in the branch instruction 890 uint8_t aalk = loc[3]; 891 write16(loc + 2, (aalk & 3) | (val & 0xfffc)); 892 break; 893 } 894 case R_PPC64_ADDR16: 895 checkIntUInt(loc, val, 16, rel); 896 write16(loc, val); 897 break; 898 case R_PPC64_ADDR32: 899 checkIntUInt(loc, val, 32, rel); 900 write32(loc, val); 901 break; 902 case R_PPC64_ADDR16_DS: 903 case R_PPC64_TPREL16_DS: { 904 checkInt(loc, val, 16, rel); 905 // DQ-form instructions use bits 28-31 as part of the instruction encoding 906 // DS-form instructions only use bits 30-31. 907 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3; 908 checkAlignment(loc, lo(val), mask + 1, rel); 909 write16(loc, (read16(loc) & mask) | lo(val)); 910 } break; 911 case R_PPC64_ADDR16_HA: 912 case R_PPC64_REL16_HA: 913 case R_PPC64_TPREL16_HA: 914 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) 915 writeFromHalf16(loc, 0x60000000); 916 else 917 write16(loc, ha(val)); 918 break; 919 case R_PPC64_ADDR16_HI: 920 case R_PPC64_REL16_HI: 921 case R_PPC64_TPREL16_HI: 922 write16(loc, hi(val)); 923 break; 924 case R_PPC64_ADDR16_HIGHER: 925 case R_PPC64_TPREL16_HIGHER: 926 write16(loc, higher(val)); 927 break; 928 case R_PPC64_ADDR16_HIGHERA: 929 case R_PPC64_TPREL16_HIGHERA: 930 write16(loc, highera(val)); 931 break; 932 case R_PPC64_ADDR16_HIGHEST: 933 case R_PPC64_TPREL16_HIGHEST: 934 write16(loc, highest(val)); 935 break; 936 case R_PPC64_ADDR16_HIGHESTA: 937 case R_PPC64_TPREL16_HIGHESTA: 938 write16(loc, highesta(val)); 939 break; 940 case R_PPC64_ADDR16_LO: 941 case R_PPC64_REL16_LO: 942 case R_PPC64_TPREL16_LO: 943 // When the high-adjusted part of a toc relocation evaluates to 0, it is 944 // changed into a nop. The lo part then needs to be updated to use the 945 // toc-pointer register r2, as the base register. 946 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 947 uint32_t insn = readFromHalf16(loc); 948 if (isInstructionUpdateForm(insn)) 949 error(getErrorLocation(loc) + 950 "can't toc-optimize an update instruction: 0x" + 951 utohexstr(insn)); 952 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val)); 953 } else { 954 write16(loc, lo(val)); 955 } 956 break; 957 case R_PPC64_ADDR16_LO_DS: 958 case R_PPC64_TPREL16_LO_DS: { 959 // DQ-form instructions use bits 28-31 as part of the instruction encoding 960 // DS-form instructions only use bits 30-31. 961 uint32_t insn = readFromHalf16(loc); 962 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3; 963 checkAlignment(loc, lo(val), mask + 1, rel); 964 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 965 // When the high-adjusted part of a toc relocation evaluates to 0, it is 966 // changed into a nop. The lo part then needs to be updated to use the toc 967 // pointer register r2, as the base register. 968 if (isInstructionUpdateForm(insn)) 969 error(getErrorLocation(loc) + 970 "Can't toc-optimize an update instruction: 0x" + 971 Twine::utohexstr(insn)); 972 insn &= 0xffe00000 | mask; 973 writeFromHalf16(loc, insn | 0x00020000 | lo(val)); 974 } else { 975 write16(loc, (read16(loc) & mask) | lo(val)); 976 } 977 } break; 978 case R_PPC64_TPREL16: 979 checkInt(loc, val, 16, rel); 980 write16(loc, val); 981 break; 982 case R_PPC64_REL32: 983 checkInt(loc, val, 32, rel); 984 write32(loc, val); 985 break; 986 case R_PPC64_ADDR64: 987 case R_PPC64_REL64: 988 case R_PPC64_TOC: 989 write64(loc, val); 990 break; 991 case R_PPC64_REL14: { 992 uint32_t mask = 0x0000FFFC; 993 checkInt(loc, val, 16, rel); 994 checkAlignment(loc, val, 4, rel); 995 write32(loc, (read32(loc) & ~mask) | (val & mask)); 996 break; 997 } 998 case R_PPC64_REL24: 999 case R_PPC64_REL24_NOTOC: { 1000 uint32_t mask = 0x03FFFFFC; 1001 checkInt(loc, val, 26, rel); 1002 checkAlignment(loc, val, 4, rel); 1003 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1004 break; 1005 } 1006 case R_PPC64_DTPREL64: 1007 write64(loc, val - dynamicThreadPointerOffset); 1008 break; 1009 case R_PPC64_PCREL34: { 1010 const uint64_t si0Mask = 0x00000003ffff0000; 1011 const uint64_t si1Mask = 0x000000000000ffff; 1012 const uint64_t fullMask = 0x0003ffff0000ffff; 1013 checkInt(loc, val, 34, rel); 1014 1015 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask; 1016 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) | 1017 (val & si1Mask)); 1018 break; 1019 } 1020 case R_PPC64_GOT_PCREL34: { 1021 const uint64_t si0Mask = 0x00000003ffff0000; 1022 const uint64_t si1Mask = 0x000000000000ffff; 1023 const uint64_t fullMask = 0x0003ffff0000ffff; 1024 checkInt(loc, val, 34, rel); 1025 1026 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask; 1027 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) | 1028 (val & si1Mask)); 1029 break; 1030 } 1031 default: 1032 llvm_unreachable("unknown relocation"); 1033 } 1034 } 1035 1036 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file, 1037 uint64_t branchAddr, const Symbol &s, int64_t a) const { 1038 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 && 1039 type != R_PPC64_REL24_NOTOC) 1040 return false; 1041 1042 // FIXME: Remove the fatal error once the call protocol is implemented. 1043 if (type == R_PPC64_REL24_NOTOC && s.isInPlt()) 1044 fatal("unimplemented feature: external function call with the reltype" 1045 " R_PPC64_REL24_NOTOC"); 1046 1047 // If a function is in the Plt it needs to be called with a call-stub. 1048 if (s.isInPlt()) 1049 return true; 1050 1051 // FIXME: Remove the fatal error once the call protocol is implemented. 1052 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1) 1053 fatal("unimplemented feature: local function call with the reltype" 1054 " R_PPC64_REL24_NOTOC and the callee needs toc-pointer setup"); 1055 1056 // This check looks at the st_other bits of the callee with relocation 1057 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee 1058 // clobbers the TOC and we need an R2 save stub. 1059 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1) 1060 return true; 1061 1062 // If a symbol is a weak undefined and we are compiling an executable 1063 // it doesn't need a range-extending thunk since it can't be called. 1064 if (s.isUndefWeak() && !config->shared) 1065 return false; 1066 1067 // If the offset exceeds the range of the branch type then it will need 1068 // a range-extending thunk. 1069 // See the comment in getRelocTargetVA() about R_PPC64_CALL. 1070 return !inBranchRange(type, branchAddr, 1071 s.getVA(a) + 1072 getPPC64GlobalEntryToLocalEntryOffset(s.stOther)); 1073 } 1074 1075 uint32_t PPC64::getThunkSectionSpacing() const { 1076 // See comment in Arch/ARM.cpp for a more detailed explanation of 1077 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on 1078 // R_PPC64_REL24, which is used by unconditional branch instructions. 1079 // 0x2000000 = (1 << 24-1) * 4 1080 return 0x2000000; 1081 } 1082 1083 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { 1084 int64_t offset = dst - src; 1085 if (type == R_PPC64_REL14) 1086 return isInt<16>(offset); 1087 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) 1088 return isInt<26>(offset); 1089 llvm_unreachable("unsupported relocation type used in branch"); 1090 } 1091 1092 RelExpr PPC64::adjustRelaxExpr(RelType type, const uint8_t *data, 1093 RelExpr expr) const { 1094 if (expr == R_RELAX_TLS_GD_TO_IE) 1095 return R_RELAX_TLS_GD_TO_IE_GOT_OFF; 1096 if (expr == R_RELAX_TLS_LD_TO_LE) 1097 return R_RELAX_TLS_LD_TO_LE_ABS; 1098 return expr; 1099 } 1100 1101 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. 1102 // The general dynamic code sequence for a global `x` uses 4 instructions. 1103 // Instruction Relocation Symbol 1104 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 1105 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 1106 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 1107 // R_PPC64_REL24 __tls_get_addr 1108 // nop None None 1109 // 1110 // Relaxing to initial-exec entails: 1111 // 1) Convert the addis/addi pair that builds the address of the tls_index 1112 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. 1113 // 2) Convert the call to __tls_get_addr to a nop. 1114 // 3) Convert the nop following the call to an add of the loaded offset to the 1115 // thread pointer. 1116 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is 1117 // used as the relaxation hint for both steps 2 and 3. 1118 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 1119 uint64_t val) const { 1120 switch (rel.type) { 1121 case R_PPC64_GOT_TLSGD16_HA: 1122 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to 1123 // addis rT, r2, sym@got@tprel@ha. 1124 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val); 1125 return; 1126 case R_PPC64_GOT_TLSGD16: 1127 case R_PPC64_GOT_TLSGD16_LO: { 1128 // Relax from addi r3, rA, sym@got@tlsgd@l to 1129 // ld r3, sym@got@tprel@l(rA) 1130 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16)); 1131 writeFromHalf16(loc, 0xe8600000 | ra); 1132 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val); 1133 return; 1134 } 1135 case R_PPC64_TLSGD: 1136 write32(loc, 0x60000000); // bl __tls_get_addr(sym@tlsgd) --> nop 1137 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13 1138 return; 1139 default: 1140 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); 1141 } 1142 } 1143 1144 // The prologue for a split-stack function is expected to look roughly 1145 // like this: 1146 // .Lglobal_entry_point: 1147 // # TOC pointer initialization. 1148 // ... 1149 // .Llocal_entry_point: 1150 // # load the __private_ss member of the threads tcbhead. 1151 // ld r0,-0x7000-64(r13) 1152 // # subtract the functions stack size from the stack pointer. 1153 // addis r12, r1, ha(-stack-frame size) 1154 // addi r12, r12, l(-stack-frame size) 1155 // # compare needed to actual and branch to allocate_more_stack if more 1156 // # space is needed, otherwise fallthrough to 'normal' function body. 1157 // cmpld cr7,r12,r0 1158 // blt- cr7, .Lallocate_more_stack 1159 // 1160 // -) The allocate_more_stack block might be placed after the split-stack 1161 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` 1162 // instead. 1163 // -) If either the addis or addi is not needed due to the stack size being 1164 // smaller then 32K or a multiple of 64K they will be replaced with a nop, 1165 // but there will always be 2 instructions the linker can overwrite for the 1166 // adjusted stack size. 1167 // 1168 // The linkers job here is to increase the stack size used in the addis/addi 1169 // pair by split-stack-size-adjust. 1170 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) 1171 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) 1172 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 1173 uint8_t stOther) const { 1174 // If the caller has a global entry point adjust the buffer past it. The start 1175 // of the split-stack prologue will be at the local entry point. 1176 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther); 1177 1178 // At the very least we expect to see a load of some split-stack data from the 1179 // tcb, and 2 instructions that calculate the ending stack address this 1180 // function will require. If there is not enough room for at least 3 1181 // instructions it can't be a split-stack prologue. 1182 if (loc + 12 >= end) 1183 return false; 1184 1185 // First instruction must be `ld r0, -0x7000-64(r13)` 1186 if (read32(loc) != 0xe80d8fc0) 1187 return false; 1188 1189 int16_t hiImm = 0; 1190 int16_t loImm = 0; 1191 // First instruction can be either an addis if the frame size is larger then 1192 // 32K, or an addi if the size is less then 32K. 1193 int32_t firstInstr = read32(loc + 4); 1194 if (getPrimaryOpCode(firstInstr) == 15) { 1195 hiImm = firstInstr & 0xFFFF; 1196 } else if (getPrimaryOpCode(firstInstr) == 14) { 1197 loImm = firstInstr & 0xFFFF; 1198 } else { 1199 return false; 1200 } 1201 1202 // Second instruction is either an addi or a nop. If the first instruction was 1203 // an addi then LoImm is set and the second instruction must be a nop. 1204 uint32_t secondInstr = read32(loc + 8); 1205 if (!loImm && getPrimaryOpCode(secondInstr) == 14) { 1206 loImm = secondInstr & 0xFFFF; 1207 } else if (secondInstr != 0x60000000) { 1208 return false; 1209 } 1210 1211 // The register operands of the first instruction should be the stack-pointer 1212 // (r1) as the input (RA) and r12 as the output (RT). If the second 1213 // instruction is not a nop, then it should use r12 as both input and output. 1214 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT, 1215 uint8_t expectedRA) { 1216 return ((instr & 0x3E00000) >> 21 == expectedRT) && 1217 ((instr & 0x1F0000) >> 16 == expectedRA); 1218 }; 1219 if (!checkRegOperands(firstInstr, 12, 1)) 1220 return false; 1221 if (secondInstr != 0x60000000 && !checkRegOperands(secondInstr, 12, 12)) 1222 return false; 1223 1224 int32_t stackFrameSize = (hiImm * 65536) + loImm; 1225 // Check that the adjusted size doesn't overflow what we can represent with 2 1226 // instructions. 1227 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) { 1228 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows"); 1229 return false; 1230 } 1231 1232 int32_t adjustedStackFrameSize = 1233 stackFrameSize - config->splitStackAdjustSize; 1234 1235 loImm = adjustedStackFrameSize & 0xFFFF; 1236 hiImm = (adjustedStackFrameSize + 0x8000) >> 16; 1237 if (hiImm) { 1238 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm); 1239 // If the low immediate is zero the second instruction will be a nop. 1240 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : 0x60000000; 1241 write32(loc + 8, secondInstr); 1242 } else { 1243 // addi r12, r1, imm 1244 write32(loc + 4, (0x39810000) | (uint16_t)loImm); 1245 write32(loc + 8, 0x60000000); 1246 } 1247 1248 return true; 1249 } 1250 1251 TargetInfo *elf::getPPC64TargetInfo() { 1252 static PPC64 target; 1253 return ⌖ 1254 } 1255