1 //===- PPC64.cpp ----------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "OutputSections.h" 11 #include "SymbolTable.h" 12 #include "Symbols.h" 13 #include "SyntheticSections.h" 14 #include "Target.h" 15 #include "Thunks.h" 16 #include "lld/Common/CommonLinkerContext.h" 17 #include "llvm/Support/Endian.h" 18 19 using namespace llvm; 20 using namespace llvm::object; 21 using namespace llvm::support::endian; 22 using namespace llvm::ELF; 23 using namespace lld; 24 using namespace lld::elf; 25 26 constexpr uint64_t ppc64TocOffset = 0x8000; 27 constexpr uint64_t dynamicThreadPointerOffset = 0x8000; 28 29 namespace { 30 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform 31 // instructions that can be used as part of the initial exec TLS sequence. 32 enum XFormOpcd { 33 LBZX = 87, 34 LHZX = 279, 35 LWZX = 23, 36 LDX = 21, 37 STBX = 215, 38 STHX = 407, 39 STWX = 151, 40 STDX = 149, 41 LHAX = 343, 42 LWAX = 341, 43 LFSX = 535, 44 LFDX = 599, 45 STFSX = 663, 46 STFDX = 727, 47 ADD = 266, 48 }; 49 50 enum DFormOpcd { 51 LBZ = 34, 52 LBZU = 35, 53 LHZ = 40, 54 LHZU = 41, 55 LHAU = 43, 56 LWZ = 32, 57 LWZU = 33, 58 LFSU = 49, 59 LFDU = 51, 60 STB = 38, 61 STBU = 39, 62 STH = 44, 63 STHU = 45, 64 STW = 36, 65 STWU = 37, 66 STFSU = 53, 67 STFDU = 55, 68 LHA = 42, 69 LFS = 48, 70 LFD = 50, 71 STFS = 52, 72 STFD = 54, 73 ADDI = 14 74 }; 75 76 enum DSFormOpcd { 77 LD = 58, 78 LWA = 58, 79 STD = 62 80 }; 81 82 constexpr uint32_t NOP = 0x60000000; 83 84 enum class PPCLegacyInsn : uint32_t { 85 NOINSN = 0, 86 // Loads. 87 LBZ = 0x88000000, 88 LHZ = 0xa0000000, 89 LWZ = 0x80000000, 90 LHA = 0xa8000000, 91 LWA = 0xe8000002, 92 LD = 0xe8000000, 93 LFS = 0xC0000000, 94 LXSSP = 0xe4000003, 95 LFD = 0xc8000000, 96 LXSD = 0xe4000002, 97 LXV = 0xf4000001, 98 LXVP = 0x18000000, 99 100 // Stores. 101 STB = 0x98000000, 102 STH = 0xb0000000, 103 STW = 0x90000000, 104 STD = 0xf8000000, 105 STFS = 0xd0000000, 106 STXSSP = 0xf4000003, 107 STFD = 0xd8000000, 108 STXSD = 0xf4000002, 109 STXV = 0xf4000005, 110 STXVP = 0x18000001 111 }; 112 enum class PPCPrefixedInsn : uint64_t { 113 NOINSN = 0, 114 PREFIX_MLS = 0x0610000000000000, 115 PREFIX_8LS = 0x0410000000000000, 116 117 // Loads. 118 PLBZ = PREFIX_MLS, 119 PLHZ = PREFIX_MLS, 120 PLWZ = PREFIX_MLS, 121 PLHA = PREFIX_MLS, 122 PLWA = PREFIX_8LS | 0xa4000000, 123 PLD = PREFIX_8LS | 0xe4000000, 124 PLFS = PREFIX_MLS, 125 PLXSSP = PREFIX_8LS | 0xac000000, 126 PLFD = PREFIX_MLS, 127 PLXSD = PREFIX_8LS | 0xa8000000, 128 PLXV = PREFIX_8LS | 0xc8000000, 129 PLXVP = PREFIX_8LS | 0xe8000000, 130 131 // Stores. 132 PSTB = PREFIX_MLS, 133 PSTH = PREFIX_MLS, 134 PSTW = PREFIX_MLS, 135 PSTD = PREFIX_8LS | 0xf4000000, 136 PSTFS = PREFIX_MLS, 137 PSTXSSP = PREFIX_8LS | 0xbc000000, 138 PSTFD = PREFIX_MLS, 139 PSTXSD = PREFIX_8LS | 0xb8000000, 140 PSTXV = PREFIX_8LS | 0xd8000000, 141 PSTXVP = PREFIX_8LS | 0xf8000000 142 }; 143 144 static bool checkPPCLegacyInsn(uint32_t encoding) { 145 PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding); 146 if (insn == PPCLegacyInsn::NOINSN) 147 return false; 148 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 149 if (insn == PPCLegacyInsn::Legacy) \ 150 return true; 151 #include "PPCInsns.def" 152 #undef PCREL_OPT 153 return false; 154 } 155 156 // Masks to apply to legacy instructions when converting them to prefixed, 157 // pc-relative versions. For the most part, the primary opcode is shared 158 // between the legacy instruction and the suffix of its prefixed version. 159 // However, there are some instances where that isn't the case (DS-Form and 160 // DQ-form instructions). 161 enum class LegacyToPrefixMask : uint64_t { 162 NOMASK = 0x0, 163 OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10). 164 ONLY_RST = 0x3e00000, // [RS]T (6-10). 165 ST_STX28_TO5 = 166 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5. 167 }; 168 169 class PPC64 final : public TargetInfo { 170 public: 171 PPC64(); 172 int getTlsGdRelaxSkip(RelType type) const override; 173 uint32_t calcEFlags() const override; 174 RelExpr getRelExpr(RelType type, const Symbol &s, 175 const uint8_t *loc) const override; 176 RelType getDynRel(RelType type) const override; 177 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; 178 void writePltHeader(uint8_t *buf) const override; 179 void writePlt(uint8_t *buf, const Symbol &sym, 180 uint64_t pltEntryAddr) const override; 181 void writeIplt(uint8_t *buf, const Symbol &sym, 182 uint64_t pltEntryAddr) const override; 183 void relocate(uint8_t *loc, const Relocation &rel, 184 uint64_t val) const override; 185 void writeGotHeader(uint8_t *buf) const override; 186 bool needsThunk(RelExpr expr, RelType type, const InputFile *file, 187 uint64_t branchAddr, const Symbol &s, 188 int64_t a) const override; 189 uint32_t getThunkSectionSpacing() const override; 190 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; 191 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; 192 RelExpr adjustGotPcExpr(RelType type, int64_t addend, 193 const uint8_t *loc) const override; 194 void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const; 195 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; 196 197 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 198 uint8_t stOther) const override; 199 200 private: 201 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 202 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 203 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 204 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 205 }; 206 } // namespace 207 208 uint64_t elf::getPPC64TocBase() { 209 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 210 // TOC starts where the first of these sections starts. We always create a 211 // .got when we see a relocation that uses it, so for us the start is always 212 // the .got. 213 uint64_t tocVA = in.got->getVA(); 214 215 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 216 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 217 // code (crt1.o) assumes that you can get from the TOC base to the 218 // start of the .toc section with only a single (signed) 16-bit relocation. 219 return tocVA + ppc64TocOffset; 220 } 221 222 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) { 223 // The offset is encoded into the 3 most significant bits of the st_other 224 // field, with some special values described in section 3.4.1 of the ABI: 225 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use 226 // the TOC pointer (r2). r2 will hold the same value on returning from 227 // the function as it did on entering the function. 228 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a 229 // caller-saved register for all callers. 230 // 2-6 --> The binary logarithm of the offset eg: 231 // 2 --> 2^2 = 4 bytes --> 1 instruction. 232 // 6 --> 2^6 = 64 bytes --> 16 instructions. 233 // 7 --> Reserved. 234 uint8_t gepToLep = (stOther >> 5) & 7; 235 if (gepToLep < 2) 236 return 0; 237 238 // The value encoded in the st_other bits is the 239 // log-base-2(offset). 240 if (gepToLep < 7) 241 return 1 << gepToLep; 242 243 error("reserved value of 7 in the 3 most-significant-bits of st_other"); 244 return 0; 245 } 246 247 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) { 248 insn = config->isLE ? insn << 32 | insn >> 32 : insn; 249 write64(loc, insn); 250 } 251 252 static bool addOptional(StringRef name, uint64_t value, 253 std::vector<Defined *> &defined) { 254 Symbol *sym = symtab.find(name); 255 if (!sym || sym->isDefined()) 256 return false; 257 sym->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, STV_HIDDEN, 258 STT_FUNC, value, 259 /*size=*/0, /*section=*/nullptr}); 260 defined.push_back(cast<Defined>(sym)); 261 return true; 262 } 263 264 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15: 265 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail 266 // The labels are defined only if they exist in the symbol table. 267 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix, 268 int from, uint32_t firstInsn, 269 ArrayRef<uint32_t> tail) { 270 std::vector<Defined *> defined; 271 char name[16]; 272 int first; 273 uint32_t *ptr = buf.data(); 274 for (int r = from; r < 32; ++r) { 275 format("%s%d", prefix, r).snprint(name, sizeof(name)); 276 if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1) 277 first = r - from; 278 write32(ptr++, firstInsn + 0x200008 * (r - from)); 279 } 280 for (uint32_t insn : tail) 281 write32(ptr++, insn); 282 assert(ptr == &*buf.end()); 283 284 if (defined.empty()) 285 return; 286 // The full section content has the extent of [begin, end). We drop unused 287 // instructions and write [first,end). 288 auto *sec = make<InputSection>( 289 ctx.internalFile, SHF_ALLOC, SHT_PROGBITS, 4, 290 ArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first), 291 4 * (buf.size() - first)), 292 ".text"); 293 ctx.inputSections.push_back(sec); 294 for (Defined *sym : defined) { 295 sym->section = sec; 296 sym->value -= 4 * first; 297 } 298 } 299 300 // Implements some save and restore functions as described by ELF V2 ABI to be 301 // compatible with GCC. With GCC -Os, when the number of call-saved registers 302 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and 303 // expects the linker to define them. See 304 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and 305 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is 306 // weird because libgcc.a would be the natural place. The linker generation 307 // approach has the advantage that the linker can generate multiple copies to 308 // avoid long branch thunks. However, we don't consider the advantage 309 // significant enough to complicate our trunk implementation, so we take the 310 // simple approach and synthesize .text sections providing the implementation. 311 void elf::addPPC64SaveRestore() { 312 static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19]; 313 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6; 314 315 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ... 316 // Tail: ld 0, 16(1); mtlr 0; blr 317 writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70, 318 {0xe8010010, mtlr_0, blr}); 319 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ... 320 // Tail: blr 321 writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr}); 322 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ... 323 // Tail: std 0, 16(1); blr 324 writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr}); 325 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ... 326 // Tail: blr 327 writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr}); 328 } 329 330 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset. 331 template <typename ELFT> 332 static std::pair<Defined *, int64_t> 333 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) { 334 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by 335 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the 336 // relocation index in most cases. 337 // 338 // In rare cases a TOC entry may store a constant that doesn't need an 339 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8 340 // points to a relocation with larger r_offset. Do a linear probe then. 341 // Constants are extremely uncommon in .toc and the extra number of array 342 // accesses can be seen as a small constant. 343 ArrayRef<typename ELFT::Rela> relas = 344 tocSec->template relsOrRelas<ELFT>().relas; 345 if (relas.empty()) 346 return {}; 347 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1); 348 for (;;) { 349 if (relas[index].r_offset == offset) { 350 Symbol &sym = tocSec->file->getRelocTargetSym(relas[index]); 351 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])}; 352 } 353 if (relas[index].r_offset < offset || index == 0) 354 break; 355 --index; 356 } 357 return {}; 358 } 359 360 // When accessing a symbol defined in another translation unit, compilers 361 // reserve a .toc entry, allocate a local label and generate toc-indirect 362 // instructions: 363 // 364 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA 365 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry 366 // ld/lwa 3, 0(3) # load the value from the address 367 // 368 // .section .toc,"aw",@progbits 369 // .LC0: .tc var[TC],var 370 // 371 // If var is defined, non-preemptable and addressable with a 32-bit signed 372 // offset from the toc base, the address of var can be computed by adding an 373 // offset to the toc base, saving a load. 374 // 375 // addis 3,2,var@toc@ha # this may be relaxed to a nop, 376 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc 377 // ld/lwa 3, 0(3) # load the value from the address 378 // 379 // Returns true if the relaxation is performed. 380 static bool tryRelaxPPC64TocIndirection(const Relocation &rel, 381 uint8_t *bufLoc) { 382 assert(config->tocOptimize); 383 if (rel.addend < 0) 384 return false; 385 386 // If the symbol is not the .toc section, this isn't a toc-indirection. 387 Defined *defSym = dyn_cast<Defined>(rel.sym); 388 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc") 389 return false; 390 391 Defined *d; 392 int64_t addend; 393 auto *tocISB = cast<InputSectionBase>(defSym->section); 394 std::tie(d, addend) = 395 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend) 396 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend); 397 398 // Only non-preemptable defined symbols can be relaxed. 399 if (!d || d->isPreemptible) 400 return false; 401 402 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable 403 // ifunc and changed its type to STT_FUNC. 404 assert(!d->isGnuIFunc()); 405 406 // Two instructions can materialize a 32-bit signed offset from the toc base. 407 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase(); 408 if (!isInt<32>(tocRelative)) 409 return false; 410 411 // Add PPC64TocOffset that will be subtracted by PPC64::relocate(). 412 static_cast<const PPC64 &>(*target).relaxGot(bufLoc, rel, 413 tocRelative + ppc64TocOffset); 414 return true; 415 } 416 417 // Relocation masks following the #lo(value), #hi(value), #ha(value), 418 // #higher(value), #highera(value), #highest(value), and #highesta(value) 419 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 420 // document. 421 static uint16_t lo(uint64_t v) { return v; } 422 static uint16_t hi(uint64_t v) { return v >> 16; } 423 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; } 424 static uint16_t higher(uint64_t v) { return v >> 32; } 425 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; } 426 static uint16_t highest(uint64_t v) { return v >> 48; } 427 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; } 428 429 // Extracts the 'PO' field of an instruction encoding. 430 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); } 431 432 static bool isDQFormInstruction(uint32_t encoding) { 433 switch (getPrimaryOpCode(encoding)) { 434 default: 435 return false; 436 case 6: // Power10 paired loads/stores (lxvp, stxvp). 437 case 56: 438 // The only instruction with a primary opcode of 56 is `lq`. 439 return true; 440 case 61: 441 // There are both DS and DQ instruction forms with this primary opcode. 442 // Namely `lxv` and `stxv` are the DQ-forms that use it. 443 // The DS 'XO' bits being set to 01 is restricted to DQ form. 444 return (encoding & 3) == 0x1; 445 } 446 } 447 448 static bool isDSFormInstruction(PPCLegacyInsn insn) { 449 switch (insn) { 450 default: 451 return false; 452 case PPCLegacyInsn::LWA: 453 case PPCLegacyInsn::LD: 454 case PPCLegacyInsn::LXSD: 455 case PPCLegacyInsn::LXSSP: 456 case PPCLegacyInsn::STD: 457 case PPCLegacyInsn::STXSD: 458 case PPCLegacyInsn::STXSSP: 459 return true; 460 } 461 } 462 463 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) { 464 uint32_t opc = encoding & 0xfc000000; 465 466 // If the primary opcode is shared between multiple instructions, we need to 467 // fix it up to match the actual instruction we are after. 468 if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 || 469 opc == 0xf8000000) && 470 !isDQFormInstruction(encoding)) 471 opc = encoding & 0xfc000003; 472 else if (opc == 0xf4000000) 473 opc = encoding & 0xfc000007; 474 else if (opc == 0x18000000) 475 opc = encoding & 0xfc00000f; 476 477 // If the value is not one of the enumerators in PPCLegacyInsn, we want to 478 // return PPCLegacyInsn::NOINSN. 479 if (!checkPPCLegacyInsn(opc)) 480 return PPCLegacyInsn::NOINSN; 481 return static_cast<PPCLegacyInsn>(opc); 482 } 483 484 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) { 485 switch (insn) { 486 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 487 case PPCLegacyInsn::Legacy: \ 488 return PPCPrefixedInsn::PCRel 489 #include "PPCInsns.def" 490 #undef PCREL_OPT 491 } 492 return PPCPrefixedInsn::NOINSN; 493 } 494 495 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) { 496 switch (insn) { 497 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 498 case PPCLegacyInsn::Legacy: \ 499 return LegacyToPrefixMask::InsnMask 500 #include "PPCInsns.def" 501 #undef PCREL_OPT 502 } 503 return LegacyToPrefixMask::NOMASK; 504 } 505 static uint64_t getPCRelativeForm(uint32_t encoding) { 506 PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding); 507 PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn); 508 if (pcrelInsn == PPCPrefixedInsn::NOINSN) 509 return UINT64_C(-1); 510 LegacyToPrefixMask origInsnMask = getInsnMask(origInsn); 511 uint64_t pcrelEncoding = 512 (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask); 513 514 // If the mask requires moving bit 28 to bit 5, do that now. 515 if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5) 516 pcrelEncoding |= (encoding & 0x8) << 23; 517 return pcrelEncoding; 518 } 519 520 static bool isInstructionUpdateForm(uint32_t encoding) { 521 switch (getPrimaryOpCode(encoding)) { 522 default: 523 return false; 524 case LBZU: 525 case LHAU: 526 case LHZU: 527 case LWZU: 528 case LFSU: 529 case LFDU: 530 case STBU: 531 case STHU: 532 case STWU: 533 case STFSU: 534 case STFDU: 535 return true; 536 // LWA has the same opcode as LD, and the DS bits is what differentiates 537 // between LD/LDU/LWA 538 case LD: 539 case STD: 540 return (encoding & 3) == 1; 541 } 542 } 543 544 // Compute the total displacement between the prefixed instruction that gets 545 // to the start of the data and the load/store instruction that has the offset 546 // into the data structure. 547 // For example: 548 // paddi 3, 0, 1000, 1 549 // lwz 3, 20(3) 550 // Should add up to 1020 for total displacement. 551 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) { 552 int64_t disp34 = llvm::SignExtend64( 553 ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34); 554 int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16); 555 // For DS and DQ form instructions, we need to mask out the XO bits. 556 if (isDQFormInstruction(accessInsn)) 557 disp16 &= ~0xf; 558 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn))) 559 disp16 &= ~0x3; 560 return disp34 + disp16; 561 } 562 563 // There are a number of places when we either want to read or write an 564 // instruction when handling a half16 relocation type. On big-endian the buffer 565 // pointer is pointing into the middle of the word we want to extract, and on 566 // little-endian it is pointing to the start of the word. These 2 helpers are to 567 // simplify reading and writing in that context. 568 static void writeFromHalf16(uint8_t *loc, uint32_t insn) { 569 write32(config->isLE ? loc : loc - 2, insn); 570 } 571 572 static uint32_t readFromHalf16(const uint8_t *loc) { 573 return read32(config->isLE ? loc : loc - 2); 574 } 575 576 static uint64_t readPrefixedInstruction(const uint8_t *loc) { 577 uint64_t fullInstr = read64(loc); 578 return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr; 579 } 580 581 PPC64::PPC64() { 582 copyRel = R_PPC64_COPY; 583 gotRel = R_PPC64_GLOB_DAT; 584 pltRel = R_PPC64_JMP_SLOT; 585 relativeRel = R_PPC64_RELATIVE; 586 iRelativeRel = R_PPC64_IRELATIVE; 587 symbolicRel = R_PPC64_ADDR64; 588 pltHeaderSize = 60; 589 pltEntrySize = 4; 590 ipltEntrySize = 16; // PPC64PltCallStub::size 591 gotHeaderEntriesNum = 1; 592 gotPltHeaderEntriesNum = 2; 593 needsThunks = true; 594 595 tlsModuleIndexRel = R_PPC64_DTPMOD64; 596 tlsOffsetRel = R_PPC64_DTPREL64; 597 598 tlsGotRel = R_PPC64_TPREL64; 599 600 needsMoreStackNonSplit = false; 601 602 // We need 64K pages (at least under glibc/Linux, the loader won't 603 // set different permissions on a finer granularity than that). 604 defaultMaxPageSize = 65536; 605 606 // The PPC64 ELF ABI v1 spec, says: 607 // 608 // It is normally desirable to put segments with different characteristics 609 // in separate 256 Mbyte portions of the address space, to give the 610 // operating system full paging flexibility in the 64-bit address space. 611 // 612 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 613 // use 0x10000000 as the starting address. 614 defaultImageBase = 0x10000000; 615 616 write32(trapInstr.data(), 0x7fe00008); 617 } 618 619 int PPC64::getTlsGdRelaxSkip(RelType type) const { 620 // A __tls_get_addr call instruction is marked with 2 relocations: 621 // 622 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation 623 // R_PPC64_REL24: __tls_get_addr 624 // 625 // After the relaxation we no longer call __tls_get_addr and should skip both 626 // relocations to not create a false dependence on __tls_get_addr being 627 // defined. 628 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD) 629 return 2; 630 return 1; 631 } 632 633 static uint32_t getEFlags(InputFile *file) { 634 if (file->ekind == ELF64BEKind) 635 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags; 636 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags; 637 } 638 639 // This file implements v2 ABI. This function makes sure that all 640 // object files have v2 or an unspecified version as an ABI version. 641 uint32_t PPC64::calcEFlags() const { 642 for (InputFile *f : ctx.objectFiles) { 643 uint32_t flag = getEFlags(f); 644 if (flag == 1) 645 error(toString(f) + ": ABI version 1 is not supported"); 646 else if (flag > 2) 647 error(toString(f) + ": unrecognized e_flags: " + Twine(flag)); 648 } 649 return 2; 650 } 651 652 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const { 653 switch (rel.type) { 654 case R_PPC64_TOC16_HA: 655 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop". 656 relocate(loc, rel, val); 657 break; 658 case R_PPC64_TOC16_LO_DS: { 659 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or 660 // "addi reg, 2, var@toc". 661 uint32_t insn = readFromHalf16(loc); 662 if (getPrimaryOpCode(insn) != LD) 663 error("expected a 'ld' for got-indirect to toc-relative relaxing"); 664 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000); 665 relocateNoSym(loc, R_PPC64_TOC16_LO, val); 666 break; 667 } 668 case R_PPC64_GOT_PCREL34: { 669 // Clear the first 8 bits of the prefix and the first 6 bits of the 670 // instruction (the primary opcode). 671 uint64_t insn = readPrefixedInstruction(loc); 672 if ((insn & 0xfc000000) != 0xe4000000) 673 error("expected a 'pld' for got-indirect to pc-relative relaxing"); 674 insn &= ~0xff000000fc000000; 675 676 // Replace the cleared bits with the values for PADDI (0x600000038000000); 677 insn |= 0x600000038000000; 678 writePrefixedInstruction(loc, insn); 679 relocate(loc, rel, val); 680 break; 681 } 682 case R_PPC64_PCREL_OPT: { 683 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can 684 // be relaxed. The eligibility for the relaxation needs to be determined 685 // on that relocation since this one does not relocate a symbol. 686 uint64_t insn = readPrefixedInstruction(loc); 687 uint32_t accessInsn = read32(loc + rel.addend); 688 uint64_t pcRelInsn = getPCRelativeForm(accessInsn); 689 690 // This error is not necessary for correctness but is emitted for now 691 // to ensure we don't miss these opportunities in real code. It can be 692 // removed at a later date. 693 if (pcRelInsn == UINT64_C(-1)) { 694 errorOrWarn( 695 "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" + 696 Twine::utohexstr(accessInsn)); 697 break; 698 } 699 700 int64_t totalDisp = getTotalDisp(insn, accessInsn); 701 if (!isInt<34>(totalDisp)) 702 break; // Displacement doesn't fit. 703 // Convert the PADDI to the prefixed version of accessInsn and convert 704 // accessInsn to a nop. 705 writePrefixedInstruction(loc, pcRelInsn | 706 ((totalDisp & 0x3ffff0000) << 16) | 707 (totalDisp & 0xffff)); 708 write32(loc + rel.addend, NOP); // nop accessInsn. 709 break; 710 } 711 default: 712 llvm_unreachable("unexpected relocation type"); 713 } 714 } 715 716 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 717 uint64_t val) const { 718 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. 719 // The general dynamic code sequence for a global `x` will look like: 720 // Instruction Relocation Symbol 721 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 722 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 723 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 724 // R_PPC64_REL24 __tls_get_addr 725 // nop None None 726 727 // Relaxing to local exec entails converting: 728 // addis r3, r2, x@got@tlsgd@ha into nop 729 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha 730 // bl __tls_get_addr(x@tlsgd) into nop 731 // nop into addi r3, r3, x@tprel@l 732 733 switch (rel.type) { 734 case R_PPC64_GOT_TLSGD16_HA: 735 writeFromHalf16(loc, NOP); 736 break; 737 case R_PPC64_GOT_TLSGD16: 738 case R_PPC64_GOT_TLSGD16_LO: 739 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13 740 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 741 break; 742 case R_PPC64_GOT_TLSGD_PCREL34: 743 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to 744 // paddi r3, r13, x@tprel, 0 745 writePrefixedInstruction(loc, 0x06000000386d0000); 746 relocateNoSym(loc, R_PPC64_TPREL34, val); 747 break; 748 case R_PPC64_TLSGD: { 749 // PC Relative Relaxation: 750 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 751 // nop 752 // TOC Relaxation: 753 // Relax from bl __tls_get_addr(x@tlsgd) 754 // nop 755 // to 756 // nop 757 // addi r3, r3, x@tprel@l 758 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 759 if (locAsInt % 4 == 0) { 760 write32(loc, NOP); // nop 761 write32(loc + 4, 0x38630000); // addi r3, r3 762 // Since we are relocating a half16 type relocation and Loc + 4 points to 763 // the start of an instruction we need to advance the buffer by an extra 764 // 2 bytes on BE. 765 relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0), 766 R_PPC64_TPREL16_LO, val); 767 } else if (locAsInt % 4 == 1) { 768 write32(loc - 1, NOP); 769 } else { 770 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 771 } 772 break; 773 } 774 default: 775 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 776 } 777 } 778 779 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 780 uint64_t val) const { 781 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. 782 // The local dynamic code sequence for a global `x` will look like: 783 // Instruction Relocation Symbol 784 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x 785 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x 786 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x 787 // R_PPC64_REL24 __tls_get_addr 788 // nop None None 789 790 // Relaxing to local exec entails converting: 791 // addis r3, r2, x@got@tlsld@ha into nop 792 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 793 // bl __tls_get_addr(x@tlsgd) into nop 794 // nop into addi r3, r3, 4096 795 796 switch (rel.type) { 797 case R_PPC64_GOT_TLSLD16_HA: 798 writeFromHalf16(loc, NOP); 799 break; 800 case R_PPC64_GOT_TLSLD16_LO: 801 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0 802 break; 803 case R_PPC64_GOT_TLSLD_PCREL34: 804 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to 805 // paddi r3, r13, 0x1000, 0 806 writePrefixedInstruction(loc, 0x06000000386d1000); 807 break; 808 case R_PPC64_TLSLD: { 809 // PC Relative Relaxation: 810 // Relax from bl __tls_get_addr@notoc(x@tlsld) 811 // to 812 // nop 813 // TOC Relaxation: 814 // Relax from bl __tls_get_addr(x@tlsld) 815 // nop 816 // to 817 // nop 818 // addi r3, r3, 4096 819 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 820 if (locAsInt % 4 == 0) { 821 write32(loc, NOP); 822 write32(loc + 4, 0x38631000); // addi r3, r3, 4096 823 } else if (locAsInt % 4 == 1) { 824 write32(loc - 1, NOP); 825 } else { 826 errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment"); 827 } 828 break; 829 } 830 case R_PPC64_DTPREL16: 831 case R_PPC64_DTPREL16_HA: 832 case R_PPC64_DTPREL16_HI: 833 case R_PPC64_DTPREL16_DS: 834 case R_PPC64_DTPREL16_LO: 835 case R_PPC64_DTPREL16_LO_DS: 836 case R_PPC64_DTPREL34: 837 relocate(loc, rel, val); 838 break; 839 default: 840 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); 841 } 842 } 843 844 // Map X-Form instructions to their DS-Form counterparts, if applicable. 845 // The full encoding is returned here to distinguish between the different 846 // DS-Form instructions. 847 unsigned elf::getPPCDSFormOp(unsigned secondaryOp) { 848 switch (secondaryOp) { 849 case LWAX: 850 return (LWA << 26) | 0x2; 851 case LDX: 852 return LD << 26; 853 case STDX: 854 return STD << 26; 855 default: 856 return 0; 857 } 858 } 859 860 unsigned elf::getPPCDFormOp(unsigned secondaryOp) { 861 switch (secondaryOp) { 862 case LBZX: 863 return LBZ << 26; 864 case LHZX: 865 return LHZ << 26; 866 case LWZX: 867 return LWZ << 26; 868 case STBX: 869 return STB << 26; 870 case STHX: 871 return STH << 26; 872 case STWX: 873 return STW << 26; 874 case LHAX: 875 return LHA << 26; 876 case LFSX: 877 return LFS << 26; 878 case LFDX: 879 return LFD << 26; 880 case STFSX: 881 return STFS << 26; 882 case STFDX: 883 return STFD << 26; 884 case ADD: 885 return ADDI << 26; 886 default: 887 return 0; 888 } 889 } 890 891 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 892 uint64_t val) const { 893 // The initial exec code sequence for a global `x` will look like: 894 // Instruction Relocation Symbol 895 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x 896 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x 897 // add r9, r9, x@tls R_PPC64_TLS x 898 899 // Relaxing to local exec entails converting: 900 // addis r9, r2, x@got@tprel@ha into nop 901 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha 902 // add r9, r9, x@tls into addi r9, r9, x@tprel@l 903 904 // x@tls R_PPC64_TLS is a relocation which does not compute anything, 905 // it is replaced with r13 (thread pointer). 906 907 // The add instruction in the initial exec sequence has multiple variations 908 // that need to be handled. If we are building an address it will use an add 909 // instruction, if we are accessing memory it will use any of the X-form 910 // indexed load or store instructions. 911 912 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0; 913 switch (rel.type) { 914 case R_PPC64_GOT_TPREL16_HA: 915 write32(loc - offset, NOP); 916 break; 917 case R_PPC64_GOT_TPREL16_LO_DS: 918 case R_PPC64_GOT_TPREL16_DS: { 919 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10 920 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13 921 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 922 break; 923 } 924 case R_PPC64_GOT_TPREL_PCREL34: { 925 const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000; 926 // paddi RT(from pld), r13, symbol@tprel, 0 927 writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT); 928 relocateNoSym(loc, R_PPC64_TPREL34, val); 929 break; 930 } 931 case R_PPC64_TLS: { 932 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 933 if (locAsInt % 4 == 0) { 934 uint32_t primaryOp = getPrimaryOpCode(read32(loc)); 935 if (primaryOp != 31) 936 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 937 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30 938 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 939 uint32_t finalReloc; 940 if (dFormOp == 0) { // Expecting a DS-Form instruction. 941 dFormOp = getPPCDSFormOp(secondaryOp); 942 if (dFormOp == 0) 943 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 944 finalReloc = R_PPC64_TPREL16_LO_DS; 945 } else 946 finalReloc = R_PPC64_TPREL16_LO; 947 write32(loc, dFormOp | (read32(loc) & 0x03ff0000)); 948 relocateNoSym(loc + offset, finalReloc, val); 949 } else if (locAsInt % 4 == 1) { 950 // If the offset is not 4 byte aligned then we have a PCRel type reloc. 951 // This version of the relocation is offset by one byte from the 952 // instruction it references. 953 uint32_t tlsInstr = read32(loc - 1); 954 uint32_t primaryOp = getPrimaryOpCode(tlsInstr); 955 if (primaryOp != 31) 956 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 957 uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30 958 // The add is a special case and should be turned into a nop. The paddi 959 // that comes before it will already have computed the address of the 960 // symbol. 961 if (secondaryOp == 266) { 962 // Check if the add uses the same result register as the input register. 963 uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10 964 uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15 965 if (ra == rt) { 966 write32(loc - 1, NOP); 967 } else { 968 // mr rt, ra 969 write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11)); 970 } 971 } else { 972 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 973 if (dFormOp == 0) { // Expecting a DS-Form instruction. 974 dFormOp = getPPCDSFormOp(secondaryOp); 975 if (dFormOp == 0) 976 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 977 } 978 write32(loc - 1, (dFormOp | (tlsInstr & 0x03ff0000))); 979 } 980 } else { 981 errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte " 982 "offset from 4 byte aligned"); 983 } 984 break; 985 } 986 default: 987 llvm_unreachable("unknown relocation for IE to LE"); 988 break; 989 } 990 } 991 992 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s, 993 const uint8_t *loc) const { 994 switch (type) { 995 case R_PPC64_NONE: 996 return R_NONE; 997 case R_PPC64_ADDR16: 998 case R_PPC64_ADDR16_DS: 999 case R_PPC64_ADDR16_HA: 1000 case R_PPC64_ADDR16_HI: 1001 case R_PPC64_ADDR16_HIGH: 1002 case R_PPC64_ADDR16_HIGHER: 1003 case R_PPC64_ADDR16_HIGHERA: 1004 case R_PPC64_ADDR16_HIGHEST: 1005 case R_PPC64_ADDR16_HIGHESTA: 1006 case R_PPC64_ADDR16_LO: 1007 case R_PPC64_ADDR16_LO_DS: 1008 case R_PPC64_ADDR32: 1009 case R_PPC64_ADDR64: 1010 return R_ABS; 1011 case R_PPC64_GOT16: 1012 case R_PPC64_GOT16_DS: 1013 case R_PPC64_GOT16_HA: 1014 case R_PPC64_GOT16_HI: 1015 case R_PPC64_GOT16_LO: 1016 case R_PPC64_GOT16_LO_DS: 1017 return R_GOT_OFF; 1018 case R_PPC64_TOC16: 1019 case R_PPC64_TOC16_DS: 1020 case R_PPC64_TOC16_HI: 1021 case R_PPC64_TOC16_LO: 1022 return R_GOTREL; 1023 case R_PPC64_GOT_PCREL34: 1024 case R_PPC64_GOT_TPREL_PCREL34: 1025 case R_PPC64_PCREL_OPT: 1026 return R_GOT_PC; 1027 case R_PPC64_TOC16_HA: 1028 case R_PPC64_TOC16_LO_DS: 1029 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL; 1030 case R_PPC64_TOC: 1031 return R_PPC64_TOCBASE; 1032 case R_PPC64_REL14: 1033 case R_PPC64_REL24: 1034 return R_PPC64_CALL_PLT; 1035 case R_PPC64_REL24_NOTOC: 1036 return R_PLT_PC; 1037 case R_PPC64_REL16_LO: 1038 case R_PPC64_REL16_HA: 1039 case R_PPC64_REL16_HI: 1040 case R_PPC64_REL32: 1041 case R_PPC64_REL64: 1042 case R_PPC64_PCREL34: 1043 return R_PC; 1044 case R_PPC64_GOT_TLSGD16: 1045 case R_PPC64_GOT_TLSGD16_HA: 1046 case R_PPC64_GOT_TLSGD16_HI: 1047 case R_PPC64_GOT_TLSGD16_LO: 1048 return R_TLSGD_GOT; 1049 case R_PPC64_GOT_TLSGD_PCREL34: 1050 return R_TLSGD_PC; 1051 case R_PPC64_GOT_TLSLD16: 1052 case R_PPC64_GOT_TLSLD16_HA: 1053 case R_PPC64_GOT_TLSLD16_HI: 1054 case R_PPC64_GOT_TLSLD16_LO: 1055 return R_TLSLD_GOT; 1056 case R_PPC64_GOT_TLSLD_PCREL34: 1057 return R_TLSLD_PC; 1058 case R_PPC64_GOT_TPREL16_HA: 1059 case R_PPC64_GOT_TPREL16_LO_DS: 1060 case R_PPC64_GOT_TPREL16_DS: 1061 case R_PPC64_GOT_TPREL16_HI: 1062 return R_GOT_OFF; 1063 case R_PPC64_GOT_DTPREL16_HA: 1064 case R_PPC64_GOT_DTPREL16_LO_DS: 1065 case R_PPC64_GOT_DTPREL16_DS: 1066 case R_PPC64_GOT_DTPREL16_HI: 1067 return R_TLSLD_GOT_OFF; 1068 case R_PPC64_TPREL16: 1069 case R_PPC64_TPREL16_HA: 1070 case R_PPC64_TPREL16_LO: 1071 case R_PPC64_TPREL16_HI: 1072 case R_PPC64_TPREL16_DS: 1073 case R_PPC64_TPREL16_LO_DS: 1074 case R_PPC64_TPREL16_HIGHER: 1075 case R_PPC64_TPREL16_HIGHERA: 1076 case R_PPC64_TPREL16_HIGHEST: 1077 case R_PPC64_TPREL16_HIGHESTA: 1078 case R_PPC64_TPREL34: 1079 return R_TPREL; 1080 case R_PPC64_DTPREL16: 1081 case R_PPC64_DTPREL16_DS: 1082 case R_PPC64_DTPREL16_HA: 1083 case R_PPC64_DTPREL16_HI: 1084 case R_PPC64_DTPREL16_HIGHER: 1085 case R_PPC64_DTPREL16_HIGHERA: 1086 case R_PPC64_DTPREL16_HIGHEST: 1087 case R_PPC64_DTPREL16_HIGHESTA: 1088 case R_PPC64_DTPREL16_LO: 1089 case R_PPC64_DTPREL16_LO_DS: 1090 case R_PPC64_DTPREL64: 1091 case R_PPC64_DTPREL34: 1092 return R_DTPREL; 1093 case R_PPC64_TLSGD: 1094 return R_TLSDESC_CALL; 1095 case R_PPC64_TLSLD: 1096 return R_TLSLD_HINT; 1097 case R_PPC64_TLS: 1098 return R_TLSIE_HINT; 1099 default: 1100 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 1101 ") against symbol " + toString(s)); 1102 return R_NONE; 1103 } 1104 } 1105 1106 RelType PPC64::getDynRel(RelType type) const { 1107 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC) 1108 return R_PPC64_ADDR64; 1109 return R_PPC64_NONE; 1110 } 1111 1112 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const { 1113 switch (type) { 1114 case R_PPC64_NONE: 1115 case R_PPC64_GLOB_DAT: 1116 case R_PPC64_JMP_SLOT: 1117 return 0; 1118 case R_PPC64_REL32: 1119 return SignExtend64<32>(read32(buf)); 1120 case R_PPC64_ADDR64: 1121 case R_PPC64_REL64: 1122 case R_PPC64_RELATIVE: 1123 case R_PPC64_IRELATIVE: 1124 case R_PPC64_DTPMOD64: 1125 case R_PPC64_DTPREL64: 1126 case R_PPC64_TPREL64: 1127 return read64(buf); 1128 default: 1129 internalLinkerError(getErrorLocation(buf), 1130 "cannot read addend for relocation " + toString(type)); 1131 return 0; 1132 } 1133 } 1134 1135 void PPC64::writeGotHeader(uint8_t *buf) const { 1136 write64(buf, getPPC64TocBase()); 1137 } 1138 1139 void PPC64::writePltHeader(uint8_t *buf) const { 1140 // The generic resolver stub goes first. 1141 write32(buf + 0, 0x7c0802a6); // mflr r0 1142 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> 1143 write32(buf + 8, 0x7d6802a6); // mflr r11 1144 write32(buf + 12, 0x7c0803a6); // mtlr r0 1145 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12 1146 write32(buf + 20, 0x380cffcc); // subi r0,r12,52 1147 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2 1148 write32(buf + 28, 0xe98b002c); // ld r12,44(r11) 1149 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11 1150 write32(buf + 36, 0xe98b0000); // ld r12,0(r11) 1151 write32(buf + 40, 0xe96b0008); // ld r11,8(r11) 1152 write32(buf + 44, 0x7d8903a6); // mtctr r12 1153 write32(buf + 48, 0x4e800420); // bctr 1154 1155 // The 'bcl' instruction will set the link register to the address of the 1156 // following instruction ('mflr r11'). Here we store the offset from that 1157 // instruction to the first entry in the GotPlt section. 1158 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8); 1159 write64(buf + 52, gotPltOffset); 1160 } 1161 1162 void PPC64::writePlt(uint8_t *buf, const Symbol &sym, 1163 uint64_t /*pltEntryAddr*/) const { 1164 int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize; 1165 // bl __glink_PLTresolve 1166 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc)); 1167 } 1168 1169 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym, 1170 uint64_t /*pltEntryAddr*/) const { 1171 writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase()); 1172 } 1173 1174 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) { 1175 // Relocations relative to the toc-base need to be adjusted by the Toc offset. 1176 uint64_t tocBiasedVal = val - ppc64TocOffset; 1177 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. 1178 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset; 1179 1180 switch (type) { 1181 // TOC biased relocation. 1182 case R_PPC64_GOT16: 1183 case R_PPC64_GOT_TLSGD16: 1184 case R_PPC64_GOT_TLSLD16: 1185 case R_PPC64_TOC16: 1186 return {R_PPC64_ADDR16, tocBiasedVal}; 1187 case R_PPC64_GOT16_DS: 1188 case R_PPC64_TOC16_DS: 1189 case R_PPC64_GOT_TPREL16_DS: 1190 case R_PPC64_GOT_DTPREL16_DS: 1191 return {R_PPC64_ADDR16_DS, tocBiasedVal}; 1192 case R_PPC64_GOT16_HA: 1193 case R_PPC64_GOT_TLSGD16_HA: 1194 case R_PPC64_GOT_TLSLD16_HA: 1195 case R_PPC64_GOT_TPREL16_HA: 1196 case R_PPC64_GOT_DTPREL16_HA: 1197 case R_PPC64_TOC16_HA: 1198 return {R_PPC64_ADDR16_HA, tocBiasedVal}; 1199 case R_PPC64_GOT16_HI: 1200 case R_PPC64_GOT_TLSGD16_HI: 1201 case R_PPC64_GOT_TLSLD16_HI: 1202 case R_PPC64_GOT_TPREL16_HI: 1203 case R_PPC64_GOT_DTPREL16_HI: 1204 case R_PPC64_TOC16_HI: 1205 return {R_PPC64_ADDR16_HI, tocBiasedVal}; 1206 case R_PPC64_GOT16_LO: 1207 case R_PPC64_GOT_TLSGD16_LO: 1208 case R_PPC64_GOT_TLSLD16_LO: 1209 case R_PPC64_TOC16_LO: 1210 return {R_PPC64_ADDR16_LO, tocBiasedVal}; 1211 case R_PPC64_GOT16_LO_DS: 1212 case R_PPC64_TOC16_LO_DS: 1213 case R_PPC64_GOT_TPREL16_LO_DS: 1214 case R_PPC64_GOT_DTPREL16_LO_DS: 1215 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal}; 1216 1217 // Dynamic Thread pointer biased relocation types. 1218 case R_PPC64_DTPREL16: 1219 return {R_PPC64_ADDR16, dtpBiasedVal}; 1220 case R_PPC64_DTPREL16_DS: 1221 return {R_PPC64_ADDR16_DS, dtpBiasedVal}; 1222 case R_PPC64_DTPREL16_HA: 1223 return {R_PPC64_ADDR16_HA, dtpBiasedVal}; 1224 case R_PPC64_DTPREL16_HI: 1225 return {R_PPC64_ADDR16_HI, dtpBiasedVal}; 1226 case R_PPC64_DTPREL16_HIGHER: 1227 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal}; 1228 case R_PPC64_DTPREL16_HIGHERA: 1229 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal}; 1230 case R_PPC64_DTPREL16_HIGHEST: 1231 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal}; 1232 case R_PPC64_DTPREL16_HIGHESTA: 1233 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal}; 1234 case R_PPC64_DTPREL16_LO: 1235 return {R_PPC64_ADDR16_LO, dtpBiasedVal}; 1236 case R_PPC64_DTPREL16_LO_DS: 1237 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal}; 1238 case R_PPC64_DTPREL64: 1239 return {R_PPC64_ADDR64, dtpBiasedVal}; 1240 1241 default: 1242 return {type, val}; 1243 } 1244 } 1245 1246 static bool isTocOptType(RelType type) { 1247 switch (type) { 1248 case R_PPC64_GOT16_HA: 1249 case R_PPC64_GOT16_LO_DS: 1250 case R_PPC64_TOC16_HA: 1251 case R_PPC64_TOC16_LO_DS: 1252 case R_PPC64_TOC16_LO: 1253 return true; 1254 default: 1255 return false; 1256 } 1257 } 1258 1259 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 1260 RelType type = rel.type; 1261 bool shouldTocOptimize = isTocOptType(type); 1262 // For dynamic thread pointer relative, toc-relative, and got-indirect 1263 // relocations, proceed in terms of the corresponding ADDR16 relocation type. 1264 std::tie(type, val) = toAddr16Rel(type, val); 1265 1266 switch (type) { 1267 case R_PPC64_ADDR14: { 1268 checkAlignment(loc, val, 4, rel); 1269 // Preserve the AA/LK bits in the branch instruction 1270 uint8_t aalk = loc[3]; 1271 write16(loc + 2, (aalk & 3) | (val & 0xfffc)); 1272 break; 1273 } 1274 case R_PPC64_ADDR16: 1275 checkIntUInt(loc, val, 16, rel); 1276 write16(loc, val); 1277 break; 1278 case R_PPC64_ADDR32: 1279 checkIntUInt(loc, val, 32, rel); 1280 write32(loc, val); 1281 break; 1282 case R_PPC64_ADDR16_DS: 1283 case R_PPC64_TPREL16_DS: { 1284 checkInt(loc, val, 16, rel); 1285 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1286 // DS-form instructions only use bits 30-31. 1287 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3; 1288 checkAlignment(loc, lo(val), mask + 1, rel); 1289 write16(loc, (read16(loc) & mask) | lo(val)); 1290 } break; 1291 case R_PPC64_ADDR16_HA: 1292 case R_PPC64_REL16_HA: 1293 case R_PPC64_TPREL16_HA: 1294 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) 1295 writeFromHalf16(loc, NOP); 1296 else { 1297 checkInt(loc, val + 0x8000, 32, rel); 1298 write16(loc, ha(val)); 1299 } 1300 break; 1301 case R_PPC64_ADDR16_HI: 1302 case R_PPC64_REL16_HI: 1303 case R_PPC64_TPREL16_HI: 1304 checkInt(loc, val, 32, rel); 1305 write16(loc, hi(val)); 1306 break; 1307 case R_PPC64_ADDR16_HIGH: 1308 write16(loc, hi(val)); 1309 break; 1310 case R_PPC64_ADDR16_HIGHER: 1311 case R_PPC64_TPREL16_HIGHER: 1312 write16(loc, higher(val)); 1313 break; 1314 case R_PPC64_ADDR16_HIGHERA: 1315 case R_PPC64_TPREL16_HIGHERA: 1316 write16(loc, highera(val)); 1317 break; 1318 case R_PPC64_ADDR16_HIGHEST: 1319 case R_PPC64_TPREL16_HIGHEST: 1320 write16(loc, highest(val)); 1321 break; 1322 case R_PPC64_ADDR16_HIGHESTA: 1323 case R_PPC64_TPREL16_HIGHESTA: 1324 write16(loc, highesta(val)); 1325 break; 1326 case R_PPC64_ADDR16_LO: 1327 case R_PPC64_REL16_LO: 1328 case R_PPC64_TPREL16_LO: 1329 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1330 // changed into a nop. The lo part then needs to be updated to use the 1331 // toc-pointer register r2, as the base register. 1332 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1333 uint32_t insn = readFromHalf16(loc); 1334 if (isInstructionUpdateForm(insn)) 1335 error(getErrorLocation(loc) + 1336 "can't toc-optimize an update instruction: 0x" + 1337 utohexstr(insn)); 1338 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val)); 1339 } else { 1340 write16(loc, lo(val)); 1341 } 1342 break; 1343 case R_PPC64_ADDR16_LO_DS: 1344 case R_PPC64_TPREL16_LO_DS: { 1345 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1346 // DS-form instructions only use bits 30-31. 1347 uint32_t insn = readFromHalf16(loc); 1348 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3; 1349 checkAlignment(loc, lo(val), mask + 1, rel); 1350 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1351 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1352 // changed into a nop. The lo part then needs to be updated to use the toc 1353 // pointer register r2, as the base register. 1354 if (isInstructionUpdateForm(insn)) 1355 error(getErrorLocation(loc) + 1356 "Can't toc-optimize an update instruction: 0x" + 1357 Twine::utohexstr(insn)); 1358 insn &= 0xffe00000 | mask; 1359 writeFromHalf16(loc, insn | 0x00020000 | lo(val)); 1360 } else { 1361 write16(loc, (read16(loc) & mask) | lo(val)); 1362 } 1363 } break; 1364 case R_PPC64_TPREL16: 1365 checkInt(loc, val, 16, rel); 1366 write16(loc, val); 1367 break; 1368 case R_PPC64_REL32: 1369 checkInt(loc, val, 32, rel); 1370 write32(loc, val); 1371 break; 1372 case R_PPC64_ADDR64: 1373 case R_PPC64_REL64: 1374 case R_PPC64_TOC: 1375 write64(loc, val); 1376 break; 1377 case R_PPC64_REL14: { 1378 uint32_t mask = 0x0000FFFC; 1379 checkInt(loc, val, 16, rel); 1380 checkAlignment(loc, val, 4, rel); 1381 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1382 break; 1383 } 1384 case R_PPC64_REL24: 1385 case R_PPC64_REL24_NOTOC: { 1386 uint32_t mask = 0x03FFFFFC; 1387 checkInt(loc, val, 26, rel); 1388 checkAlignment(loc, val, 4, rel); 1389 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1390 break; 1391 } 1392 case R_PPC64_DTPREL64: 1393 write64(loc, val - dynamicThreadPointerOffset); 1394 break; 1395 case R_PPC64_DTPREL34: 1396 // The Dynamic Thread Vector actually points 0x8000 bytes past the start 1397 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first 1398 // need to subtract that value then fallthrough to the general case. 1399 val -= dynamicThreadPointerOffset; 1400 [[fallthrough]]; 1401 case R_PPC64_PCREL34: 1402 case R_PPC64_GOT_PCREL34: 1403 case R_PPC64_GOT_TLSGD_PCREL34: 1404 case R_PPC64_GOT_TLSLD_PCREL34: 1405 case R_PPC64_GOT_TPREL_PCREL34: 1406 case R_PPC64_TPREL34: { 1407 const uint64_t si0Mask = 0x00000003ffff0000; 1408 const uint64_t si1Mask = 0x000000000000ffff; 1409 const uint64_t fullMask = 0x0003ffff0000ffff; 1410 checkInt(loc, val, 34, rel); 1411 1412 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask; 1413 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) | 1414 (val & si1Mask)); 1415 break; 1416 } 1417 // If we encounter a PCREL_OPT relocation that we won't optimize. 1418 case R_PPC64_PCREL_OPT: 1419 break; 1420 default: 1421 llvm_unreachable("unknown relocation"); 1422 } 1423 } 1424 1425 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file, 1426 uint64_t branchAddr, const Symbol &s, int64_t a) const { 1427 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 && 1428 type != R_PPC64_REL24_NOTOC) 1429 return false; 1430 1431 // If a function is in the Plt it needs to be called with a call-stub. 1432 if (s.isInPlt()) 1433 return true; 1434 1435 // This check looks at the st_other bits of the callee with relocation 1436 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee 1437 // clobbers the TOC and we need an R2 save stub. 1438 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1) 1439 return true; 1440 1441 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1) 1442 return true; 1443 1444 // An undefined weak symbol not in a PLT does not need a thunk. If it is 1445 // hidden, its binding has been converted to local, so we just check 1446 // isUndefined() here. A undefined non-weak symbol has been errored. 1447 if (s.isUndefined()) 1448 return false; 1449 1450 // If the offset exceeds the range of the branch type then it will need 1451 // a range-extending thunk. 1452 // See the comment in getRelocTargetVA() about R_PPC64_CALL. 1453 return !inBranchRange(type, branchAddr, 1454 s.getVA(a) + 1455 getPPC64GlobalEntryToLocalEntryOffset(s.stOther)); 1456 } 1457 1458 uint32_t PPC64::getThunkSectionSpacing() const { 1459 // See comment in Arch/ARM.cpp for a more detailed explanation of 1460 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on 1461 // R_PPC64_REL24, which is used by unconditional branch instructions. 1462 // 0x2000000 = (1 << 24-1) * 4 1463 return 0x2000000; 1464 } 1465 1466 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { 1467 int64_t offset = dst - src; 1468 if (type == R_PPC64_REL14) 1469 return isInt<16>(offset); 1470 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) 1471 return isInt<26>(offset); 1472 llvm_unreachable("unsupported relocation type used in branch"); 1473 } 1474 1475 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const { 1476 if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE) 1477 return R_RELAX_TLS_GD_TO_IE_GOT_OFF; 1478 if (expr == R_RELAX_TLS_LD_TO_LE) 1479 return R_RELAX_TLS_LD_TO_LE_ABS; 1480 return expr; 1481 } 1482 1483 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend, 1484 const uint8_t *loc) const { 1485 if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) && 1486 config->pcRelOptimize) { 1487 // It only makes sense to optimize pld since paddi means that the address 1488 // of the object in the GOT is required rather than the object itself. 1489 if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000) 1490 return R_PPC64_RELAX_GOT_PC; 1491 } 1492 return R_GOT_PC; 1493 } 1494 1495 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. 1496 // The general dynamic code sequence for a global `x` uses 4 instructions. 1497 // Instruction Relocation Symbol 1498 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 1499 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 1500 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 1501 // R_PPC64_REL24 __tls_get_addr 1502 // nop None None 1503 // 1504 // Relaxing to initial-exec entails: 1505 // 1) Convert the addis/addi pair that builds the address of the tls_index 1506 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. 1507 // 2) Convert the call to __tls_get_addr to a nop. 1508 // 3) Convert the nop following the call to an add of the loaded offset to the 1509 // thread pointer. 1510 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is 1511 // used as the relaxation hint for both steps 2 and 3. 1512 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 1513 uint64_t val) const { 1514 switch (rel.type) { 1515 case R_PPC64_GOT_TLSGD16_HA: 1516 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to 1517 // addis rT, r2, sym@got@tprel@ha. 1518 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val); 1519 return; 1520 case R_PPC64_GOT_TLSGD16: 1521 case R_PPC64_GOT_TLSGD16_LO: { 1522 // Relax from addi r3, rA, sym@got@tlsgd@l to 1523 // ld r3, sym@got@tprel@l(rA) 1524 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16)); 1525 writeFromHalf16(loc, 0xe8600000 | ra); 1526 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val); 1527 return; 1528 } 1529 case R_PPC64_GOT_TLSGD_PCREL34: { 1530 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to 1531 // pld r3, sym@got@tprel@pcrel 1532 writePrefixedInstruction(loc, 0x04100000e4600000); 1533 relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val); 1534 return; 1535 } 1536 case R_PPC64_TLSGD: { 1537 // PC Relative Relaxation: 1538 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 1539 // nop 1540 // TOC Relaxation: 1541 // Relax from bl __tls_get_addr(x@tlsgd) 1542 // nop 1543 // to 1544 // nop 1545 // add r3, r3, r13 1546 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 1547 if (locAsInt % 4 == 0) { 1548 write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop 1549 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13 1550 } else if (locAsInt % 4 == 1) { 1551 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13 1552 write32(loc - 1, 0x7c636a14); 1553 } else { 1554 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 1555 } 1556 return; 1557 } 1558 default: 1559 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); 1560 } 1561 } 1562 1563 void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { 1564 uint64_t secAddr = sec.getOutputSection()->addr; 1565 if (auto *s = dyn_cast<InputSection>(&sec)) 1566 secAddr += s->outSecOff; 1567 else if (auto *ehIn = dyn_cast<EhInputSection>(&sec)) 1568 secAddr += ehIn->getParent()->outSecOff; 1569 uint64_t lastPPCRelaxedRelocOff = -1; 1570 for (const Relocation &rel : sec.relocs()) { 1571 uint8_t *loc = buf + rel.offset; 1572 const uint64_t val = 1573 sec.getRelocTargetVA(sec.file, rel.type, rel.addend, 1574 secAddr + rel.offset, *rel.sym, rel.expr); 1575 switch (rel.expr) { 1576 case R_PPC64_RELAX_GOT_PC: { 1577 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1578 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1579 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1580 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1581 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1582 // and only relax the other if the saved offset matches. 1583 if (rel.type == R_PPC64_GOT_PCREL34) 1584 lastPPCRelaxedRelocOff = rel.offset; 1585 if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff) 1586 break; 1587 relaxGot(loc, rel, val); 1588 break; 1589 } 1590 case R_PPC64_RELAX_TOC: 1591 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1592 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1593 // entry, there may be R_PPC64_TOC16_HA not paired with 1594 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1595 // opportunities but is safe. 1596 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1597 !tryRelaxPPC64TocIndirection(rel, loc)) 1598 relocate(loc, rel, val); 1599 break; 1600 case R_PPC64_CALL: 1601 // If this is a call to __tls_get_addr, it may be part of a TLS 1602 // sequence that has been relaxed and turned into a nop. In this 1603 // case, we don't want to handle it as a call. 1604 if (read32(loc) == 0x60000000) // nop 1605 break; 1606 1607 // Patch a nop (0x60000000) to a ld. 1608 if (rel.sym->needsTocRestore()) { 1609 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1610 // recursive calls even if the function is preemptible. This is not 1611 // wrong in the common case where the function is not preempted at 1612 // runtime. Just ignore. 1613 if ((rel.offset + 8 > sec.content().size() || 1614 read32(loc + 4) != 0x60000000) && 1615 rel.sym->file != sec.file) { 1616 // Use substr(6) to remove the "__plt_" prefix. 1617 errorOrWarn(getErrorLocation(loc) + "call to " + 1618 lld::toString(*rel.sym).substr(6) + 1619 " lacks nop, can't restore toc"); 1620 break; 1621 } 1622 write32(loc + 4, 0xe8410018); // ld %r2, 24(%r1) 1623 } 1624 relocate(loc, rel, val); 1625 break; 1626 case R_RELAX_TLS_GD_TO_IE: 1627 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1628 relaxTlsGdToIe(loc, rel, val); 1629 break; 1630 case R_RELAX_TLS_GD_TO_LE: 1631 relaxTlsGdToLe(loc, rel, val); 1632 break; 1633 case R_RELAX_TLS_LD_TO_LE_ABS: 1634 relaxTlsLdToLe(loc, rel, val); 1635 break; 1636 case R_RELAX_TLS_IE_TO_LE: 1637 relaxTlsIeToLe(loc, rel, val); 1638 break; 1639 default: 1640 relocate(loc, rel, val); 1641 break; 1642 } 1643 } 1644 } 1645 1646 // The prologue for a split-stack function is expected to look roughly 1647 // like this: 1648 // .Lglobal_entry_point: 1649 // # TOC pointer initialization. 1650 // ... 1651 // .Llocal_entry_point: 1652 // # load the __private_ss member of the threads tcbhead. 1653 // ld r0,-0x7000-64(r13) 1654 // # subtract the functions stack size from the stack pointer. 1655 // addis r12, r1, ha(-stack-frame size) 1656 // addi r12, r12, l(-stack-frame size) 1657 // # compare needed to actual and branch to allocate_more_stack if more 1658 // # space is needed, otherwise fallthrough to 'normal' function body. 1659 // cmpld cr7,r12,r0 1660 // blt- cr7, .Lallocate_more_stack 1661 // 1662 // -) The allocate_more_stack block might be placed after the split-stack 1663 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` 1664 // instead. 1665 // -) If either the addis or addi is not needed due to the stack size being 1666 // smaller then 32K or a multiple of 64K they will be replaced with a nop, 1667 // but there will always be 2 instructions the linker can overwrite for the 1668 // adjusted stack size. 1669 // 1670 // The linkers job here is to increase the stack size used in the addis/addi 1671 // pair by split-stack-size-adjust. 1672 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) 1673 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) 1674 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 1675 uint8_t stOther) const { 1676 // If the caller has a global entry point adjust the buffer past it. The start 1677 // of the split-stack prologue will be at the local entry point. 1678 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther); 1679 1680 // At the very least we expect to see a load of some split-stack data from the 1681 // tcb, and 2 instructions that calculate the ending stack address this 1682 // function will require. If there is not enough room for at least 3 1683 // instructions it can't be a split-stack prologue. 1684 if (loc + 12 >= end) 1685 return false; 1686 1687 // First instruction must be `ld r0, -0x7000-64(r13)` 1688 if (read32(loc) != 0xe80d8fc0) 1689 return false; 1690 1691 int16_t hiImm = 0; 1692 int16_t loImm = 0; 1693 // First instruction can be either an addis if the frame size is larger then 1694 // 32K, or an addi if the size is less then 32K. 1695 int32_t firstInstr = read32(loc + 4); 1696 if (getPrimaryOpCode(firstInstr) == 15) { 1697 hiImm = firstInstr & 0xFFFF; 1698 } else if (getPrimaryOpCode(firstInstr) == 14) { 1699 loImm = firstInstr & 0xFFFF; 1700 } else { 1701 return false; 1702 } 1703 1704 // Second instruction is either an addi or a nop. If the first instruction was 1705 // an addi then LoImm is set and the second instruction must be a nop. 1706 uint32_t secondInstr = read32(loc + 8); 1707 if (!loImm && getPrimaryOpCode(secondInstr) == 14) { 1708 loImm = secondInstr & 0xFFFF; 1709 } else if (secondInstr != NOP) { 1710 return false; 1711 } 1712 1713 // The register operands of the first instruction should be the stack-pointer 1714 // (r1) as the input (RA) and r12 as the output (RT). If the second 1715 // instruction is not a nop, then it should use r12 as both input and output. 1716 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT, 1717 uint8_t expectedRA) { 1718 return ((instr & 0x3E00000) >> 21 == expectedRT) && 1719 ((instr & 0x1F0000) >> 16 == expectedRA); 1720 }; 1721 if (!checkRegOperands(firstInstr, 12, 1)) 1722 return false; 1723 if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12)) 1724 return false; 1725 1726 int32_t stackFrameSize = (hiImm * 65536) + loImm; 1727 // Check that the adjusted size doesn't overflow what we can represent with 2 1728 // instructions. 1729 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) { 1730 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows"); 1731 return false; 1732 } 1733 1734 int32_t adjustedStackFrameSize = 1735 stackFrameSize - config->splitStackAdjustSize; 1736 1737 loImm = adjustedStackFrameSize & 0xFFFF; 1738 hiImm = (adjustedStackFrameSize + 0x8000) >> 16; 1739 if (hiImm) { 1740 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm); 1741 // If the low immediate is zero the second instruction will be a nop. 1742 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP; 1743 write32(loc + 8, secondInstr); 1744 } else { 1745 // addi r12, r1, imm 1746 write32(loc + 4, (0x39810000) | (uint16_t)loImm); 1747 write32(loc + 8, NOP); 1748 } 1749 1750 return true; 1751 } 1752 1753 TargetInfo *elf::getPPC64TargetInfo() { 1754 static PPC64 target; 1755 return ⌖ 1756 } 1757