1 //===- PPC64.cpp ----------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Symbols.h" 10 #include "SyntheticSections.h" 11 #include "Target.h" 12 #include "lld/Common/ErrorHandler.h" 13 #include "llvm/Support/Endian.h" 14 15 using namespace llvm; 16 using namespace llvm::object; 17 using namespace llvm::support::endian; 18 using namespace llvm::ELF; 19 20 namespace lld { 21 namespace elf { 22 23 static uint64_t ppc64TocOffset = 0x8000; 24 static uint64_t dynamicThreadPointerOffset = 0x8000; 25 26 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform 27 // instructions that can be used as part of the initial exec TLS sequence. 28 enum XFormOpcd { 29 LBZX = 87, 30 LHZX = 279, 31 LWZX = 23, 32 LDX = 21, 33 STBX = 215, 34 STHX = 407, 35 STWX = 151, 36 STDX = 149, 37 ADD = 266, 38 }; 39 40 enum DFormOpcd { 41 LBZ = 34, 42 LBZU = 35, 43 LHZ = 40, 44 LHZU = 41, 45 LHAU = 43, 46 LWZ = 32, 47 LWZU = 33, 48 LFSU = 49, 49 LD = 58, 50 LFDU = 51, 51 STB = 38, 52 STBU = 39, 53 STH = 44, 54 STHU = 45, 55 STW = 36, 56 STWU = 37, 57 STFSU = 53, 58 STFDU = 55, 59 STD = 62, 60 ADDI = 14 61 }; 62 63 uint64_t getPPC64TocBase() { 64 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 65 // TOC starts where the first of these sections starts. We always create a 66 // .got when we see a relocation that uses it, so for us the start is always 67 // the .got. 68 uint64_t tocVA = in.got->getVA(); 69 70 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 71 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 72 // code (crt1.o) assumes that you can get from the TOC base to the 73 // start of the .toc section with only a single (signed) 16-bit relocation. 74 return tocVA + ppc64TocOffset; 75 } 76 77 unsigned getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) { 78 // The offset is encoded into the 3 most significant bits of the st_other 79 // field, with some special values described in section 3.4.1 of the ABI: 80 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use 81 // the TOC pointer (r2). r2 will hold the same value on returning from 82 // the function as it did on entering the function. 83 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a 84 // caller-saved register for all callers. 85 // 2-6 --> The binary logarithm of the offset eg: 86 // 2 --> 2^2 = 4 bytes --> 1 instruction. 87 // 6 --> 2^6 = 64 bytes --> 16 instructions. 88 // 7 --> Reserved. 89 uint8_t gepToLep = (stOther >> 5) & 7; 90 if (gepToLep < 2) 91 return 0; 92 93 // The value encoded in the st_other bits is the 94 // log-base-2(offset). 95 if (gepToLep < 7) 96 return 1 << gepToLep; 97 98 error("reserved value of 7 in the 3 most-significant-bits of st_other"); 99 return 0; 100 } 101 102 bool isPPC64SmallCodeModelTocReloc(RelType type) { 103 // The only small code model relocations that access the .toc section. 104 return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS; 105 } 106 107 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset. 108 template <typename ELFT> 109 static std::pair<Defined *, int64_t> 110 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) { 111 if (tocSec->numRelocations == 0) 112 return {}; 113 114 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by 115 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the 116 // relocation index in most cases. 117 // 118 // In rare cases a TOC entry may store a constant that doesn't need an 119 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8 120 // points to a relocation with larger r_offset. Do a linear probe then. 121 // Constants are extremely uncommon in .toc and the extra number of array 122 // accesses can be seen as a small constant. 123 ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>(); 124 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1); 125 for (;;) { 126 if (relas[index].r_offset == offset) { 127 Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]); 128 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])}; 129 } 130 if (relas[index].r_offset < offset || index == 0) 131 break; 132 --index; 133 } 134 return {}; 135 } 136 137 // When accessing a symbol defined in another translation unit, compilers 138 // reserve a .toc entry, allocate a local label and generate toc-indirect 139 // instuctions: 140 // 141 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA 142 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry 143 // ld/lwa 3, 0(3) # load the value from the address 144 // 145 // .section .toc,"aw",@progbits 146 // .LC0: .tc var[TC],var 147 // 148 // If var is defined, non-preemptable and addressable with a 32-bit signed 149 // offset from the toc base, the address of var can be computed by adding an 150 // offset to the toc base, saving a load. 151 // 152 // addis 3,2,var@toc@ha # this may be relaxed to a nop, 153 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc 154 // ld/lwa 3, 0(3) # load the value from the address 155 // 156 // Returns true if the relaxation is performed. 157 bool tryRelaxPPC64TocIndirection(RelType type, const Relocation &rel, 158 uint8_t *bufLoc) { 159 assert(config->tocOptimize); 160 if (rel.addend < 0) 161 return false; 162 163 // If the symbol is not the .toc section, this isn't a toc-indirection. 164 Defined *defSym = dyn_cast<Defined>(rel.sym); 165 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc") 166 return false; 167 168 Defined *d; 169 int64_t addend; 170 auto *tocISB = cast<InputSectionBase>(defSym->section); 171 std::tie(d, addend) = 172 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend) 173 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend); 174 175 // Only non-preemptable defined symbols can be relaxed. 176 if (!d || d->isPreemptible) 177 return false; 178 179 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable 180 // ifunc and changed its type to STT_FUNC. 181 assert(!d->isGnuIFunc()); 182 183 // Two instructions can materialize a 32-bit signed offset from the toc base. 184 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase(); 185 if (!isInt<32>(tocRelative)) 186 return false; 187 188 // Add PPC64TocOffset that will be subtracted by relocateOne(). 189 target->relaxGot(bufLoc, type, tocRelative + ppc64TocOffset); 190 return true; 191 } 192 193 namespace { 194 class PPC64 final : public TargetInfo { 195 public: 196 PPC64(); 197 int getTlsGdRelaxSkip(RelType type) const override; 198 uint32_t calcEFlags() const override; 199 RelExpr getRelExpr(RelType type, const Symbol &s, 200 const uint8_t *loc) const override; 201 RelType getDynRel(RelType type) const override; 202 void writePltHeader(uint8_t *buf) const override; 203 void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr, 204 int32_t index, unsigned relOff) const override; 205 void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override; 206 void writeGotHeader(uint8_t *buf) const override; 207 bool needsThunk(RelExpr expr, RelType type, const InputFile *file, 208 uint64_t branchAddr, const Symbol &s) const override; 209 uint32_t getThunkSectionSpacing() const override; 210 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; 211 RelExpr adjustRelaxExpr(RelType type, const uint8_t *data, 212 RelExpr expr) const override; 213 void relaxGot(uint8_t *loc, RelType type, uint64_t val) const override; 214 void relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const override; 215 void relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const override; 216 void relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const override; 217 void relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const override; 218 219 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 220 uint8_t stOther) const override; 221 }; 222 } // namespace 223 224 // Relocation masks following the #lo(value), #hi(value), #ha(value), 225 // #higher(value), #highera(value), #highest(value), and #highesta(value) 226 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 227 // document. 228 static uint16_t lo(uint64_t v) { return v; } 229 static uint16_t hi(uint64_t v) { return v >> 16; } 230 static uint16_t ha(uint64_t v) { return (v + 0x8000) >> 16; } 231 static uint16_t higher(uint64_t v) { return v >> 32; } 232 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; } 233 static uint16_t highest(uint64_t v) { return v >> 48; } 234 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; } 235 236 // Extracts the 'PO' field of an instruction encoding. 237 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); } 238 239 static bool isDQFormInstruction(uint32_t encoding) { 240 switch (getPrimaryOpCode(encoding)) { 241 default: 242 return false; 243 case 56: 244 // The only instruction with a primary opcode of 56 is `lq`. 245 return true; 246 case 61: 247 // There are both DS and DQ instruction forms with this primary opcode. 248 // Namely `lxv` and `stxv` are the DQ-forms that use it. 249 // The DS 'XO' bits being set to 01 is restricted to DQ form. 250 return (encoding & 3) == 0x1; 251 } 252 } 253 254 static bool isInstructionUpdateForm(uint32_t encoding) { 255 switch (getPrimaryOpCode(encoding)) { 256 default: 257 return false; 258 case LBZU: 259 case LHAU: 260 case LHZU: 261 case LWZU: 262 case LFSU: 263 case LFDU: 264 case STBU: 265 case STHU: 266 case STWU: 267 case STFSU: 268 case STFDU: 269 return true; 270 // LWA has the same opcode as LD, and the DS bits is what differentiates 271 // between LD/LDU/LWA 272 case LD: 273 case STD: 274 return (encoding & 3) == 1; 275 } 276 } 277 278 // There are a number of places when we either want to read or write an 279 // instruction when handling a half16 relocation type. On big-endian the buffer 280 // pointer is pointing into the middle of the word we want to extract, and on 281 // little-endian it is pointing to the start of the word. These 2 helpers are to 282 // simplify reading and writing in that context. 283 static void writeFromHalf16(uint8_t *loc, uint32_t insn) { 284 write32(config->isLE ? loc : loc - 2, insn); 285 } 286 287 static uint32_t readFromHalf16(const uint8_t *loc) { 288 return read32(config->isLE ? loc : loc - 2); 289 } 290 291 PPC64::PPC64() { 292 gotRel = R_PPC64_GLOB_DAT; 293 noneRel = R_PPC64_NONE; 294 pltRel = R_PPC64_JMP_SLOT; 295 relativeRel = R_PPC64_RELATIVE; 296 iRelativeRel = R_PPC64_IRELATIVE; 297 symbolicRel = R_PPC64_ADDR64; 298 pltEntrySize = 4; 299 gotBaseSymInGotPlt = false; 300 gotHeaderEntriesNum = 1; 301 gotPltHeaderEntriesNum = 2; 302 pltHeaderSize = 60; 303 needsThunks = true; 304 305 tlsModuleIndexRel = R_PPC64_DTPMOD64; 306 tlsOffsetRel = R_PPC64_DTPREL64; 307 308 tlsGotRel = R_PPC64_TPREL64; 309 310 needsMoreStackNonSplit = false; 311 312 // We need 64K pages (at least under glibc/Linux, the loader won't 313 // set different permissions on a finer granularity than that). 314 defaultMaxPageSize = 65536; 315 316 // The PPC64 ELF ABI v1 spec, says: 317 // 318 // It is normally desirable to put segments with different characteristics 319 // in separate 256 Mbyte portions of the address space, to give the 320 // operating system full paging flexibility in the 64-bit address space. 321 // 322 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 323 // use 0x10000000 as the starting address. 324 defaultImageBase = 0x10000000; 325 326 write32(trapInstr.data(), 0x7fe00008); 327 } 328 329 int PPC64::getTlsGdRelaxSkip(RelType type) const { 330 // A __tls_get_addr call instruction is marked with 2 relocations: 331 // 332 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation 333 // R_PPC64_REL24: __tls_get_addr 334 // 335 // After the relaxation we no longer call __tls_get_addr and should skip both 336 // relocations to not create a false dependence on __tls_get_addr being 337 // defined. 338 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD) 339 return 2; 340 return 1; 341 } 342 343 static uint32_t getEFlags(InputFile *file) { 344 if (config->ekind == ELF64BEKind) 345 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader()->e_flags; 346 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader()->e_flags; 347 } 348 349 // This file implements v2 ABI. This function makes sure that all 350 // object files have v2 or an unspecified version as an ABI version. 351 uint32_t PPC64::calcEFlags() const { 352 for (InputFile *f : objectFiles) { 353 uint32_t flag = getEFlags(f); 354 if (flag == 1) 355 error(toString(f) + ": ABI version 1 is not supported"); 356 else if (flag > 2) 357 error(toString(f) + ": unrecognized e_flags: " + Twine(flag)); 358 } 359 return 2; 360 } 361 362 void PPC64::relaxGot(uint8_t *loc, RelType type, uint64_t val) const { 363 switch (type) { 364 case R_PPC64_TOC16_HA: 365 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop". 366 relocateOne(loc, type, val); 367 break; 368 case R_PPC64_TOC16_LO_DS: { 369 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or 370 // "addi reg, 2, var@toc". 371 uint32_t insn = readFromHalf16(loc); 372 if (getPrimaryOpCode(insn) != LD) 373 error("expected a 'ld' for got-indirect to toc-relative relaxing"); 374 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000); 375 relocateOne(loc, R_PPC64_TOC16_LO, val); 376 break; 377 } 378 default: 379 llvm_unreachable("unexpected relocation type"); 380 } 381 } 382 383 void PPC64::relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const { 384 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. 385 // The general dynamic code sequence for a global `x` will look like: 386 // Instruction Relocation Symbol 387 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 388 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 389 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 390 // R_PPC64_REL24 __tls_get_addr 391 // nop None None 392 393 // Relaxing to local exec entails converting: 394 // addis r3, r2, x@got@tlsgd@ha into nop 395 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha 396 // bl __tls_get_addr(x@tlsgd) into nop 397 // nop into addi r3, r3, x@tprel@l 398 399 switch (type) { 400 case R_PPC64_GOT_TLSGD16_HA: 401 writeFromHalf16(loc, 0x60000000); // nop 402 break; 403 case R_PPC64_GOT_TLSGD16: 404 case R_PPC64_GOT_TLSGD16_LO: 405 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13 406 relocateOne(loc, R_PPC64_TPREL16_HA, val); 407 break; 408 case R_PPC64_TLSGD: 409 write32(loc, 0x60000000); // nop 410 write32(loc + 4, 0x38630000); // addi r3, r3 411 // Since we are relocating a half16 type relocation and Loc + 4 points to 412 // the start of an instruction we need to advance the buffer by an extra 413 // 2 bytes on BE. 414 relocateOne(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0), 415 R_PPC64_TPREL16_LO, val); 416 break; 417 default: 418 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 419 } 420 } 421 422 void PPC64::relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const { 423 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. 424 // The local dynamic code sequence for a global `x` will look like: 425 // Instruction Relocation Symbol 426 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x 427 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x 428 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x 429 // R_PPC64_REL24 __tls_get_addr 430 // nop None None 431 432 // Relaxing to local exec entails converting: 433 // addis r3, r2, x@got@tlsld@ha into nop 434 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 435 // bl __tls_get_addr(x@tlsgd) into nop 436 // nop into addi r3, r3, 4096 437 438 switch (type) { 439 case R_PPC64_GOT_TLSLD16_HA: 440 writeFromHalf16(loc, 0x60000000); // nop 441 break; 442 case R_PPC64_GOT_TLSLD16_LO: 443 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0 444 break; 445 case R_PPC64_TLSLD: 446 write32(loc, 0x60000000); // nop 447 write32(loc + 4, 0x38631000); // addi r3, r3, 4096 448 break; 449 case R_PPC64_DTPREL16: 450 case R_PPC64_DTPREL16_HA: 451 case R_PPC64_DTPREL16_HI: 452 case R_PPC64_DTPREL16_DS: 453 case R_PPC64_DTPREL16_LO: 454 case R_PPC64_DTPREL16_LO_DS: 455 relocateOne(loc, type, val); 456 break; 457 default: 458 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); 459 } 460 } 461 462 unsigned getPPCDFormOp(unsigned secondaryOp) { 463 switch (secondaryOp) { 464 case LBZX: 465 return LBZ; 466 case LHZX: 467 return LHZ; 468 case LWZX: 469 return LWZ; 470 case LDX: 471 return LD; 472 case STBX: 473 return STB; 474 case STHX: 475 return STH; 476 case STWX: 477 return STW; 478 case STDX: 479 return STD; 480 case ADD: 481 return ADDI; 482 default: 483 return 0; 484 } 485 } 486 487 void PPC64::relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const { 488 // The initial exec code sequence for a global `x` will look like: 489 // Instruction Relocation Symbol 490 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x 491 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x 492 // add r9, r9, x@tls R_PPC64_TLS x 493 494 // Relaxing to local exec entails converting: 495 // addis r9, r2, x@got@tprel@ha into nop 496 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha 497 // add r9, r9, x@tls into addi r9, r9, x@tprel@l 498 499 // x@tls R_PPC64_TLS is a relocation which does not compute anything, 500 // it is replaced with r13 (thread pointer). 501 502 // The add instruction in the initial exec sequence has multiple variations 503 // that need to be handled. If we are building an address it will use an add 504 // instruction, if we are accessing memory it will use any of the X-form 505 // indexed load or store instructions. 506 507 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0; 508 switch (type) { 509 case R_PPC64_GOT_TPREL16_HA: 510 write32(loc - offset, 0x60000000); // nop 511 break; 512 case R_PPC64_GOT_TPREL16_LO_DS: 513 case R_PPC64_GOT_TPREL16_DS: { 514 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10 515 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13 516 relocateOne(loc, R_PPC64_TPREL16_HA, val); 517 break; 518 } 519 case R_PPC64_TLS: { 520 uint32_t primaryOp = getPrimaryOpCode(read32(loc)); 521 if (primaryOp != 31) 522 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 523 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30 524 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 525 if (dFormOp == 0) 526 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 527 write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF))); 528 relocateOne(loc + offset, R_PPC64_TPREL16_LO, val); 529 break; 530 } 531 default: 532 llvm_unreachable("unknown relocation for IE to LE"); 533 break; 534 } 535 } 536 537 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s, 538 const uint8_t *loc) const { 539 switch (type) { 540 case R_PPC64_NONE: 541 return R_NONE; 542 case R_PPC64_ADDR16: 543 case R_PPC64_ADDR16_DS: 544 case R_PPC64_ADDR16_HA: 545 case R_PPC64_ADDR16_HI: 546 case R_PPC64_ADDR16_HIGHER: 547 case R_PPC64_ADDR16_HIGHERA: 548 case R_PPC64_ADDR16_HIGHEST: 549 case R_PPC64_ADDR16_HIGHESTA: 550 case R_PPC64_ADDR16_LO: 551 case R_PPC64_ADDR16_LO_DS: 552 case R_PPC64_ADDR32: 553 case R_PPC64_ADDR64: 554 return R_ABS; 555 case R_PPC64_GOT16: 556 case R_PPC64_GOT16_DS: 557 case R_PPC64_GOT16_HA: 558 case R_PPC64_GOT16_HI: 559 case R_PPC64_GOT16_LO: 560 case R_PPC64_GOT16_LO_DS: 561 return R_GOT_OFF; 562 case R_PPC64_TOC16: 563 case R_PPC64_TOC16_DS: 564 case R_PPC64_TOC16_HI: 565 case R_PPC64_TOC16_LO: 566 return R_GOTREL; 567 case R_PPC64_TOC16_HA: 568 case R_PPC64_TOC16_LO_DS: 569 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL; 570 case R_PPC64_TOC: 571 return R_PPC64_TOCBASE; 572 case R_PPC64_REL14: 573 case R_PPC64_REL24: 574 return R_PPC64_CALL_PLT; 575 case R_PPC64_REL16_LO: 576 case R_PPC64_REL16_HA: 577 case R_PPC64_REL16_HI: 578 case R_PPC64_REL32: 579 case R_PPC64_REL64: 580 return R_PC; 581 case R_PPC64_GOT_TLSGD16: 582 case R_PPC64_GOT_TLSGD16_HA: 583 case R_PPC64_GOT_TLSGD16_HI: 584 case R_PPC64_GOT_TLSGD16_LO: 585 return R_TLSGD_GOT; 586 case R_PPC64_GOT_TLSLD16: 587 case R_PPC64_GOT_TLSLD16_HA: 588 case R_PPC64_GOT_TLSLD16_HI: 589 case R_PPC64_GOT_TLSLD16_LO: 590 return R_TLSLD_GOT; 591 case R_PPC64_GOT_TPREL16_HA: 592 case R_PPC64_GOT_TPREL16_LO_DS: 593 case R_PPC64_GOT_TPREL16_DS: 594 case R_PPC64_GOT_TPREL16_HI: 595 return R_GOT_OFF; 596 case R_PPC64_GOT_DTPREL16_HA: 597 case R_PPC64_GOT_DTPREL16_LO_DS: 598 case R_PPC64_GOT_DTPREL16_DS: 599 case R_PPC64_GOT_DTPREL16_HI: 600 return R_TLSLD_GOT_OFF; 601 case R_PPC64_TPREL16: 602 case R_PPC64_TPREL16_HA: 603 case R_PPC64_TPREL16_LO: 604 case R_PPC64_TPREL16_HI: 605 case R_PPC64_TPREL16_DS: 606 case R_PPC64_TPREL16_LO_DS: 607 case R_PPC64_TPREL16_HIGHER: 608 case R_PPC64_TPREL16_HIGHERA: 609 case R_PPC64_TPREL16_HIGHEST: 610 case R_PPC64_TPREL16_HIGHESTA: 611 return R_TLS; 612 case R_PPC64_DTPREL16: 613 case R_PPC64_DTPREL16_DS: 614 case R_PPC64_DTPREL16_HA: 615 case R_PPC64_DTPREL16_HI: 616 case R_PPC64_DTPREL16_HIGHER: 617 case R_PPC64_DTPREL16_HIGHERA: 618 case R_PPC64_DTPREL16_HIGHEST: 619 case R_PPC64_DTPREL16_HIGHESTA: 620 case R_PPC64_DTPREL16_LO: 621 case R_PPC64_DTPREL16_LO_DS: 622 case R_PPC64_DTPREL64: 623 return R_DTPREL; 624 case R_PPC64_TLSGD: 625 return R_TLSDESC_CALL; 626 case R_PPC64_TLSLD: 627 return R_TLSLD_HINT; 628 case R_PPC64_TLS: 629 return R_TLSIE_HINT; 630 default: 631 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 632 ") against symbol " + toString(s)); 633 return R_NONE; 634 } 635 } 636 637 RelType PPC64::getDynRel(RelType type) const { 638 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC) 639 return R_PPC64_ADDR64; 640 return R_PPC64_NONE; 641 } 642 643 void PPC64::writeGotHeader(uint8_t *buf) const { 644 write64(buf, getPPC64TocBase()); 645 } 646 647 void PPC64::writePltHeader(uint8_t *buf) const { 648 // The generic resolver stub goes first. 649 write32(buf + 0, 0x7c0802a6); // mflr r0 650 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> 651 write32(buf + 8, 0x7d6802a6); // mflr r11 652 write32(buf + 12, 0x7c0803a6); // mtlr r0 653 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12 654 write32(buf + 20, 0x380cffcc); // subi r0,r12,52 655 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2 656 write32(buf + 28, 0xe98b002c); // ld r12,44(r11) 657 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11 658 write32(buf + 36, 0xe98b0000); // ld r12,0(r11) 659 write32(buf + 40, 0xe96b0008); // ld r11,8(r11) 660 write32(buf + 44, 0x7d8903a6); // mtctr r12 661 write32(buf + 48, 0x4e800420); // bctr 662 663 // The 'bcl' instruction will set the link register to the address of the 664 // following instruction ('mflr r11'). Here we store the offset from that 665 // instruction to the first entry in the GotPlt section. 666 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8); 667 write64(buf + 52, gotPltOffset); 668 } 669 670 void PPC64::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, 671 uint64_t pltEntryAddr, int32_t index, 672 unsigned relOff) const { 673 int32_t offset = pltHeaderSize + index * pltEntrySize; 674 // bl __glink_PLTresolve 675 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc)); 676 } 677 678 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) { 679 // Relocations relative to the toc-base need to be adjusted by the Toc offset. 680 uint64_t tocBiasedVal = val - ppc64TocOffset; 681 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. 682 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset; 683 684 switch (type) { 685 // TOC biased relocation. 686 case R_PPC64_GOT16: 687 case R_PPC64_GOT_TLSGD16: 688 case R_PPC64_GOT_TLSLD16: 689 case R_PPC64_TOC16: 690 return {R_PPC64_ADDR16, tocBiasedVal}; 691 case R_PPC64_GOT16_DS: 692 case R_PPC64_TOC16_DS: 693 case R_PPC64_GOT_TPREL16_DS: 694 case R_PPC64_GOT_DTPREL16_DS: 695 return {R_PPC64_ADDR16_DS, tocBiasedVal}; 696 case R_PPC64_GOT16_HA: 697 case R_PPC64_GOT_TLSGD16_HA: 698 case R_PPC64_GOT_TLSLD16_HA: 699 case R_PPC64_GOT_TPREL16_HA: 700 case R_PPC64_GOT_DTPREL16_HA: 701 case R_PPC64_TOC16_HA: 702 return {R_PPC64_ADDR16_HA, tocBiasedVal}; 703 case R_PPC64_GOT16_HI: 704 case R_PPC64_GOT_TLSGD16_HI: 705 case R_PPC64_GOT_TLSLD16_HI: 706 case R_PPC64_GOT_TPREL16_HI: 707 case R_PPC64_GOT_DTPREL16_HI: 708 case R_PPC64_TOC16_HI: 709 return {R_PPC64_ADDR16_HI, tocBiasedVal}; 710 case R_PPC64_GOT16_LO: 711 case R_PPC64_GOT_TLSGD16_LO: 712 case R_PPC64_GOT_TLSLD16_LO: 713 case R_PPC64_TOC16_LO: 714 return {R_PPC64_ADDR16_LO, tocBiasedVal}; 715 case R_PPC64_GOT16_LO_DS: 716 case R_PPC64_TOC16_LO_DS: 717 case R_PPC64_GOT_TPREL16_LO_DS: 718 case R_PPC64_GOT_DTPREL16_LO_DS: 719 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal}; 720 721 // Dynamic Thread pointer biased relocation types. 722 case R_PPC64_DTPREL16: 723 return {R_PPC64_ADDR16, dtpBiasedVal}; 724 case R_PPC64_DTPREL16_DS: 725 return {R_PPC64_ADDR16_DS, dtpBiasedVal}; 726 case R_PPC64_DTPREL16_HA: 727 return {R_PPC64_ADDR16_HA, dtpBiasedVal}; 728 case R_PPC64_DTPREL16_HI: 729 return {R_PPC64_ADDR16_HI, dtpBiasedVal}; 730 case R_PPC64_DTPREL16_HIGHER: 731 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal}; 732 case R_PPC64_DTPREL16_HIGHERA: 733 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal}; 734 case R_PPC64_DTPREL16_HIGHEST: 735 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal}; 736 case R_PPC64_DTPREL16_HIGHESTA: 737 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal}; 738 case R_PPC64_DTPREL16_LO: 739 return {R_PPC64_ADDR16_LO, dtpBiasedVal}; 740 case R_PPC64_DTPREL16_LO_DS: 741 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal}; 742 case R_PPC64_DTPREL64: 743 return {R_PPC64_ADDR64, dtpBiasedVal}; 744 745 default: 746 return {type, val}; 747 } 748 } 749 750 static bool isTocOptType(RelType type) { 751 switch (type) { 752 case R_PPC64_GOT16_HA: 753 case R_PPC64_GOT16_LO_DS: 754 case R_PPC64_TOC16_HA: 755 case R_PPC64_TOC16_LO_DS: 756 case R_PPC64_TOC16_LO: 757 return true; 758 default: 759 return false; 760 } 761 } 762 763 void PPC64::relocateOne(uint8_t *loc, RelType type, uint64_t val) const { 764 // We need to save the original relocation type to use in diagnostics, and 765 // use the original type to determine if we should toc-optimize the 766 // instructions being relocated. 767 RelType originalType = type; 768 bool shouldTocOptimize = isTocOptType(type); 769 // For dynamic thread pointer relative, toc-relative, and got-indirect 770 // relocations, proceed in terms of the corresponding ADDR16 relocation type. 771 std::tie(type, val) = toAddr16Rel(type, val); 772 773 switch (type) { 774 case R_PPC64_ADDR14: { 775 checkAlignment(loc, val, 4, type); 776 // Preserve the AA/LK bits in the branch instruction 777 uint8_t aalk = loc[3]; 778 write16(loc + 2, (aalk & 3) | (val & 0xfffc)); 779 break; 780 } 781 case R_PPC64_ADDR16: 782 checkIntUInt(loc, val, 16, originalType); 783 write16(loc, val); 784 break; 785 case R_PPC64_ADDR32: 786 checkIntUInt(loc, val, 32, originalType); 787 write32(loc, val); 788 break; 789 case R_PPC64_ADDR16_DS: 790 case R_PPC64_TPREL16_DS: { 791 checkInt(loc, val, 16, originalType); 792 // DQ-form instructions use bits 28-31 as part of the instruction encoding 793 // DS-form instructions only use bits 30-31. 794 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3; 795 checkAlignment(loc, lo(val), mask + 1, originalType); 796 write16(loc, (read16(loc) & mask) | lo(val)); 797 } break; 798 case R_PPC64_ADDR16_HA: 799 case R_PPC64_REL16_HA: 800 case R_PPC64_TPREL16_HA: 801 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) 802 writeFromHalf16(loc, 0x60000000); 803 else 804 write16(loc, ha(val)); 805 break; 806 case R_PPC64_ADDR16_HI: 807 case R_PPC64_REL16_HI: 808 case R_PPC64_TPREL16_HI: 809 write16(loc, hi(val)); 810 break; 811 case R_PPC64_ADDR16_HIGHER: 812 case R_PPC64_TPREL16_HIGHER: 813 write16(loc, higher(val)); 814 break; 815 case R_PPC64_ADDR16_HIGHERA: 816 case R_PPC64_TPREL16_HIGHERA: 817 write16(loc, highera(val)); 818 break; 819 case R_PPC64_ADDR16_HIGHEST: 820 case R_PPC64_TPREL16_HIGHEST: 821 write16(loc, highest(val)); 822 break; 823 case R_PPC64_ADDR16_HIGHESTA: 824 case R_PPC64_TPREL16_HIGHESTA: 825 write16(loc, highesta(val)); 826 break; 827 case R_PPC64_ADDR16_LO: 828 case R_PPC64_REL16_LO: 829 case R_PPC64_TPREL16_LO: 830 // When the high-adjusted part of a toc relocation evalutes to 0, it is 831 // changed into a nop. The lo part then needs to be updated to use the 832 // toc-pointer register r2, as the base register. 833 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 834 uint32_t insn = readFromHalf16(loc); 835 if (isInstructionUpdateForm(insn)) 836 error(getErrorLocation(loc) + 837 "can't toc-optimize an update instruction: 0x" + 838 utohexstr(insn)); 839 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val)); 840 } else { 841 write16(loc, lo(val)); 842 } 843 break; 844 case R_PPC64_ADDR16_LO_DS: 845 case R_PPC64_TPREL16_LO_DS: { 846 // DQ-form instructions use bits 28-31 as part of the instruction encoding 847 // DS-form instructions only use bits 30-31. 848 uint32_t insn = readFromHalf16(loc); 849 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3; 850 checkAlignment(loc, lo(val), mask + 1, originalType); 851 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 852 // When the high-adjusted part of a toc relocation evalutes to 0, it is 853 // changed into a nop. The lo part then needs to be updated to use the toc 854 // pointer register r2, as the base register. 855 if (isInstructionUpdateForm(insn)) 856 error(getErrorLocation(loc) + 857 "Can't toc-optimize an update instruction: 0x" + 858 Twine::utohexstr(insn)); 859 insn &= 0xffe00000 | mask; 860 writeFromHalf16(loc, insn | 0x00020000 | lo(val)); 861 } else { 862 write16(loc, (read16(loc) & mask) | lo(val)); 863 } 864 } break; 865 case R_PPC64_TPREL16: 866 checkInt(loc, val, 16, originalType); 867 write16(loc, val); 868 break; 869 case R_PPC64_REL32: 870 checkInt(loc, val, 32, type); 871 write32(loc, val); 872 break; 873 case R_PPC64_ADDR64: 874 case R_PPC64_REL64: 875 case R_PPC64_TOC: 876 write64(loc, val); 877 break; 878 case R_PPC64_REL14: { 879 uint32_t mask = 0x0000FFFC; 880 checkInt(loc, val, 16, type); 881 checkAlignment(loc, val, 4, type); 882 write32(loc, (read32(loc) & ~mask) | (val & mask)); 883 break; 884 } 885 case R_PPC64_REL24: { 886 uint32_t mask = 0x03FFFFFC; 887 checkInt(loc, val, 26, type); 888 checkAlignment(loc, val, 4, type); 889 write32(loc, (read32(loc) & ~mask) | (val & mask)); 890 break; 891 } 892 case R_PPC64_DTPREL64: 893 write64(loc, val - dynamicThreadPointerOffset); 894 break; 895 default: 896 llvm_unreachable("unknown relocation"); 897 } 898 } 899 900 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file, 901 uint64_t branchAddr, const Symbol &s) const { 902 if (type != R_PPC64_REL14 && type != R_PPC64_REL24) 903 return false; 904 905 // If a function is in the Plt it needs to be called with a call-stub. 906 if (s.isInPlt()) 907 return true; 908 909 // If a symbol is a weak undefined and we are compiling an executable 910 // it doesn't need a range-extending thunk since it can't be called. 911 if (s.isUndefWeak() && !config->shared) 912 return false; 913 914 // If the offset exceeds the range of the branch type then it will need 915 // a range-extending thunk. 916 // See the comment in getRelocTargetVA() about R_PPC64_CALL. 917 return !inBranchRange(type, branchAddr, 918 s.getVA() + 919 getPPC64GlobalEntryToLocalEntryOffset(s.stOther)); 920 } 921 922 uint32_t PPC64::getThunkSectionSpacing() const { 923 // See comment in Arch/ARM.cpp for a more detailed explanation of 924 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on 925 // R_PPC64_REL24, which is used by unconditional branch instructions. 926 // 0x2000000 = (1 << 24-1) * 4 927 return 0x2000000; 928 } 929 930 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { 931 int64_t offset = dst - src; 932 if (type == R_PPC64_REL14) 933 return isInt<16>(offset); 934 if (type == R_PPC64_REL24) 935 return isInt<26>(offset); 936 llvm_unreachable("unsupported relocation type used in branch"); 937 } 938 939 RelExpr PPC64::adjustRelaxExpr(RelType type, const uint8_t *data, 940 RelExpr expr) const { 941 if (expr == R_RELAX_TLS_GD_TO_IE) 942 return R_RELAX_TLS_GD_TO_IE_GOT_OFF; 943 if (expr == R_RELAX_TLS_LD_TO_LE) 944 return R_RELAX_TLS_LD_TO_LE_ABS; 945 return expr; 946 } 947 948 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. 949 // The general dynamic code sequence for a global `x` uses 4 instructions. 950 // Instruction Relocation Symbol 951 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 952 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 953 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 954 // R_PPC64_REL24 __tls_get_addr 955 // nop None None 956 // 957 // Relaxing to initial-exec entails: 958 // 1) Convert the addis/addi pair that builds the address of the tls_index 959 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. 960 // 2) Convert the call to __tls_get_addr to a nop. 961 // 3) Convert the nop following the call to an add of the loaded offset to the 962 // thread pointer. 963 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is 964 // used as the relaxation hint for both steps 2 and 3. 965 void PPC64::relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const { 966 switch (type) { 967 case R_PPC64_GOT_TLSGD16_HA: 968 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to 969 // addis rT, r2, sym@got@tprel@ha. 970 relocateOne(loc, R_PPC64_GOT_TPREL16_HA, val); 971 return; 972 case R_PPC64_GOT_TLSGD16: 973 case R_PPC64_GOT_TLSGD16_LO: { 974 // Relax from addi r3, rA, sym@got@tlsgd@l to 975 // ld r3, sym@got@tprel@l(rA) 976 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16)); 977 writeFromHalf16(loc, 0xe8600000 | ra); 978 relocateOne(loc, R_PPC64_GOT_TPREL16_LO_DS, val); 979 return; 980 } 981 case R_PPC64_TLSGD: 982 write32(loc, 0x60000000); // bl __tls_get_addr(sym@tlsgd) --> nop 983 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13 984 return; 985 default: 986 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); 987 } 988 } 989 990 // The prologue for a split-stack function is expected to look roughly 991 // like this: 992 // .Lglobal_entry_point: 993 // # TOC pointer initalization. 994 // ... 995 // .Llocal_entry_point: 996 // # load the __private_ss member of the threads tcbhead. 997 // ld r0,-0x7000-64(r13) 998 // # subtract the functions stack size from the stack pointer. 999 // addis r12, r1, ha(-stack-frame size) 1000 // addi r12, r12, l(-stack-frame size) 1001 // # compare needed to actual and branch to allocate_more_stack if more 1002 // # space is needed, otherwise fallthrough to 'normal' function body. 1003 // cmpld cr7,r12,r0 1004 // blt- cr7, .Lallocate_more_stack 1005 // 1006 // -) The allocate_more_stack block might be placed after the split-stack 1007 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` 1008 // instead. 1009 // -) If either the addis or addi is not needed due to the stack size being 1010 // smaller then 32K or a multiple of 64K they will be replaced with a nop, 1011 // but there will always be 2 instructions the linker can overwrite for the 1012 // adjusted stack size. 1013 // 1014 // The linkers job here is to increase the stack size used in the addis/addi 1015 // pair by split-stack-size-adjust. 1016 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) 1017 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) 1018 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 1019 uint8_t stOther) const { 1020 // If the caller has a global entry point adjust the buffer past it. The start 1021 // of the split-stack prologue will be at the local entry point. 1022 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther); 1023 1024 // At the very least we expect to see a load of some split-stack data from the 1025 // tcb, and 2 instructions that calculate the ending stack address this 1026 // function will require. If there is not enough room for at least 3 1027 // instructions it can't be a split-stack prologue. 1028 if (loc + 12 >= end) 1029 return false; 1030 1031 // First instruction must be `ld r0, -0x7000-64(r13)` 1032 if (read32(loc) != 0xe80d8fc0) 1033 return false; 1034 1035 int16_t hiImm = 0; 1036 int16_t loImm = 0; 1037 // First instruction can be either an addis if the frame size is larger then 1038 // 32K, or an addi if the size is less then 32K. 1039 int32_t firstInstr = read32(loc + 4); 1040 if (getPrimaryOpCode(firstInstr) == 15) { 1041 hiImm = firstInstr & 0xFFFF; 1042 } else if (getPrimaryOpCode(firstInstr) == 14) { 1043 loImm = firstInstr & 0xFFFF; 1044 } else { 1045 return false; 1046 } 1047 1048 // Second instruction is either an addi or a nop. If the first instruction was 1049 // an addi then LoImm is set and the second instruction must be a nop. 1050 uint32_t secondInstr = read32(loc + 8); 1051 if (!loImm && getPrimaryOpCode(secondInstr) == 14) { 1052 loImm = secondInstr & 0xFFFF; 1053 } else if (secondInstr != 0x60000000) { 1054 return false; 1055 } 1056 1057 // The register operands of the first instruction should be the stack-pointer 1058 // (r1) as the input (RA) and r12 as the output (RT). If the second 1059 // instruction is not a nop, then it should use r12 as both input and output. 1060 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT, 1061 uint8_t expectedRA) { 1062 return ((instr & 0x3E00000) >> 21 == expectedRT) && 1063 ((instr & 0x1F0000) >> 16 == expectedRA); 1064 }; 1065 if (!checkRegOperands(firstInstr, 12, 1)) 1066 return false; 1067 if (secondInstr != 0x60000000 && !checkRegOperands(secondInstr, 12, 12)) 1068 return false; 1069 1070 int32_t stackFrameSize = (hiImm * 65536) + loImm; 1071 // Check that the adjusted size doesn't overflow what we can represent with 2 1072 // instructions. 1073 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) { 1074 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows"); 1075 return false; 1076 } 1077 1078 int32_t adjustedStackFrameSize = 1079 stackFrameSize - config->splitStackAdjustSize; 1080 1081 loImm = adjustedStackFrameSize & 0xFFFF; 1082 hiImm = (adjustedStackFrameSize + 0x8000) >> 16; 1083 if (hiImm) { 1084 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm); 1085 // If the low immediate is zero the second instruction will be a nop. 1086 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : 0x60000000; 1087 write32(loc + 8, secondInstr); 1088 } else { 1089 // addi r12, r1, imm 1090 write32(loc + 4, (0x39810000) | (uint16_t)loImm); 1091 write32(loc + 8, 0x60000000); 1092 } 1093 1094 return true; 1095 } 1096 1097 TargetInfo *getPPC64TargetInfo() { 1098 static PPC64 target; 1099 return ⌖ 1100 } 1101 1102 } // namespace elf 1103 } // namespace lld 1104