1 //===- PPC64.cpp ----------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SymbolTable.h" 10 #include "Symbols.h" 11 #include "SyntheticSections.h" 12 #include "Target.h" 13 #include "Thunks.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "lld/Common/Memory.h" 16 #include "llvm/Support/Endian.h" 17 18 using namespace llvm; 19 using namespace llvm::object; 20 using namespace llvm::support::endian; 21 using namespace llvm::ELF; 22 using namespace lld; 23 using namespace lld::elf; 24 25 constexpr uint64_t ppc64TocOffset = 0x8000; 26 constexpr uint64_t dynamicThreadPointerOffset = 0x8000; 27 28 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform 29 // instructions that can be used as part of the initial exec TLS sequence. 30 enum XFormOpcd { 31 LBZX = 87, 32 LHZX = 279, 33 LWZX = 23, 34 LDX = 21, 35 STBX = 215, 36 STHX = 407, 37 STWX = 151, 38 STDX = 149, 39 ADD = 266, 40 }; 41 42 enum DFormOpcd { 43 LBZ = 34, 44 LBZU = 35, 45 LHZ = 40, 46 LHZU = 41, 47 LHAU = 43, 48 LWZ = 32, 49 LWZU = 33, 50 LFSU = 49, 51 LD = 58, 52 LFDU = 51, 53 STB = 38, 54 STBU = 39, 55 STH = 44, 56 STHU = 45, 57 STW = 36, 58 STWU = 37, 59 STFSU = 53, 60 STFDU = 55, 61 STD = 62, 62 ADDI = 14 63 }; 64 65 constexpr uint32_t NOP = 0x60000000; 66 67 enum class PPCLegacyInsn : uint32_t { 68 NOINSN = 0, 69 // Loads. 70 LBZ = 0x88000000, 71 LHZ = 0xa0000000, 72 LWZ = 0x80000000, 73 LHA = 0xa8000000, 74 LWA = 0xe8000002, 75 LD = 0xe8000000, 76 LFS = 0xC0000000, 77 LXSSP = 0xe4000003, 78 LFD = 0xc8000000, 79 LXSD = 0xe4000002, 80 LXV = 0xf4000001, 81 LXVP = 0x18000000, 82 83 // Stores. 84 STB = 0x98000000, 85 STH = 0xb0000000, 86 STW = 0x90000000, 87 STD = 0xf8000000, 88 STFS = 0xd0000000, 89 STXSSP = 0xf4000003, 90 STFD = 0xd8000000, 91 STXSD = 0xf4000002, 92 STXV = 0xf4000005, 93 STXVP = 0x18000001 94 }; 95 enum class PPCPrefixedInsn : uint64_t { 96 NOINSN = 0, 97 PREFIX_MLS = 0x0610000000000000, 98 PREFIX_8LS = 0x0410000000000000, 99 100 // Loads. 101 PLBZ = PREFIX_MLS, 102 PLHZ = PREFIX_MLS, 103 PLWZ = PREFIX_MLS, 104 PLHA = PREFIX_MLS, 105 PLWA = PREFIX_8LS | 0xa4000000, 106 PLD = PREFIX_8LS | 0xe4000000, 107 PLFS = PREFIX_MLS, 108 PLXSSP = PREFIX_8LS | 0xac000000, 109 PLFD = PREFIX_MLS, 110 PLXSD = PREFIX_8LS | 0xa8000000, 111 PLXV = PREFIX_8LS | 0xc8000000, 112 PLXVP = PREFIX_8LS | 0xe8000000, 113 114 // Stores. 115 PSTB = PREFIX_MLS, 116 PSTH = PREFIX_MLS, 117 PSTW = PREFIX_MLS, 118 PSTD = PREFIX_8LS | 0xf4000000, 119 PSTFS = PREFIX_MLS, 120 PSTXSSP = PREFIX_8LS | 0xbc000000, 121 PSTFD = PREFIX_MLS, 122 PSTXSD = PREFIX_8LS | 0xb8000000, 123 PSTXV = PREFIX_8LS | 0xd8000000, 124 PSTXVP = PREFIX_8LS | 0xf8000000 125 }; 126 static bool checkPPCLegacyInsn(uint32_t encoding) { 127 PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding); 128 if (insn == PPCLegacyInsn::NOINSN) 129 return false; 130 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 131 if (insn == PPCLegacyInsn::Legacy) \ 132 return true; 133 #include "PPCInsns.def" 134 #undef PCREL_OPT 135 return false; 136 } 137 138 // Masks to apply to legacy instructions when converting them to prefixed, 139 // pc-relative versions. For the most part, the primary opcode is shared 140 // between the legacy instruction and the suffix of its prefixed version. 141 // However, there are some instances where that isn't the case (DS-Form and 142 // DQ-form instructions). 143 enum class LegacyToPrefixMask : uint64_t { 144 NOMASK = 0x0, 145 OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10). 146 ONLY_RST = 0x3e00000, // [RS]T (6-10). 147 ST_STX28_TO5 = 148 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5. 149 }; 150 151 uint64_t elf::getPPC64TocBase() { 152 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 153 // TOC starts where the first of these sections starts. We always create a 154 // .got when we see a relocation that uses it, so for us the start is always 155 // the .got. 156 uint64_t tocVA = in.got->getVA(); 157 158 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 159 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 160 // code (crt1.o) assumes that you can get from the TOC base to the 161 // start of the .toc section with only a single (signed) 16-bit relocation. 162 return tocVA + ppc64TocOffset; 163 } 164 165 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) { 166 // The offset is encoded into the 3 most significant bits of the st_other 167 // field, with some special values described in section 3.4.1 of the ABI: 168 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use 169 // the TOC pointer (r2). r2 will hold the same value on returning from 170 // the function as it did on entering the function. 171 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a 172 // caller-saved register for all callers. 173 // 2-6 --> The binary logarithm of the offset eg: 174 // 2 --> 2^2 = 4 bytes --> 1 instruction. 175 // 6 --> 2^6 = 64 bytes --> 16 instructions. 176 // 7 --> Reserved. 177 uint8_t gepToLep = (stOther >> 5) & 7; 178 if (gepToLep < 2) 179 return 0; 180 181 // The value encoded in the st_other bits is the 182 // log-base-2(offset). 183 if (gepToLep < 7) 184 return 1 << gepToLep; 185 186 error("reserved value of 7 in the 3 most-significant-bits of st_other"); 187 return 0; 188 } 189 190 bool elf::isPPC64SmallCodeModelTocReloc(RelType type) { 191 // The only small code model relocations that access the .toc section. 192 return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS; 193 } 194 195 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) { 196 insn = config->isLE ? insn << 32 | insn >> 32 : insn; 197 write64(loc, insn); 198 } 199 200 static bool addOptional(StringRef name, uint64_t value, 201 std::vector<Defined *> &defined) { 202 Symbol *sym = symtab->find(name); 203 if (!sym || sym->isDefined()) 204 return false; 205 sym->resolve(Defined{/*file=*/nullptr, saver.save(name), STB_GLOBAL, 206 STV_HIDDEN, STT_FUNC, value, 207 /*size=*/0, /*section=*/nullptr}); 208 defined.push_back(cast<Defined>(sym)); 209 return true; 210 } 211 212 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15: 213 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail 214 // The labels are defined only if they exist in the symbol table. 215 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix, 216 int from, uint32_t firstInsn, 217 ArrayRef<uint32_t> tail) { 218 std::vector<Defined *> defined; 219 char name[16]; 220 int first; 221 uint32_t *ptr = buf.data(); 222 for (int r = from; r < 32; ++r) { 223 format("%s%d", prefix, r).snprint(name, sizeof(name)); 224 if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1) 225 first = r - from; 226 write32(ptr++, firstInsn + 0x200008 * (r - from)); 227 } 228 for (uint32_t insn : tail) 229 write32(ptr++, insn); 230 assert(ptr == &*buf.end()); 231 232 if (defined.empty()) 233 return; 234 // The full section content has the extent of [begin, end). We drop unused 235 // instructions and write [first,end). 236 auto *sec = make<InputSection>( 237 nullptr, SHF_ALLOC, SHT_PROGBITS, 4, 238 makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first), 239 4 * (buf.size() - first)), 240 ".text"); 241 inputSections.push_back(sec); 242 for (Defined *sym : defined) { 243 sym->section = sec; 244 sym->value -= 4 * first; 245 } 246 } 247 248 // Implements some save and restore functions as described by ELF V2 ABI to be 249 // compatible with GCC. With GCC -Os, when the number of call-saved registers 250 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and 251 // expects the linker to define them. See 252 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and 253 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is 254 // weird because libgcc.a would be the natural place. The linker generation 255 // approach has the advantage that the linker can generate multiple copies to 256 // avoid long branch thunks. However, we don't consider the advantage 257 // significant enough to complicate our trunk implementation, so we take the 258 // simple approach and synthesize .text sections providing the implementation. 259 void elf::addPPC64SaveRestore() { 260 static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19]; 261 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6; 262 263 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ... 264 // Tail: ld 0, 16(1); mtlr 0; blr 265 writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70, 266 {0xe8010010, mtlr_0, blr}); 267 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ... 268 // Tail: blr 269 writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr}); 270 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ... 271 // Tail: std 0, 16(1); blr 272 writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr}); 273 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ... 274 // Tail: blr 275 writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr}); 276 } 277 278 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset. 279 template <typename ELFT> 280 static std::pair<Defined *, int64_t> 281 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) { 282 if (tocSec->numRelocations == 0) 283 return {}; 284 285 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by 286 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the 287 // relocation index in most cases. 288 // 289 // In rare cases a TOC entry may store a constant that doesn't need an 290 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8 291 // points to a relocation with larger r_offset. Do a linear probe then. 292 // Constants are extremely uncommon in .toc and the extra number of array 293 // accesses can be seen as a small constant. 294 ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>(); 295 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1); 296 for (;;) { 297 if (relas[index].r_offset == offset) { 298 Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]); 299 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])}; 300 } 301 if (relas[index].r_offset < offset || index == 0) 302 break; 303 --index; 304 } 305 return {}; 306 } 307 308 // When accessing a symbol defined in another translation unit, compilers 309 // reserve a .toc entry, allocate a local label and generate toc-indirect 310 // instructions: 311 // 312 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA 313 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry 314 // ld/lwa 3, 0(3) # load the value from the address 315 // 316 // .section .toc,"aw",@progbits 317 // .LC0: .tc var[TC],var 318 // 319 // If var is defined, non-preemptable and addressable with a 32-bit signed 320 // offset from the toc base, the address of var can be computed by adding an 321 // offset to the toc base, saving a load. 322 // 323 // addis 3,2,var@toc@ha # this may be relaxed to a nop, 324 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc 325 // ld/lwa 3, 0(3) # load the value from the address 326 // 327 // Returns true if the relaxation is performed. 328 bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) { 329 assert(config->tocOptimize); 330 if (rel.addend < 0) 331 return false; 332 333 // If the symbol is not the .toc section, this isn't a toc-indirection. 334 Defined *defSym = dyn_cast<Defined>(rel.sym); 335 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc") 336 return false; 337 338 Defined *d; 339 int64_t addend; 340 auto *tocISB = cast<InputSectionBase>(defSym->section); 341 std::tie(d, addend) = 342 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend) 343 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend); 344 345 // Only non-preemptable defined symbols can be relaxed. 346 if (!d || d->isPreemptible) 347 return false; 348 349 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable 350 // ifunc and changed its type to STT_FUNC. 351 assert(!d->isGnuIFunc()); 352 353 // Two instructions can materialize a 32-bit signed offset from the toc base. 354 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase(); 355 if (!isInt<32>(tocRelative)) 356 return false; 357 358 // Add PPC64TocOffset that will be subtracted by PPC64::relocate(). 359 target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset); 360 return true; 361 } 362 363 namespace { 364 class PPC64 final : public TargetInfo { 365 public: 366 PPC64(); 367 int getTlsGdRelaxSkip(RelType type) const override; 368 uint32_t calcEFlags() const override; 369 RelExpr getRelExpr(RelType type, const Symbol &s, 370 const uint8_t *loc) const override; 371 RelType getDynRel(RelType type) const override; 372 void writePltHeader(uint8_t *buf) const override; 373 void writePlt(uint8_t *buf, const Symbol &sym, 374 uint64_t pltEntryAddr) const override; 375 void writeIplt(uint8_t *buf, const Symbol &sym, 376 uint64_t pltEntryAddr) const override; 377 void relocate(uint8_t *loc, const Relocation &rel, 378 uint64_t val) const override; 379 void writeGotHeader(uint8_t *buf) const override; 380 bool needsThunk(RelExpr expr, RelType type, const InputFile *file, 381 uint64_t branchAddr, const Symbol &s, 382 int64_t a) const override; 383 uint32_t getThunkSectionSpacing() const override; 384 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; 385 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; 386 RelExpr adjustGotPcExpr(RelType type, int64_t addend, 387 const uint8_t *loc) const override; 388 void relaxGot(uint8_t *loc, const Relocation &rel, 389 uint64_t val) const override; 390 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 391 uint64_t val) const override; 392 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 393 uint64_t val) const override; 394 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 395 uint64_t val) const override; 396 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 397 uint64_t val) const override; 398 399 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 400 uint8_t stOther) const override; 401 }; 402 } // namespace 403 404 // Relocation masks following the #lo(value), #hi(value), #ha(value), 405 // #higher(value), #highera(value), #highest(value), and #highesta(value) 406 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 407 // document. 408 static uint16_t lo(uint64_t v) { return v; } 409 static uint16_t hi(uint64_t v) { return v >> 16; } 410 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; } 411 static uint16_t higher(uint64_t v) { return v >> 32; } 412 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; } 413 static uint16_t highest(uint64_t v) { return v >> 48; } 414 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; } 415 416 // Extracts the 'PO' field of an instruction encoding. 417 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); } 418 419 static bool isDQFormInstruction(uint32_t encoding) { 420 switch (getPrimaryOpCode(encoding)) { 421 default: 422 return false; 423 case 6: // Power10 paired loads/stores (lxvp, stxvp). 424 case 56: 425 // The only instruction with a primary opcode of 56 is `lq`. 426 return true; 427 case 61: 428 // There are both DS and DQ instruction forms with this primary opcode. 429 // Namely `lxv` and `stxv` are the DQ-forms that use it. 430 // The DS 'XO' bits being set to 01 is restricted to DQ form. 431 return (encoding & 3) == 0x1; 432 } 433 } 434 435 static bool isDSFormInstruction(PPCLegacyInsn insn) { 436 switch (insn) { 437 default: 438 return false; 439 case PPCLegacyInsn::LWA: 440 case PPCLegacyInsn::LD: 441 case PPCLegacyInsn::LXSD: 442 case PPCLegacyInsn::LXSSP: 443 case PPCLegacyInsn::STD: 444 case PPCLegacyInsn::STXSD: 445 case PPCLegacyInsn::STXSSP: 446 return true; 447 } 448 } 449 450 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) { 451 uint32_t opc = encoding & 0xfc000000; 452 453 // If the primary opcode is shared between multiple instructions, we need to 454 // fix it up to match the actual instruction we are after. 455 if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 || 456 opc == 0xf8000000) && 457 !isDQFormInstruction(encoding)) 458 opc = encoding & 0xfc000003; 459 else if (opc == 0xf4000000) 460 opc = encoding & 0xfc000007; 461 else if (opc == 0x18000000) 462 opc = encoding & 0xfc00000f; 463 464 // If the value is not one of the enumerators in PPCLegacyInsn, we want to 465 // return PPCLegacyInsn::NOINSN. 466 if (!checkPPCLegacyInsn(opc)) 467 return PPCLegacyInsn::NOINSN; 468 return static_cast<PPCLegacyInsn>(opc); 469 } 470 471 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) { 472 switch (insn) { 473 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 474 case PPCLegacyInsn::Legacy: \ 475 return PPCPrefixedInsn::PCRel 476 #include "PPCInsns.def" 477 #undef PCREL_OPT 478 } 479 return PPCPrefixedInsn::NOINSN; 480 } 481 482 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) { 483 switch (insn) { 484 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 485 case PPCLegacyInsn::Legacy: \ 486 return LegacyToPrefixMask::InsnMask 487 #include "PPCInsns.def" 488 #undef PCREL_OPT 489 } 490 return LegacyToPrefixMask::NOMASK; 491 } 492 static uint64_t getPCRelativeForm(uint32_t encoding) { 493 PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding); 494 PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn); 495 if (pcrelInsn == PPCPrefixedInsn::NOINSN) 496 return UINT64_C(-1); 497 LegacyToPrefixMask origInsnMask = getInsnMask(origInsn); 498 uint64_t pcrelEncoding = 499 (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask); 500 501 // If the mask requires moving bit 28 to bit 5, do that now. 502 if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5) 503 pcrelEncoding |= (encoding & 0x8) << 23; 504 return pcrelEncoding; 505 } 506 507 static bool isInstructionUpdateForm(uint32_t encoding) { 508 switch (getPrimaryOpCode(encoding)) { 509 default: 510 return false; 511 case LBZU: 512 case LHAU: 513 case LHZU: 514 case LWZU: 515 case LFSU: 516 case LFDU: 517 case STBU: 518 case STHU: 519 case STWU: 520 case STFSU: 521 case STFDU: 522 return true; 523 // LWA has the same opcode as LD, and the DS bits is what differentiates 524 // between LD/LDU/LWA 525 case LD: 526 case STD: 527 return (encoding & 3) == 1; 528 } 529 } 530 531 // Compute the total displacement between the prefixed instruction that gets 532 // to the start of the data and the load/store instruction that has the offset 533 // into the data structure. 534 // For example: 535 // paddi 3, 0, 1000, 1 536 // lwz 3, 20(3) 537 // Should add up to 1020 for total displacement. 538 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) { 539 int64_t disp34 = llvm::SignExtend64( 540 ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34); 541 int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16); 542 // For DS and DQ form instructions, we need to mask out the XO bits. 543 if (isDQFormInstruction(accessInsn)) 544 disp16 &= ~0xf; 545 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn))) 546 disp16 &= ~0x3; 547 return disp34 + disp16; 548 } 549 550 // There are a number of places when we either want to read or write an 551 // instruction when handling a half16 relocation type. On big-endian the buffer 552 // pointer is pointing into the middle of the word we want to extract, and on 553 // little-endian it is pointing to the start of the word. These 2 helpers are to 554 // simplify reading and writing in that context. 555 static void writeFromHalf16(uint8_t *loc, uint32_t insn) { 556 write32(config->isLE ? loc : loc - 2, insn); 557 } 558 559 static uint32_t readFromHalf16(const uint8_t *loc) { 560 return read32(config->isLE ? loc : loc - 2); 561 } 562 563 static uint64_t readPrefixedInstruction(const uint8_t *loc) { 564 uint64_t fullInstr = read64(loc); 565 return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr; 566 } 567 568 PPC64::PPC64() { 569 copyRel = R_PPC64_COPY; 570 gotRel = R_PPC64_GLOB_DAT; 571 noneRel = R_PPC64_NONE; 572 pltRel = R_PPC64_JMP_SLOT; 573 relativeRel = R_PPC64_RELATIVE; 574 iRelativeRel = R_PPC64_IRELATIVE; 575 symbolicRel = R_PPC64_ADDR64; 576 pltHeaderSize = 60; 577 pltEntrySize = 4; 578 ipltEntrySize = 16; // PPC64PltCallStub::size 579 gotBaseSymInGotPlt = false; 580 gotHeaderEntriesNum = 1; 581 gotPltHeaderEntriesNum = 2; 582 needsThunks = true; 583 584 tlsModuleIndexRel = R_PPC64_DTPMOD64; 585 tlsOffsetRel = R_PPC64_DTPREL64; 586 587 tlsGotRel = R_PPC64_TPREL64; 588 589 needsMoreStackNonSplit = false; 590 591 // We need 64K pages (at least under glibc/Linux, the loader won't 592 // set different permissions on a finer granularity than that). 593 defaultMaxPageSize = 65536; 594 595 // The PPC64 ELF ABI v1 spec, says: 596 // 597 // It is normally desirable to put segments with different characteristics 598 // in separate 256 Mbyte portions of the address space, to give the 599 // operating system full paging flexibility in the 64-bit address space. 600 // 601 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 602 // use 0x10000000 as the starting address. 603 defaultImageBase = 0x10000000; 604 605 write32(trapInstr.data(), 0x7fe00008); 606 } 607 608 int PPC64::getTlsGdRelaxSkip(RelType type) const { 609 // A __tls_get_addr call instruction is marked with 2 relocations: 610 // 611 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation 612 // R_PPC64_REL24: __tls_get_addr 613 // 614 // After the relaxation we no longer call __tls_get_addr and should skip both 615 // relocations to not create a false dependence on __tls_get_addr being 616 // defined. 617 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD) 618 return 2; 619 return 1; 620 } 621 622 static uint32_t getEFlags(InputFile *file) { 623 if (config->ekind == ELF64BEKind) 624 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags; 625 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags; 626 } 627 628 // This file implements v2 ABI. This function makes sure that all 629 // object files have v2 or an unspecified version as an ABI version. 630 uint32_t PPC64::calcEFlags() const { 631 for (InputFile *f : objectFiles) { 632 uint32_t flag = getEFlags(f); 633 if (flag == 1) 634 error(toString(f) + ": ABI version 1 is not supported"); 635 else if (flag > 2) 636 error(toString(f) + ": unrecognized e_flags: " + Twine(flag)); 637 } 638 return 2; 639 } 640 641 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const { 642 switch (rel.type) { 643 case R_PPC64_TOC16_HA: 644 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop". 645 relocate(loc, rel, val); 646 break; 647 case R_PPC64_TOC16_LO_DS: { 648 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or 649 // "addi reg, 2, var@toc". 650 uint32_t insn = readFromHalf16(loc); 651 if (getPrimaryOpCode(insn) != LD) 652 error("expected a 'ld' for got-indirect to toc-relative relaxing"); 653 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000); 654 relocateNoSym(loc, R_PPC64_TOC16_LO, val); 655 break; 656 } 657 case R_PPC64_GOT_PCREL34: { 658 // Clear the first 8 bits of the prefix and the first 6 bits of the 659 // instruction (the primary opcode). 660 uint64_t insn = readPrefixedInstruction(loc); 661 if ((insn & 0xfc000000) != 0xe4000000) 662 error("expected a 'pld' for got-indirect to pc-relative relaxing"); 663 insn &= ~0xff000000fc000000; 664 665 // Replace the cleared bits with the values for PADDI (0x600000038000000); 666 insn |= 0x600000038000000; 667 writePrefixedInstruction(loc, insn); 668 relocate(loc, rel, val); 669 break; 670 } 671 case R_PPC64_PCREL_OPT: { 672 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can 673 // be relaxed. The eligibility for the relaxation needs to be determined 674 // on that relocation since this one does not relocate a symbol. 675 uint64_t insn = readPrefixedInstruction(loc); 676 uint32_t accessInsn = read32(loc + rel.addend); 677 uint64_t pcRelInsn = getPCRelativeForm(accessInsn); 678 679 // This error is not necessary for correctness but is emitted for now 680 // to ensure we don't miss these opportunities in real code. It can be 681 // removed at a later date. 682 if (pcRelInsn == UINT64_C(-1)) { 683 errorOrWarn( 684 "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" + 685 Twine::utohexstr(accessInsn)); 686 break; 687 } 688 689 int64_t totalDisp = getTotalDisp(insn, accessInsn); 690 if (!isInt<34>(totalDisp)) 691 break; // Displacement doesn't fit. 692 // Convert the PADDI to the prefixed version of accessInsn and convert 693 // accessInsn to a nop. 694 writePrefixedInstruction(loc, pcRelInsn | 695 ((totalDisp & 0x3ffff0000) << 16) | 696 (totalDisp & 0xffff)); 697 write32(loc + rel.addend, NOP); // nop accessInsn. 698 break; 699 } 700 default: 701 llvm_unreachable("unexpected relocation type"); 702 } 703 } 704 705 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 706 uint64_t val) const { 707 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. 708 // The general dynamic code sequence for a global `x` will look like: 709 // Instruction Relocation Symbol 710 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 711 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 712 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 713 // R_PPC64_REL24 __tls_get_addr 714 // nop None None 715 716 // Relaxing to local exec entails converting: 717 // addis r3, r2, x@got@tlsgd@ha into nop 718 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha 719 // bl __tls_get_addr(x@tlsgd) into nop 720 // nop into addi r3, r3, x@tprel@l 721 722 switch (rel.type) { 723 case R_PPC64_GOT_TLSGD16_HA: 724 writeFromHalf16(loc, NOP); 725 break; 726 case R_PPC64_GOT_TLSGD16: 727 case R_PPC64_GOT_TLSGD16_LO: 728 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13 729 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 730 break; 731 case R_PPC64_GOT_TLSGD_PCREL34: 732 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to 733 // paddi r3, r13, x@tprel, 0 734 writePrefixedInstruction(loc, 0x06000000386d0000); 735 relocateNoSym(loc, R_PPC64_TPREL34, val); 736 break; 737 case R_PPC64_TLSGD: { 738 // PC Relative Relaxation: 739 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 740 // nop 741 // TOC Relaxation: 742 // Relax from bl __tls_get_addr(x@tlsgd) 743 // nop 744 // to 745 // nop 746 // addi r3, r3, x@tprel@l 747 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 748 if (locAsInt % 4 == 0) { 749 write32(loc, NOP); // nop 750 write32(loc + 4, 0x38630000); // addi r3, r3 751 // Since we are relocating a half16 type relocation and Loc + 4 points to 752 // the start of an instruction we need to advance the buffer by an extra 753 // 2 bytes on BE. 754 relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0), 755 R_PPC64_TPREL16_LO, val); 756 } else if (locAsInt % 4 == 1) { 757 write32(loc - 1, NOP); 758 } else { 759 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 760 } 761 break; 762 } 763 default: 764 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 765 } 766 } 767 768 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 769 uint64_t val) const { 770 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. 771 // The local dynamic code sequence for a global `x` will look like: 772 // Instruction Relocation Symbol 773 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x 774 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x 775 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x 776 // R_PPC64_REL24 __tls_get_addr 777 // nop None None 778 779 // Relaxing to local exec entails converting: 780 // addis r3, r2, x@got@tlsld@ha into nop 781 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 782 // bl __tls_get_addr(x@tlsgd) into nop 783 // nop into addi r3, r3, 4096 784 785 switch (rel.type) { 786 case R_PPC64_GOT_TLSLD16_HA: 787 writeFromHalf16(loc, NOP); 788 break; 789 case R_PPC64_GOT_TLSLD16_LO: 790 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0 791 break; 792 case R_PPC64_GOT_TLSLD_PCREL34: 793 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to 794 // paddi r3, r13, 0x1000, 0 795 writePrefixedInstruction(loc, 0x06000000386d1000); 796 break; 797 case R_PPC64_TLSLD: { 798 // PC Relative Relaxation: 799 // Relax from bl __tls_get_addr@notoc(x@tlsld) 800 // to 801 // nop 802 // TOC Relaxation: 803 // Relax from bl __tls_get_addr(x@tlsld) 804 // nop 805 // to 806 // nop 807 // addi r3, r3, 4096 808 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 809 if (locAsInt % 4 == 0) { 810 write32(loc, NOP); 811 write32(loc + 4, 0x38631000); // addi r3, r3, 4096 812 } else if (locAsInt % 4 == 1) { 813 write32(loc - 1, NOP); 814 } else { 815 errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment"); 816 } 817 break; 818 } 819 case R_PPC64_DTPREL16: 820 case R_PPC64_DTPREL16_HA: 821 case R_PPC64_DTPREL16_HI: 822 case R_PPC64_DTPREL16_DS: 823 case R_PPC64_DTPREL16_LO: 824 case R_PPC64_DTPREL16_LO_DS: 825 case R_PPC64_DTPREL34: 826 relocate(loc, rel, val); 827 break; 828 default: 829 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); 830 } 831 } 832 833 unsigned elf::getPPCDFormOp(unsigned secondaryOp) { 834 switch (secondaryOp) { 835 case LBZX: 836 return LBZ; 837 case LHZX: 838 return LHZ; 839 case LWZX: 840 return LWZ; 841 case LDX: 842 return LD; 843 case STBX: 844 return STB; 845 case STHX: 846 return STH; 847 case STWX: 848 return STW; 849 case STDX: 850 return STD; 851 case ADD: 852 return ADDI; 853 default: 854 return 0; 855 } 856 } 857 858 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 859 uint64_t val) const { 860 // The initial exec code sequence for a global `x` will look like: 861 // Instruction Relocation Symbol 862 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x 863 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x 864 // add r9, r9, x@tls R_PPC64_TLS x 865 866 // Relaxing to local exec entails converting: 867 // addis r9, r2, x@got@tprel@ha into nop 868 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha 869 // add r9, r9, x@tls into addi r9, r9, x@tprel@l 870 871 // x@tls R_PPC64_TLS is a relocation which does not compute anything, 872 // it is replaced with r13 (thread pointer). 873 874 // The add instruction in the initial exec sequence has multiple variations 875 // that need to be handled. If we are building an address it will use an add 876 // instruction, if we are accessing memory it will use any of the X-form 877 // indexed load or store instructions. 878 879 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0; 880 switch (rel.type) { 881 case R_PPC64_GOT_TPREL16_HA: 882 write32(loc - offset, NOP); 883 break; 884 case R_PPC64_GOT_TPREL16_LO_DS: 885 case R_PPC64_GOT_TPREL16_DS: { 886 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10 887 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13 888 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 889 break; 890 } 891 case R_PPC64_GOT_TPREL_PCREL34: { 892 const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000; 893 // paddi RT(from pld), r13, symbol@tprel, 0 894 writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT); 895 relocateNoSym(loc, R_PPC64_TPREL34, val); 896 break; 897 } 898 case R_PPC64_TLS: { 899 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 900 if (locAsInt % 4 == 0) { 901 uint32_t primaryOp = getPrimaryOpCode(read32(loc)); 902 if (primaryOp != 31) 903 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 904 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30 905 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 906 if (dFormOp == 0) 907 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 908 write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF))); 909 relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val); 910 } else if (locAsInt % 4 == 1) { 911 // If the offset is not 4 byte aligned then we have a PCRel type reloc. 912 // This version of the relocation is offset by one byte from the 913 // instruction it references. 914 uint32_t tlsInstr = read32(loc - 1); 915 uint32_t primaryOp = getPrimaryOpCode(tlsInstr); 916 if (primaryOp != 31) 917 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 918 uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30 919 // The add is a special case and should be turned into a nop. The paddi 920 // that comes before it will already have computed the address of the 921 // symbol. 922 if (secondaryOp == 266) { 923 // Check if the add uses the same result register as the input register. 924 uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10 925 uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15 926 if (ra == rt) { 927 write32(loc - 1, NOP); 928 } else { 929 // mr rt, ra 930 write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11)); 931 } 932 } else { 933 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 934 if (dFormOp == 0) 935 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 936 write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000))); 937 } 938 } else { 939 errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte " 940 "offset from 4 byte aligned"); 941 } 942 break; 943 } 944 default: 945 llvm_unreachable("unknown relocation for IE to LE"); 946 break; 947 } 948 } 949 950 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s, 951 const uint8_t *loc) const { 952 switch (type) { 953 case R_PPC64_NONE: 954 return R_NONE; 955 case R_PPC64_ADDR16: 956 case R_PPC64_ADDR16_DS: 957 case R_PPC64_ADDR16_HA: 958 case R_PPC64_ADDR16_HI: 959 case R_PPC64_ADDR16_HIGH: 960 case R_PPC64_ADDR16_HIGHER: 961 case R_PPC64_ADDR16_HIGHERA: 962 case R_PPC64_ADDR16_HIGHEST: 963 case R_PPC64_ADDR16_HIGHESTA: 964 case R_PPC64_ADDR16_LO: 965 case R_PPC64_ADDR16_LO_DS: 966 case R_PPC64_ADDR32: 967 case R_PPC64_ADDR64: 968 return R_ABS; 969 case R_PPC64_GOT16: 970 case R_PPC64_GOT16_DS: 971 case R_PPC64_GOT16_HA: 972 case R_PPC64_GOT16_HI: 973 case R_PPC64_GOT16_LO: 974 case R_PPC64_GOT16_LO_DS: 975 return R_GOT_OFF; 976 case R_PPC64_TOC16: 977 case R_PPC64_TOC16_DS: 978 case R_PPC64_TOC16_HI: 979 case R_PPC64_TOC16_LO: 980 return R_GOTREL; 981 case R_PPC64_GOT_PCREL34: 982 case R_PPC64_GOT_TPREL_PCREL34: 983 case R_PPC64_PCREL_OPT: 984 return R_GOT_PC; 985 case R_PPC64_TOC16_HA: 986 case R_PPC64_TOC16_LO_DS: 987 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL; 988 case R_PPC64_TOC: 989 return R_PPC64_TOCBASE; 990 case R_PPC64_REL14: 991 case R_PPC64_REL24: 992 return R_PPC64_CALL_PLT; 993 case R_PPC64_REL24_NOTOC: 994 return R_PLT_PC; 995 case R_PPC64_REL16_LO: 996 case R_PPC64_REL16_HA: 997 case R_PPC64_REL16_HI: 998 case R_PPC64_REL32: 999 case R_PPC64_REL64: 1000 case R_PPC64_PCREL34: 1001 return R_PC; 1002 case R_PPC64_GOT_TLSGD16: 1003 case R_PPC64_GOT_TLSGD16_HA: 1004 case R_PPC64_GOT_TLSGD16_HI: 1005 case R_PPC64_GOT_TLSGD16_LO: 1006 return R_TLSGD_GOT; 1007 case R_PPC64_GOT_TLSGD_PCREL34: 1008 return R_TLSGD_PC; 1009 case R_PPC64_GOT_TLSLD16: 1010 case R_PPC64_GOT_TLSLD16_HA: 1011 case R_PPC64_GOT_TLSLD16_HI: 1012 case R_PPC64_GOT_TLSLD16_LO: 1013 return R_TLSLD_GOT; 1014 case R_PPC64_GOT_TLSLD_PCREL34: 1015 return R_TLSLD_PC; 1016 case R_PPC64_GOT_TPREL16_HA: 1017 case R_PPC64_GOT_TPREL16_LO_DS: 1018 case R_PPC64_GOT_TPREL16_DS: 1019 case R_PPC64_GOT_TPREL16_HI: 1020 return R_GOT_OFF; 1021 case R_PPC64_GOT_DTPREL16_HA: 1022 case R_PPC64_GOT_DTPREL16_LO_DS: 1023 case R_PPC64_GOT_DTPREL16_DS: 1024 case R_PPC64_GOT_DTPREL16_HI: 1025 return R_TLSLD_GOT_OFF; 1026 case R_PPC64_TPREL16: 1027 case R_PPC64_TPREL16_HA: 1028 case R_PPC64_TPREL16_LO: 1029 case R_PPC64_TPREL16_HI: 1030 case R_PPC64_TPREL16_DS: 1031 case R_PPC64_TPREL16_LO_DS: 1032 case R_PPC64_TPREL16_HIGHER: 1033 case R_PPC64_TPREL16_HIGHERA: 1034 case R_PPC64_TPREL16_HIGHEST: 1035 case R_PPC64_TPREL16_HIGHESTA: 1036 case R_PPC64_TPREL34: 1037 return R_TPREL; 1038 case R_PPC64_DTPREL16: 1039 case R_PPC64_DTPREL16_DS: 1040 case R_PPC64_DTPREL16_HA: 1041 case R_PPC64_DTPREL16_HI: 1042 case R_PPC64_DTPREL16_HIGHER: 1043 case R_PPC64_DTPREL16_HIGHERA: 1044 case R_PPC64_DTPREL16_HIGHEST: 1045 case R_PPC64_DTPREL16_HIGHESTA: 1046 case R_PPC64_DTPREL16_LO: 1047 case R_PPC64_DTPREL16_LO_DS: 1048 case R_PPC64_DTPREL64: 1049 case R_PPC64_DTPREL34: 1050 return R_DTPREL; 1051 case R_PPC64_TLSGD: 1052 return R_TLSDESC_CALL; 1053 case R_PPC64_TLSLD: 1054 return R_TLSLD_HINT; 1055 case R_PPC64_TLS: 1056 return R_TLSIE_HINT; 1057 default: 1058 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 1059 ") against symbol " + toString(s)); 1060 return R_NONE; 1061 } 1062 } 1063 1064 RelType PPC64::getDynRel(RelType type) const { 1065 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC) 1066 return R_PPC64_ADDR64; 1067 return R_PPC64_NONE; 1068 } 1069 1070 void PPC64::writeGotHeader(uint8_t *buf) const { 1071 write64(buf, getPPC64TocBase()); 1072 } 1073 1074 void PPC64::writePltHeader(uint8_t *buf) const { 1075 // The generic resolver stub goes first. 1076 write32(buf + 0, 0x7c0802a6); // mflr r0 1077 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> 1078 write32(buf + 8, 0x7d6802a6); // mflr r11 1079 write32(buf + 12, 0x7c0803a6); // mtlr r0 1080 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12 1081 write32(buf + 20, 0x380cffcc); // subi r0,r12,52 1082 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2 1083 write32(buf + 28, 0xe98b002c); // ld r12,44(r11) 1084 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11 1085 write32(buf + 36, 0xe98b0000); // ld r12,0(r11) 1086 write32(buf + 40, 0xe96b0008); // ld r11,8(r11) 1087 write32(buf + 44, 0x7d8903a6); // mtctr r12 1088 write32(buf + 48, 0x4e800420); // bctr 1089 1090 // The 'bcl' instruction will set the link register to the address of the 1091 // following instruction ('mflr r11'). Here we store the offset from that 1092 // instruction to the first entry in the GotPlt section. 1093 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8); 1094 write64(buf + 52, gotPltOffset); 1095 } 1096 1097 void PPC64::writePlt(uint8_t *buf, const Symbol &sym, 1098 uint64_t /*pltEntryAddr*/) const { 1099 int32_t offset = pltHeaderSize + sym.pltIndex * pltEntrySize; 1100 // bl __glink_PLTresolve 1101 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc)); 1102 } 1103 1104 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym, 1105 uint64_t /*pltEntryAddr*/) const { 1106 writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase()); 1107 } 1108 1109 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) { 1110 // Relocations relative to the toc-base need to be adjusted by the Toc offset. 1111 uint64_t tocBiasedVal = val - ppc64TocOffset; 1112 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. 1113 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset; 1114 1115 switch (type) { 1116 // TOC biased relocation. 1117 case R_PPC64_GOT16: 1118 case R_PPC64_GOT_TLSGD16: 1119 case R_PPC64_GOT_TLSLD16: 1120 case R_PPC64_TOC16: 1121 return {R_PPC64_ADDR16, tocBiasedVal}; 1122 case R_PPC64_GOT16_DS: 1123 case R_PPC64_TOC16_DS: 1124 case R_PPC64_GOT_TPREL16_DS: 1125 case R_PPC64_GOT_DTPREL16_DS: 1126 return {R_PPC64_ADDR16_DS, tocBiasedVal}; 1127 case R_PPC64_GOT16_HA: 1128 case R_PPC64_GOT_TLSGD16_HA: 1129 case R_PPC64_GOT_TLSLD16_HA: 1130 case R_PPC64_GOT_TPREL16_HA: 1131 case R_PPC64_GOT_DTPREL16_HA: 1132 case R_PPC64_TOC16_HA: 1133 return {R_PPC64_ADDR16_HA, tocBiasedVal}; 1134 case R_PPC64_GOT16_HI: 1135 case R_PPC64_GOT_TLSGD16_HI: 1136 case R_PPC64_GOT_TLSLD16_HI: 1137 case R_PPC64_GOT_TPREL16_HI: 1138 case R_PPC64_GOT_DTPREL16_HI: 1139 case R_PPC64_TOC16_HI: 1140 return {R_PPC64_ADDR16_HI, tocBiasedVal}; 1141 case R_PPC64_GOT16_LO: 1142 case R_PPC64_GOT_TLSGD16_LO: 1143 case R_PPC64_GOT_TLSLD16_LO: 1144 case R_PPC64_TOC16_LO: 1145 return {R_PPC64_ADDR16_LO, tocBiasedVal}; 1146 case R_PPC64_GOT16_LO_DS: 1147 case R_PPC64_TOC16_LO_DS: 1148 case R_PPC64_GOT_TPREL16_LO_DS: 1149 case R_PPC64_GOT_DTPREL16_LO_DS: 1150 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal}; 1151 1152 // Dynamic Thread pointer biased relocation types. 1153 case R_PPC64_DTPREL16: 1154 return {R_PPC64_ADDR16, dtpBiasedVal}; 1155 case R_PPC64_DTPREL16_DS: 1156 return {R_PPC64_ADDR16_DS, dtpBiasedVal}; 1157 case R_PPC64_DTPREL16_HA: 1158 return {R_PPC64_ADDR16_HA, dtpBiasedVal}; 1159 case R_PPC64_DTPREL16_HI: 1160 return {R_PPC64_ADDR16_HI, dtpBiasedVal}; 1161 case R_PPC64_DTPREL16_HIGHER: 1162 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal}; 1163 case R_PPC64_DTPREL16_HIGHERA: 1164 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal}; 1165 case R_PPC64_DTPREL16_HIGHEST: 1166 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal}; 1167 case R_PPC64_DTPREL16_HIGHESTA: 1168 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal}; 1169 case R_PPC64_DTPREL16_LO: 1170 return {R_PPC64_ADDR16_LO, dtpBiasedVal}; 1171 case R_PPC64_DTPREL16_LO_DS: 1172 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal}; 1173 case R_PPC64_DTPREL64: 1174 return {R_PPC64_ADDR64, dtpBiasedVal}; 1175 1176 default: 1177 return {type, val}; 1178 } 1179 } 1180 1181 static bool isTocOptType(RelType type) { 1182 switch (type) { 1183 case R_PPC64_GOT16_HA: 1184 case R_PPC64_GOT16_LO_DS: 1185 case R_PPC64_TOC16_HA: 1186 case R_PPC64_TOC16_LO_DS: 1187 case R_PPC64_TOC16_LO: 1188 return true; 1189 default: 1190 return false; 1191 } 1192 } 1193 1194 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 1195 RelType type = rel.type; 1196 bool shouldTocOptimize = isTocOptType(type); 1197 // For dynamic thread pointer relative, toc-relative, and got-indirect 1198 // relocations, proceed in terms of the corresponding ADDR16 relocation type. 1199 std::tie(type, val) = toAddr16Rel(type, val); 1200 1201 switch (type) { 1202 case R_PPC64_ADDR14: { 1203 checkAlignment(loc, val, 4, rel); 1204 // Preserve the AA/LK bits in the branch instruction 1205 uint8_t aalk = loc[3]; 1206 write16(loc + 2, (aalk & 3) | (val & 0xfffc)); 1207 break; 1208 } 1209 case R_PPC64_ADDR16: 1210 checkIntUInt(loc, val, 16, rel); 1211 write16(loc, val); 1212 break; 1213 case R_PPC64_ADDR32: 1214 checkIntUInt(loc, val, 32, rel); 1215 write32(loc, val); 1216 break; 1217 case R_PPC64_ADDR16_DS: 1218 case R_PPC64_TPREL16_DS: { 1219 checkInt(loc, val, 16, rel); 1220 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1221 // DS-form instructions only use bits 30-31. 1222 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3; 1223 checkAlignment(loc, lo(val), mask + 1, rel); 1224 write16(loc, (read16(loc) & mask) | lo(val)); 1225 } break; 1226 case R_PPC64_ADDR16_HA: 1227 case R_PPC64_REL16_HA: 1228 case R_PPC64_TPREL16_HA: 1229 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) 1230 writeFromHalf16(loc, NOP); 1231 else { 1232 checkInt(loc, val + 0x8000, 32, rel); 1233 write16(loc, ha(val)); 1234 } 1235 break; 1236 case R_PPC64_ADDR16_HI: 1237 case R_PPC64_REL16_HI: 1238 case R_PPC64_TPREL16_HI: 1239 checkInt(loc, val, 32, rel); 1240 write16(loc, hi(val)); 1241 break; 1242 case R_PPC64_ADDR16_HIGH: 1243 write16(loc, hi(val)); 1244 break; 1245 case R_PPC64_ADDR16_HIGHER: 1246 case R_PPC64_TPREL16_HIGHER: 1247 write16(loc, higher(val)); 1248 break; 1249 case R_PPC64_ADDR16_HIGHERA: 1250 case R_PPC64_TPREL16_HIGHERA: 1251 write16(loc, highera(val)); 1252 break; 1253 case R_PPC64_ADDR16_HIGHEST: 1254 case R_PPC64_TPREL16_HIGHEST: 1255 write16(loc, highest(val)); 1256 break; 1257 case R_PPC64_ADDR16_HIGHESTA: 1258 case R_PPC64_TPREL16_HIGHESTA: 1259 write16(loc, highesta(val)); 1260 break; 1261 case R_PPC64_ADDR16_LO: 1262 case R_PPC64_REL16_LO: 1263 case R_PPC64_TPREL16_LO: 1264 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1265 // changed into a nop. The lo part then needs to be updated to use the 1266 // toc-pointer register r2, as the base register. 1267 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1268 uint32_t insn = readFromHalf16(loc); 1269 if (isInstructionUpdateForm(insn)) 1270 error(getErrorLocation(loc) + 1271 "can't toc-optimize an update instruction: 0x" + 1272 utohexstr(insn)); 1273 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val)); 1274 } else { 1275 write16(loc, lo(val)); 1276 } 1277 break; 1278 case R_PPC64_ADDR16_LO_DS: 1279 case R_PPC64_TPREL16_LO_DS: { 1280 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1281 // DS-form instructions only use bits 30-31. 1282 uint32_t insn = readFromHalf16(loc); 1283 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3; 1284 checkAlignment(loc, lo(val), mask + 1, rel); 1285 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1286 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1287 // changed into a nop. The lo part then needs to be updated to use the toc 1288 // pointer register r2, as the base register. 1289 if (isInstructionUpdateForm(insn)) 1290 error(getErrorLocation(loc) + 1291 "Can't toc-optimize an update instruction: 0x" + 1292 Twine::utohexstr(insn)); 1293 insn &= 0xffe00000 | mask; 1294 writeFromHalf16(loc, insn | 0x00020000 | lo(val)); 1295 } else { 1296 write16(loc, (read16(loc) & mask) | lo(val)); 1297 } 1298 } break; 1299 case R_PPC64_TPREL16: 1300 checkInt(loc, val, 16, rel); 1301 write16(loc, val); 1302 break; 1303 case R_PPC64_REL32: 1304 checkInt(loc, val, 32, rel); 1305 write32(loc, val); 1306 break; 1307 case R_PPC64_ADDR64: 1308 case R_PPC64_REL64: 1309 case R_PPC64_TOC: 1310 write64(loc, val); 1311 break; 1312 case R_PPC64_REL14: { 1313 uint32_t mask = 0x0000FFFC; 1314 checkInt(loc, val, 16, rel); 1315 checkAlignment(loc, val, 4, rel); 1316 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1317 break; 1318 } 1319 case R_PPC64_REL24: 1320 case R_PPC64_REL24_NOTOC: { 1321 uint32_t mask = 0x03FFFFFC; 1322 checkInt(loc, val, 26, rel); 1323 checkAlignment(loc, val, 4, rel); 1324 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1325 break; 1326 } 1327 case R_PPC64_DTPREL64: 1328 write64(loc, val - dynamicThreadPointerOffset); 1329 break; 1330 case R_PPC64_DTPREL34: 1331 // The Dynamic Thread Vector actually points 0x8000 bytes past the start 1332 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first 1333 // need to subtract that value then fallthrough to the general case. 1334 val -= dynamicThreadPointerOffset; 1335 LLVM_FALLTHROUGH; 1336 case R_PPC64_PCREL34: 1337 case R_PPC64_GOT_PCREL34: 1338 case R_PPC64_GOT_TLSGD_PCREL34: 1339 case R_PPC64_GOT_TLSLD_PCREL34: 1340 case R_PPC64_GOT_TPREL_PCREL34: 1341 case R_PPC64_TPREL34: { 1342 const uint64_t si0Mask = 0x00000003ffff0000; 1343 const uint64_t si1Mask = 0x000000000000ffff; 1344 const uint64_t fullMask = 0x0003ffff0000ffff; 1345 checkInt(loc, val, 34, rel); 1346 1347 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask; 1348 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) | 1349 (val & si1Mask)); 1350 break; 1351 } 1352 // If we encounter a PCREL_OPT relocation that we won't optimize. 1353 case R_PPC64_PCREL_OPT: 1354 break; 1355 default: 1356 llvm_unreachable("unknown relocation"); 1357 } 1358 } 1359 1360 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file, 1361 uint64_t branchAddr, const Symbol &s, int64_t a) const { 1362 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 && 1363 type != R_PPC64_REL24_NOTOC) 1364 return false; 1365 1366 // If a function is in the Plt it needs to be called with a call-stub. 1367 if (s.isInPlt()) 1368 return true; 1369 1370 // This check looks at the st_other bits of the callee with relocation 1371 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee 1372 // clobbers the TOC and we need an R2 save stub. 1373 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1) 1374 return true; 1375 1376 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1) 1377 return true; 1378 1379 // If a symbol is a weak undefined and we are compiling an executable 1380 // it doesn't need a range-extending thunk since it can't be called. 1381 if (s.isUndefWeak() && !config->shared) 1382 return false; 1383 1384 // If the offset exceeds the range of the branch type then it will need 1385 // a range-extending thunk. 1386 // See the comment in getRelocTargetVA() about R_PPC64_CALL. 1387 return !inBranchRange(type, branchAddr, 1388 s.getVA(a) + 1389 getPPC64GlobalEntryToLocalEntryOffset(s.stOther)); 1390 } 1391 1392 uint32_t PPC64::getThunkSectionSpacing() const { 1393 // See comment in Arch/ARM.cpp for a more detailed explanation of 1394 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on 1395 // R_PPC64_REL24, which is used by unconditional branch instructions. 1396 // 0x2000000 = (1 << 24-1) * 4 1397 return 0x2000000; 1398 } 1399 1400 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { 1401 int64_t offset = dst - src; 1402 if (type == R_PPC64_REL14) 1403 return isInt<16>(offset); 1404 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) 1405 return isInt<26>(offset); 1406 llvm_unreachable("unsupported relocation type used in branch"); 1407 } 1408 1409 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const { 1410 if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE) 1411 return R_RELAX_TLS_GD_TO_IE_GOT_OFF; 1412 if (expr == R_RELAX_TLS_LD_TO_LE) 1413 return R_RELAX_TLS_LD_TO_LE_ABS; 1414 return expr; 1415 } 1416 1417 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend, 1418 const uint8_t *loc) const { 1419 if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) && 1420 config->pcRelOptimize) { 1421 // It only makes sense to optimize pld since paddi means that the address 1422 // of the object in the GOT is required rather than the object itself. 1423 if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000) 1424 return R_PPC64_RELAX_GOT_PC; 1425 } 1426 return R_GOT_PC; 1427 } 1428 1429 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. 1430 // The general dynamic code sequence for a global `x` uses 4 instructions. 1431 // Instruction Relocation Symbol 1432 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 1433 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 1434 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 1435 // R_PPC64_REL24 __tls_get_addr 1436 // nop None None 1437 // 1438 // Relaxing to initial-exec entails: 1439 // 1) Convert the addis/addi pair that builds the address of the tls_index 1440 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. 1441 // 2) Convert the call to __tls_get_addr to a nop. 1442 // 3) Convert the nop following the call to an add of the loaded offset to the 1443 // thread pointer. 1444 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is 1445 // used as the relaxation hint for both steps 2 and 3. 1446 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 1447 uint64_t val) const { 1448 switch (rel.type) { 1449 case R_PPC64_GOT_TLSGD16_HA: 1450 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to 1451 // addis rT, r2, sym@got@tprel@ha. 1452 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val); 1453 return; 1454 case R_PPC64_GOT_TLSGD16: 1455 case R_PPC64_GOT_TLSGD16_LO: { 1456 // Relax from addi r3, rA, sym@got@tlsgd@l to 1457 // ld r3, sym@got@tprel@l(rA) 1458 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16)); 1459 writeFromHalf16(loc, 0xe8600000 | ra); 1460 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val); 1461 return; 1462 } 1463 case R_PPC64_GOT_TLSGD_PCREL34: { 1464 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to 1465 // pld r3, sym@got@tprel@pcrel 1466 writePrefixedInstruction(loc, 0x04100000e4600000); 1467 relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val); 1468 return; 1469 } 1470 case R_PPC64_TLSGD: { 1471 // PC Relative Relaxation: 1472 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 1473 // nop 1474 // TOC Relaxation: 1475 // Relax from bl __tls_get_addr(x@tlsgd) 1476 // nop 1477 // to 1478 // nop 1479 // add r3, r3, r13 1480 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 1481 if (locAsInt % 4 == 0) { 1482 write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop 1483 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13 1484 } else if (locAsInt % 4 == 1) { 1485 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13 1486 write32(loc - 1, 0x7c636a14); 1487 } else { 1488 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 1489 } 1490 return; 1491 } 1492 default: 1493 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); 1494 } 1495 } 1496 1497 // The prologue for a split-stack function is expected to look roughly 1498 // like this: 1499 // .Lglobal_entry_point: 1500 // # TOC pointer initialization. 1501 // ... 1502 // .Llocal_entry_point: 1503 // # load the __private_ss member of the threads tcbhead. 1504 // ld r0,-0x7000-64(r13) 1505 // # subtract the functions stack size from the stack pointer. 1506 // addis r12, r1, ha(-stack-frame size) 1507 // addi r12, r12, l(-stack-frame size) 1508 // # compare needed to actual and branch to allocate_more_stack if more 1509 // # space is needed, otherwise fallthrough to 'normal' function body. 1510 // cmpld cr7,r12,r0 1511 // blt- cr7, .Lallocate_more_stack 1512 // 1513 // -) The allocate_more_stack block might be placed after the split-stack 1514 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` 1515 // instead. 1516 // -) If either the addis or addi is not needed due to the stack size being 1517 // smaller then 32K or a multiple of 64K they will be replaced with a nop, 1518 // but there will always be 2 instructions the linker can overwrite for the 1519 // adjusted stack size. 1520 // 1521 // The linkers job here is to increase the stack size used in the addis/addi 1522 // pair by split-stack-size-adjust. 1523 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) 1524 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) 1525 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 1526 uint8_t stOther) const { 1527 // If the caller has a global entry point adjust the buffer past it. The start 1528 // of the split-stack prologue will be at the local entry point. 1529 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther); 1530 1531 // At the very least we expect to see a load of some split-stack data from the 1532 // tcb, and 2 instructions that calculate the ending stack address this 1533 // function will require. If there is not enough room for at least 3 1534 // instructions it can't be a split-stack prologue. 1535 if (loc + 12 >= end) 1536 return false; 1537 1538 // First instruction must be `ld r0, -0x7000-64(r13)` 1539 if (read32(loc) != 0xe80d8fc0) 1540 return false; 1541 1542 int16_t hiImm = 0; 1543 int16_t loImm = 0; 1544 // First instruction can be either an addis if the frame size is larger then 1545 // 32K, or an addi if the size is less then 32K. 1546 int32_t firstInstr = read32(loc + 4); 1547 if (getPrimaryOpCode(firstInstr) == 15) { 1548 hiImm = firstInstr & 0xFFFF; 1549 } else if (getPrimaryOpCode(firstInstr) == 14) { 1550 loImm = firstInstr & 0xFFFF; 1551 } else { 1552 return false; 1553 } 1554 1555 // Second instruction is either an addi or a nop. If the first instruction was 1556 // an addi then LoImm is set and the second instruction must be a nop. 1557 uint32_t secondInstr = read32(loc + 8); 1558 if (!loImm && getPrimaryOpCode(secondInstr) == 14) { 1559 loImm = secondInstr & 0xFFFF; 1560 } else if (secondInstr != NOP) { 1561 return false; 1562 } 1563 1564 // The register operands of the first instruction should be the stack-pointer 1565 // (r1) as the input (RA) and r12 as the output (RT). If the second 1566 // instruction is not a nop, then it should use r12 as both input and output. 1567 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT, 1568 uint8_t expectedRA) { 1569 return ((instr & 0x3E00000) >> 21 == expectedRT) && 1570 ((instr & 0x1F0000) >> 16 == expectedRA); 1571 }; 1572 if (!checkRegOperands(firstInstr, 12, 1)) 1573 return false; 1574 if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12)) 1575 return false; 1576 1577 int32_t stackFrameSize = (hiImm * 65536) + loImm; 1578 // Check that the adjusted size doesn't overflow what we can represent with 2 1579 // instructions. 1580 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) { 1581 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows"); 1582 return false; 1583 } 1584 1585 int32_t adjustedStackFrameSize = 1586 stackFrameSize - config->splitStackAdjustSize; 1587 1588 loImm = adjustedStackFrameSize & 0xFFFF; 1589 hiImm = (adjustedStackFrameSize + 0x8000) >> 16; 1590 if (hiImm) { 1591 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm); 1592 // If the low immediate is zero the second instruction will be a nop. 1593 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP; 1594 write32(loc + 8, secondInstr); 1595 } else { 1596 // addi r12, r1, imm 1597 write32(loc + 4, (0x39810000) | (uint16_t)loImm); 1598 write32(loc + 8, NOP); 1599 } 1600 1601 return true; 1602 } 1603 1604 TargetInfo *elf::getPPC64TargetInfo() { 1605 static PPC64 target; 1606 return ⌖ 1607 } 1608