1 //===- PPC64.cpp ----------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "OutputSections.h" 11 #include "SymbolTable.h" 12 #include "Symbols.h" 13 #include "SyntheticSections.h" 14 #include "Target.h" 15 #include "Thunks.h" 16 #include "lld/Common/CommonLinkerContext.h" 17 #include "llvm/Support/Endian.h" 18 19 using namespace llvm; 20 using namespace llvm::object; 21 using namespace llvm::support::endian; 22 using namespace llvm::ELF; 23 using namespace lld; 24 using namespace lld::elf; 25 26 constexpr uint64_t ppc64TocOffset = 0x8000; 27 constexpr uint64_t dynamicThreadPointerOffset = 0x8000; 28 29 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform 30 // instructions that can be used as part of the initial exec TLS sequence. 31 enum XFormOpcd { 32 LBZX = 87, 33 LHZX = 279, 34 LWZX = 23, 35 LDX = 21, 36 STBX = 215, 37 STHX = 407, 38 STWX = 151, 39 STDX = 149, 40 LHAX = 343, 41 LWAX = 341, 42 LFSX = 535, 43 LFDX = 599, 44 STFSX = 663, 45 STFDX = 727, 46 ADD = 266, 47 }; 48 49 enum DFormOpcd { 50 LBZ = 34, 51 LBZU = 35, 52 LHZ = 40, 53 LHZU = 41, 54 LHAU = 43, 55 LWZ = 32, 56 LWZU = 33, 57 LFSU = 49, 58 LFDU = 51, 59 STB = 38, 60 STBU = 39, 61 STH = 44, 62 STHU = 45, 63 STW = 36, 64 STWU = 37, 65 STFSU = 53, 66 STFDU = 55, 67 LHA = 42, 68 LFS = 48, 69 LFD = 50, 70 STFS = 52, 71 STFD = 54, 72 ADDI = 14 73 }; 74 75 enum DSFormOpcd { 76 LD = 58, 77 LWA = 58, 78 STD = 62 79 }; 80 81 constexpr uint32_t NOP = 0x60000000; 82 83 enum class PPCLegacyInsn : uint32_t { 84 NOINSN = 0, 85 // Loads. 86 LBZ = 0x88000000, 87 LHZ = 0xa0000000, 88 LWZ = 0x80000000, 89 LHA = 0xa8000000, 90 LWA = 0xe8000002, 91 LD = 0xe8000000, 92 LFS = 0xC0000000, 93 LXSSP = 0xe4000003, 94 LFD = 0xc8000000, 95 LXSD = 0xe4000002, 96 LXV = 0xf4000001, 97 LXVP = 0x18000000, 98 99 // Stores. 100 STB = 0x98000000, 101 STH = 0xb0000000, 102 STW = 0x90000000, 103 STD = 0xf8000000, 104 STFS = 0xd0000000, 105 STXSSP = 0xf4000003, 106 STFD = 0xd8000000, 107 STXSD = 0xf4000002, 108 STXV = 0xf4000005, 109 STXVP = 0x18000001 110 }; 111 enum class PPCPrefixedInsn : uint64_t { 112 NOINSN = 0, 113 PREFIX_MLS = 0x0610000000000000, 114 PREFIX_8LS = 0x0410000000000000, 115 116 // Loads. 117 PLBZ = PREFIX_MLS, 118 PLHZ = PREFIX_MLS, 119 PLWZ = PREFIX_MLS, 120 PLHA = PREFIX_MLS, 121 PLWA = PREFIX_8LS | 0xa4000000, 122 PLD = PREFIX_8LS | 0xe4000000, 123 PLFS = PREFIX_MLS, 124 PLXSSP = PREFIX_8LS | 0xac000000, 125 PLFD = PREFIX_MLS, 126 PLXSD = PREFIX_8LS | 0xa8000000, 127 PLXV = PREFIX_8LS | 0xc8000000, 128 PLXVP = PREFIX_8LS | 0xe8000000, 129 130 // Stores. 131 PSTB = PREFIX_MLS, 132 PSTH = PREFIX_MLS, 133 PSTW = PREFIX_MLS, 134 PSTD = PREFIX_8LS | 0xf4000000, 135 PSTFS = PREFIX_MLS, 136 PSTXSSP = PREFIX_8LS | 0xbc000000, 137 PSTFD = PREFIX_MLS, 138 PSTXSD = PREFIX_8LS | 0xb8000000, 139 PSTXV = PREFIX_8LS | 0xd8000000, 140 PSTXVP = PREFIX_8LS | 0xf8000000 141 }; 142 static bool checkPPCLegacyInsn(uint32_t encoding) { 143 PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding); 144 if (insn == PPCLegacyInsn::NOINSN) 145 return false; 146 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 147 if (insn == PPCLegacyInsn::Legacy) \ 148 return true; 149 #include "PPCInsns.def" 150 #undef PCREL_OPT 151 return false; 152 } 153 154 // Masks to apply to legacy instructions when converting them to prefixed, 155 // pc-relative versions. For the most part, the primary opcode is shared 156 // between the legacy instruction and the suffix of its prefixed version. 157 // However, there are some instances where that isn't the case (DS-Form and 158 // DQ-form instructions). 159 enum class LegacyToPrefixMask : uint64_t { 160 NOMASK = 0x0, 161 OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10). 162 ONLY_RST = 0x3e00000, // [RS]T (6-10). 163 ST_STX28_TO5 = 164 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5. 165 }; 166 167 namespace { 168 class PPC64 final : public TargetInfo { 169 public: 170 PPC64(); 171 int getTlsGdRelaxSkip(RelType type) const override; 172 uint32_t calcEFlags() const override; 173 RelExpr getRelExpr(RelType type, const Symbol &s, 174 const uint8_t *loc) const override; 175 RelType getDynRel(RelType type) const override; 176 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; 177 void writePltHeader(uint8_t *buf) const override; 178 void writePlt(uint8_t *buf, const Symbol &sym, 179 uint64_t pltEntryAddr) const override; 180 void writeIplt(uint8_t *buf, const Symbol &sym, 181 uint64_t pltEntryAddr) const override; 182 void relocate(uint8_t *loc, const Relocation &rel, 183 uint64_t val) const override; 184 void writeGotHeader(uint8_t *buf) const override; 185 bool needsThunk(RelExpr expr, RelType type, const InputFile *file, 186 uint64_t branchAddr, const Symbol &s, 187 int64_t a) const override; 188 uint32_t getThunkSectionSpacing() const override; 189 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; 190 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; 191 RelExpr adjustGotPcExpr(RelType type, int64_t addend, 192 const uint8_t *loc) const override; 193 void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const; 194 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; 195 196 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 197 uint8_t stOther) const override; 198 199 private: 200 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 201 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 202 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 203 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 204 }; 205 } // namespace 206 207 uint64_t elf::getPPC64TocBase() { 208 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 209 // TOC starts where the first of these sections starts. We always create a 210 // .got when we see a relocation that uses it, so for us the start is always 211 // the .got. 212 uint64_t tocVA = in.got->getVA(); 213 214 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 215 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 216 // code (crt1.o) assumes that you can get from the TOC base to the 217 // start of the .toc section with only a single (signed) 16-bit relocation. 218 return tocVA + ppc64TocOffset; 219 } 220 221 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) { 222 // The offset is encoded into the 3 most significant bits of the st_other 223 // field, with some special values described in section 3.4.1 of the ABI: 224 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use 225 // the TOC pointer (r2). r2 will hold the same value on returning from 226 // the function as it did on entering the function. 227 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a 228 // caller-saved register for all callers. 229 // 2-6 --> The binary logarithm of the offset eg: 230 // 2 --> 2^2 = 4 bytes --> 1 instruction. 231 // 6 --> 2^6 = 64 bytes --> 16 instructions. 232 // 7 --> Reserved. 233 uint8_t gepToLep = (stOther >> 5) & 7; 234 if (gepToLep < 2) 235 return 0; 236 237 // The value encoded in the st_other bits is the 238 // log-base-2(offset). 239 if (gepToLep < 7) 240 return 1 << gepToLep; 241 242 error("reserved value of 7 in the 3 most-significant-bits of st_other"); 243 return 0; 244 } 245 246 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) { 247 insn = config->isLE ? insn << 32 | insn >> 32 : insn; 248 write64(loc, insn); 249 } 250 251 static bool addOptional(StringRef name, uint64_t value, 252 std::vector<Defined *> &defined) { 253 Symbol *sym = symtab.find(name); 254 if (!sym || sym->isDefined()) 255 return false; 256 sym->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 257 STT_FUNC, value, 258 /*size=*/0, /*section=*/nullptr}); 259 defined.push_back(cast<Defined>(sym)); 260 return true; 261 } 262 263 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15: 264 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail 265 // The labels are defined only if they exist in the symbol table. 266 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix, 267 int from, uint32_t firstInsn, 268 ArrayRef<uint32_t> tail) { 269 std::vector<Defined *> defined; 270 char name[16]; 271 int first; 272 uint32_t *ptr = buf.data(); 273 for (int r = from; r < 32; ++r) { 274 format("%s%d", prefix, r).snprint(name, sizeof(name)); 275 if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1) 276 first = r - from; 277 write32(ptr++, firstInsn + 0x200008 * (r - from)); 278 } 279 for (uint32_t insn : tail) 280 write32(ptr++, insn); 281 assert(ptr == &*buf.end()); 282 283 if (defined.empty()) 284 return; 285 // The full section content has the extent of [begin, end). We drop unused 286 // instructions and write [first,end). 287 auto *sec = make<InputSection>( 288 nullptr, SHF_ALLOC, SHT_PROGBITS, 4, 289 ArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first), 290 4 * (buf.size() - first)), 291 ".text"); 292 ctx.inputSections.push_back(sec); 293 for (Defined *sym : defined) { 294 sym->section = sec; 295 sym->value -= 4 * first; 296 } 297 } 298 299 // Implements some save and restore functions as described by ELF V2 ABI to be 300 // compatible with GCC. With GCC -Os, when the number of call-saved registers 301 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and 302 // expects the linker to define them. See 303 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and 304 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is 305 // weird because libgcc.a would be the natural place. The linker generation 306 // approach has the advantage that the linker can generate multiple copies to 307 // avoid long branch thunks. However, we don't consider the advantage 308 // significant enough to complicate our trunk implementation, so we take the 309 // simple approach and synthesize .text sections providing the implementation. 310 void elf::addPPC64SaveRestore() { 311 static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19]; 312 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6; 313 314 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ... 315 // Tail: ld 0, 16(1); mtlr 0; blr 316 writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70, 317 {0xe8010010, mtlr_0, blr}); 318 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ... 319 // Tail: blr 320 writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr}); 321 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ... 322 // Tail: std 0, 16(1); blr 323 writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr}); 324 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ... 325 // Tail: blr 326 writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr}); 327 } 328 329 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset. 330 template <typename ELFT> 331 static std::pair<Defined *, int64_t> 332 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) { 333 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by 334 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the 335 // relocation index in most cases. 336 // 337 // In rare cases a TOC entry may store a constant that doesn't need an 338 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8 339 // points to a relocation with larger r_offset. Do a linear probe then. 340 // Constants are extremely uncommon in .toc and the extra number of array 341 // accesses can be seen as a small constant. 342 ArrayRef<typename ELFT::Rela> relas = 343 tocSec->template relsOrRelas<ELFT>().relas; 344 if (relas.empty()) 345 return {}; 346 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1); 347 for (;;) { 348 if (relas[index].r_offset == offset) { 349 Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]); 350 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])}; 351 } 352 if (relas[index].r_offset < offset || index == 0) 353 break; 354 --index; 355 } 356 return {}; 357 } 358 359 // When accessing a symbol defined in another translation unit, compilers 360 // reserve a .toc entry, allocate a local label and generate toc-indirect 361 // instructions: 362 // 363 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA 364 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry 365 // ld/lwa 3, 0(3) # load the value from the address 366 // 367 // .section .toc,"aw",@progbits 368 // .LC0: .tc var[TC],var 369 // 370 // If var is defined, non-preemptable and addressable with a 32-bit signed 371 // offset from the toc base, the address of var can be computed by adding an 372 // offset to the toc base, saving a load. 373 // 374 // addis 3,2,var@toc@ha # this may be relaxed to a nop, 375 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc 376 // ld/lwa 3, 0(3) # load the value from the address 377 // 378 // Returns true if the relaxation is performed. 379 static bool tryRelaxPPC64TocIndirection(const Relocation &rel, 380 uint8_t *bufLoc) { 381 assert(config->tocOptimize); 382 if (rel.addend < 0) 383 return false; 384 385 // If the symbol is not the .toc section, this isn't a toc-indirection. 386 Defined *defSym = dyn_cast<Defined>(rel.sym); 387 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc") 388 return false; 389 390 Defined *d; 391 int64_t addend; 392 auto *tocISB = cast<InputSectionBase>(defSym->section); 393 std::tie(d, addend) = 394 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend) 395 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend); 396 397 // Only non-preemptable defined symbols can be relaxed. 398 if (!d || d->isPreemptible) 399 return false; 400 401 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable 402 // ifunc and changed its type to STT_FUNC. 403 assert(!d->isGnuIFunc()); 404 405 // Two instructions can materialize a 32-bit signed offset from the toc base. 406 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase(); 407 if (!isInt<32>(tocRelative)) 408 return false; 409 410 // Add PPC64TocOffset that will be subtracted by PPC64::relocate(). 411 static_cast<const PPC64 &>(*target).relaxGot(bufLoc, rel, 412 tocRelative + ppc64TocOffset); 413 return true; 414 } 415 416 // Relocation masks following the #lo(value), #hi(value), #ha(value), 417 // #higher(value), #highera(value), #highest(value), and #highesta(value) 418 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 419 // document. 420 static uint16_t lo(uint64_t v) { return v; } 421 static uint16_t hi(uint64_t v) { return v >> 16; } 422 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; } 423 static uint16_t higher(uint64_t v) { return v >> 32; } 424 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; } 425 static uint16_t highest(uint64_t v) { return v >> 48; } 426 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; } 427 428 // Extracts the 'PO' field of an instruction encoding. 429 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); } 430 431 static bool isDQFormInstruction(uint32_t encoding) { 432 switch (getPrimaryOpCode(encoding)) { 433 default: 434 return false; 435 case 6: // Power10 paired loads/stores (lxvp, stxvp). 436 case 56: 437 // The only instruction with a primary opcode of 56 is `lq`. 438 return true; 439 case 61: 440 // There are both DS and DQ instruction forms with this primary opcode. 441 // Namely `lxv` and `stxv` are the DQ-forms that use it. 442 // The DS 'XO' bits being set to 01 is restricted to DQ form. 443 return (encoding & 3) == 0x1; 444 } 445 } 446 447 static bool isDSFormInstruction(PPCLegacyInsn insn) { 448 switch (insn) { 449 default: 450 return false; 451 case PPCLegacyInsn::LWA: 452 case PPCLegacyInsn::LD: 453 case PPCLegacyInsn::LXSD: 454 case PPCLegacyInsn::LXSSP: 455 case PPCLegacyInsn::STD: 456 case PPCLegacyInsn::STXSD: 457 case PPCLegacyInsn::STXSSP: 458 return true; 459 } 460 } 461 462 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) { 463 uint32_t opc = encoding & 0xfc000000; 464 465 // If the primary opcode is shared between multiple instructions, we need to 466 // fix it up to match the actual instruction we are after. 467 if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 || 468 opc == 0xf8000000) && 469 !isDQFormInstruction(encoding)) 470 opc = encoding & 0xfc000003; 471 else if (opc == 0xf4000000) 472 opc = encoding & 0xfc000007; 473 else if (opc == 0x18000000) 474 opc = encoding & 0xfc00000f; 475 476 // If the value is not one of the enumerators in PPCLegacyInsn, we want to 477 // return PPCLegacyInsn::NOINSN. 478 if (!checkPPCLegacyInsn(opc)) 479 return PPCLegacyInsn::NOINSN; 480 return static_cast<PPCLegacyInsn>(opc); 481 } 482 483 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) { 484 switch (insn) { 485 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 486 case PPCLegacyInsn::Legacy: \ 487 return PPCPrefixedInsn::PCRel 488 #include "PPCInsns.def" 489 #undef PCREL_OPT 490 } 491 return PPCPrefixedInsn::NOINSN; 492 } 493 494 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) { 495 switch (insn) { 496 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 497 case PPCLegacyInsn::Legacy: \ 498 return LegacyToPrefixMask::InsnMask 499 #include "PPCInsns.def" 500 #undef PCREL_OPT 501 } 502 return LegacyToPrefixMask::NOMASK; 503 } 504 static uint64_t getPCRelativeForm(uint32_t encoding) { 505 PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding); 506 PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn); 507 if (pcrelInsn == PPCPrefixedInsn::NOINSN) 508 return UINT64_C(-1); 509 LegacyToPrefixMask origInsnMask = getInsnMask(origInsn); 510 uint64_t pcrelEncoding = 511 (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask); 512 513 // If the mask requires moving bit 28 to bit 5, do that now. 514 if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5) 515 pcrelEncoding |= (encoding & 0x8) << 23; 516 return pcrelEncoding; 517 } 518 519 static bool isInstructionUpdateForm(uint32_t encoding) { 520 switch (getPrimaryOpCode(encoding)) { 521 default: 522 return false; 523 case LBZU: 524 case LHAU: 525 case LHZU: 526 case LWZU: 527 case LFSU: 528 case LFDU: 529 case STBU: 530 case STHU: 531 case STWU: 532 case STFSU: 533 case STFDU: 534 return true; 535 // LWA has the same opcode as LD, and the DS bits is what differentiates 536 // between LD/LDU/LWA 537 case LD: 538 case STD: 539 return (encoding & 3) == 1; 540 } 541 } 542 543 // Compute the total displacement between the prefixed instruction that gets 544 // to the start of the data and the load/store instruction that has the offset 545 // into the data structure. 546 // For example: 547 // paddi 3, 0, 1000, 1 548 // lwz 3, 20(3) 549 // Should add up to 1020 for total displacement. 550 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) { 551 int64_t disp34 = llvm::SignExtend64( 552 ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34); 553 int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16); 554 // For DS and DQ form instructions, we need to mask out the XO bits. 555 if (isDQFormInstruction(accessInsn)) 556 disp16 &= ~0xf; 557 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn))) 558 disp16 &= ~0x3; 559 return disp34 + disp16; 560 } 561 562 // There are a number of places when we either want to read or write an 563 // instruction when handling a half16 relocation type. On big-endian the buffer 564 // pointer is pointing into the middle of the word we want to extract, and on 565 // little-endian it is pointing to the start of the word. These 2 helpers are to 566 // simplify reading and writing in that context. 567 static void writeFromHalf16(uint8_t *loc, uint32_t insn) { 568 write32(config->isLE ? loc : loc - 2, insn); 569 } 570 571 static uint32_t readFromHalf16(const uint8_t *loc) { 572 return read32(config->isLE ? loc : loc - 2); 573 } 574 575 static uint64_t readPrefixedInstruction(const uint8_t *loc) { 576 uint64_t fullInstr = read64(loc); 577 return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr; 578 } 579 580 PPC64::PPC64() { 581 copyRel = R_PPC64_COPY; 582 gotRel = R_PPC64_GLOB_DAT; 583 pltRel = R_PPC64_JMP_SLOT; 584 relativeRel = R_PPC64_RELATIVE; 585 iRelativeRel = R_PPC64_IRELATIVE; 586 symbolicRel = R_PPC64_ADDR64; 587 pltHeaderSize = 60; 588 pltEntrySize = 4; 589 ipltEntrySize = 16; // PPC64PltCallStub::size 590 gotHeaderEntriesNum = 1; 591 gotPltHeaderEntriesNum = 2; 592 needsThunks = true; 593 594 tlsModuleIndexRel = R_PPC64_DTPMOD64; 595 tlsOffsetRel = R_PPC64_DTPREL64; 596 597 tlsGotRel = R_PPC64_TPREL64; 598 599 needsMoreStackNonSplit = false; 600 601 // We need 64K pages (at least under glibc/Linux, the loader won't 602 // set different permissions on a finer granularity than that). 603 defaultMaxPageSize = 65536; 604 605 // The PPC64 ELF ABI v1 spec, says: 606 // 607 // It is normally desirable to put segments with different characteristics 608 // in separate 256 Mbyte portions of the address space, to give the 609 // operating system full paging flexibility in the 64-bit address space. 610 // 611 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 612 // use 0x10000000 as the starting address. 613 defaultImageBase = 0x10000000; 614 615 write32(trapInstr.data(), 0x7fe00008); 616 } 617 618 int PPC64::getTlsGdRelaxSkip(RelType type) const { 619 // A __tls_get_addr call instruction is marked with 2 relocations: 620 // 621 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation 622 // R_PPC64_REL24: __tls_get_addr 623 // 624 // After the relaxation we no longer call __tls_get_addr and should skip both 625 // relocations to not create a false dependence on __tls_get_addr being 626 // defined. 627 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD) 628 return 2; 629 return 1; 630 } 631 632 static uint32_t getEFlags(InputFile *file) { 633 if (file->ekind == ELF64BEKind) 634 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags; 635 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags; 636 } 637 638 // This file implements v2 ABI. This function makes sure that all 639 // object files have v2 or an unspecified version as an ABI version. 640 uint32_t PPC64::calcEFlags() const { 641 for (InputFile *f : ctx.objectFiles) { 642 uint32_t flag = getEFlags(f); 643 if (flag == 1) 644 error(toString(f) + ": ABI version 1 is not supported"); 645 else if (flag > 2) 646 error(toString(f) + ": unrecognized e_flags: " + Twine(flag)); 647 } 648 return 2; 649 } 650 651 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const { 652 switch (rel.type) { 653 case R_PPC64_TOC16_HA: 654 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop". 655 relocate(loc, rel, val); 656 break; 657 case R_PPC64_TOC16_LO_DS: { 658 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or 659 // "addi reg, 2, var@toc". 660 uint32_t insn = readFromHalf16(loc); 661 if (getPrimaryOpCode(insn) != LD) 662 error("expected a 'ld' for got-indirect to toc-relative relaxing"); 663 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000); 664 relocateNoSym(loc, R_PPC64_TOC16_LO, val); 665 break; 666 } 667 case R_PPC64_GOT_PCREL34: { 668 // Clear the first 8 bits of the prefix and the first 6 bits of the 669 // instruction (the primary opcode). 670 uint64_t insn = readPrefixedInstruction(loc); 671 if ((insn & 0xfc000000) != 0xe4000000) 672 error("expected a 'pld' for got-indirect to pc-relative relaxing"); 673 insn &= ~0xff000000fc000000; 674 675 // Replace the cleared bits with the values for PADDI (0x600000038000000); 676 insn |= 0x600000038000000; 677 writePrefixedInstruction(loc, insn); 678 relocate(loc, rel, val); 679 break; 680 } 681 case R_PPC64_PCREL_OPT: { 682 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can 683 // be relaxed. The eligibility for the relaxation needs to be determined 684 // on that relocation since this one does not relocate a symbol. 685 uint64_t insn = readPrefixedInstruction(loc); 686 uint32_t accessInsn = read32(loc + rel.addend); 687 uint64_t pcRelInsn = getPCRelativeForm(accessInsn); 688 689 // This error is not necessary for correctness but is emitted for now 690 // to ensure we don't miss these opportunities in real code. It can be 691 // removed at a later date. 692 if (pcRelInsn == UINT64_C(-1)) { 693 errorOrWarn( 694 "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" + 695 Twine::utohexstr(accessInsn)); 696 break; 697 } 698 699 int64_t totalDisp = getTotalDisp(insn, accessInsn); 700 if (!isInt<34>(totalDisp)) 701 break; // Displacement doesn't fit. 702 // Convert the PADDI to the prefixed version of accessInsn and convert 703 // accessInsn to a nop. 704 writePrefixedInstruction(loc, pcRelInsn | 705 ((totalDisp & 0x3ffff0000) << 16) | 706 (totalDisp & 0xffff)); 707 write32(loc + rel.addend, NOP); // nop accessInsn. 708 break; 709 } 710 default: 711 llvm_unreachable("unexpected relocation type"); 712 } 713 } 714 715 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 716 uint64_t val) const { 717 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. 718 // The general dynamic code sequence for a global `x` will look like: 719 // Instruction Relocation Symbol 720 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 721 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 722 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 723 // R_PPC64_REL24 __tls_get_addr 724 // nop None None 725 726 // Relaxing to local exec entails converting: 727 // addis r3, r2, x@got@tlsgd@ha into nop 728 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha 729 // bl __tls_get_addr(x@tlsgd) into nop 730 // nop into addi r3, r3, x@tprel@l 731 732 switch (rel.type) { 733 case R_PPC64_GOT_TLSGD16_HA: 734 writeFromHalf16(loc, NOP); 735 break; 736 case R_PPC64_GOT_TLSGD16: 737 case R_PPC64_GOT_TLSGD16_LO: 738 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13 739 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 740 break; 741 case R_PPC64_GOT_TLSGD_PCREL34: 742 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to 743 // paddi r3, r13, x@tprel, 0 744 writePrefixedInstruction(loc, 0x06000000386d0000); 745 relocateNoSym(loc, R_PPC64_TPREL34, val); 746 break; 747 case R_PPC64_TLSGD: { 748 // PC Relative Relaxation: 749 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 750 // nop 751 // TOC Relaxation: 752 // Relax from bl __tls_get_addr(x@tlsgd) 753 // nop 754 // to 755 // nop 756 // addi r3, r3, x@tprel@l 757 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 758 if (locAsInt % 4 == 0) { 759 write32(loc, NOP); // nop 760 write32(loc + 4, 0x38630000); // addi r3, r3 761 // Since we are relocating a half16 type relocation and Loc + 4 points to 762 // the start of an instruction we need to advance the buffer by an extra 763 // 2 bytes on BE. 764 relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0), 765 R_PPC64_TPREL16_LO, val); 766 } else if (locAsInt % 4 == 1) { 767 write32(loc - 1, NOP); 768 } else { 769 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 770 } 771 break; 772 } 773 default: 774 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 775 } 776 } 777 778 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 779 uint64_t val) const { 780 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. 781 // The local dynamic code sequence for a global `x` will look like: 782 // Instruction Relocation Symbol 783 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x 784 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x 785 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x 786 // R_PPC64_REL24 __tls_get_addr 787 // nop None None 788 789 // Relaxing to local exec entails converting: 790 // addis r3, r2, x@got@tlsld@ha into nop 791 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 792 // bl __tls_get_addr(x@tlsgd) into nop 793 // nop into addi r3, r3, 4096 794 795 switch (rel.type) { 796 case R_PPC64_GOT_TLSLD16_HA: 797 writeFromHalf16(loc, NOP); 798 break; 799 case R_PPC64_GOT_TLSLD16_LO: 800 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0 801 break; 802 case R_PPC64_GOT_TLSLD_PCREL34: 803 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to 804 // paddi r3, r13, 0x1000, 0 805 writePrefixedInstruction(loc, 0x06000000386d1000); 806 break; 807 case R_PPC64_TLSLD: { 808 // PC Relative Relaxation: 809 // Relax from bl __tls_get_addr@notoc(x@tlsld) 810 // to 811 // nop 812 // TOC Relaxation: 813 // Relax from bl __tls_get_addr(x@tlsld) 814 // nop 815 // to 816 // nop 817 // addi r3, r3, 4096 818 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 819 if (locAsInt % 4 == 0) { 820 write32(loc, NOP); 821 write32(loc + 4, 0x38631000); // addi r3, r3, 4096 822 } else if (locAsInt % 4 == 1) { 823 write32(loc - 1, NOP); 824 } else { 825 errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment"); 826 } 827 break; 828 } 829 case R_PPC64_DTPREL16: 830 case R_PPC64_DTPREL16_HA: 831 case R_PPC64_DTPREL16_HI: 832 case R_PPC64_DTPREL16_DS: 833 case R_PPC64_DTPREL16_LO: 834 case R_PPC64_DTPREL16_LO_DS: 835 case R_PPC64_DTPREL34: 836 relocate(loc, rel, val); 837 break; 838 default: 839 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); 840 } 841 } 842 843 // Map X-Form instructions to their DS-Form counterparts, if applicable. 844 // The full encoding is returned here to distinguish between the different 845 // DS-Form instructions. 846 unsigned elf::getPPCDSFormOp(unsigned secondaryOp) { 847 switch (secondaryOp) { 848 case LWAX: 849 return (LWA << 26) | 0x2; 850 case LDX: 851 return LD << 26; 852 case STDX: 853 return STD << 26; 854 default: 855 return 0; 856 } 857 } 858 859 unsigned elf::getPPCDFormOp(unsigned secondaryOp) { 860 switch (secondaryOp) { 861 case LBZX: 862 return LBZ << 26; 863 case LHZX: 864 return LHZ << 26; 865 case LWZX: 866 return LWZ << 26; 867 case STBX: 868 return STB << 26; 869 case STHX: 870 return STH << 26; 871 case STWX: 872 return STW << 26; 873 case LHAX: 874 return LHA << 26; 875 case LFSX: 876 return LFS << 26; 877 case LFDX: 878 return LFD << 26; 879 case STFSX: 880 return STFS << 26; 881 case STFDX: 882 return STFD << 26; 883 case ADD: 884 return ADDI << 26; 885 default: 886 return 0; 887 } 888 } 889 890 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 891 uint64_t val) const { 892 // The initial exec code sequence for a global `x` will look like: 893 // Instruction Relocation Symbol 894 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x 895 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x 896 // add r9, r9, x@tls R_PPC64_TLS x 897 898 // Relaxing to local exec entails converting: 899 // addis r9, r2, x@got@tprel@ha into nop 900 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha 901 // add r9, r9, x@tls into addi r9, r9, x@tprel@l 902 903 // x@tls R_PPC64_TLS is a relocation which does not compute anything, 904 // it is replaced with r13 (thread pointer). 905 906 // The add instruction in the initial exec sequence has multiple variations 907 // that need to be handled. If we are building an address it will use an add 908 // instruction, if we are accessing memory it will use any of the X-form 909 // indexed load or store instructions. 910 911 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0; 912 switch (rel.type) { 913 case R_PPC64_GOT_TPREL16_HA: 914 write32(loc - offset, NOP); 915 break; 916 case R_PPC64_GOT_TPREL16_LO_DS: 917 case R_PPC64_GOT_TPREL16_DS: { 918 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10 919 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13 920 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 921 break; 922 } 923 case R_PPC64_GOT_TPREL_PCREL34: { 924 const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000; 925 // paddi RT(from pld), r13, symbol@tprel, 0 926 writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT); 927 relocateNoSym(loc, R_PPC64_TPREL34, val); 928 break; 929 } 930 case R_PPC64_TLS: { 931 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 932 if (locAsInt % 4 == 0) { 933 uint32_t primaryOp = getPrimaryOpCode(read32(loc)); 934 if (primaryOp != 31) 935 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 936 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30 937 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 938 uint32_t finalReloc; 939 if (dFormOp == 0) { // Expecting a DS-Form instruction. 940 dFormOp = getPPCDSFormOp(secondaryOp); 941 if (dFormOp == 0) 942 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 943 finalReloc = R_PPC64_TPREL16_LO_DS; 944 } else 945 finalReloc = R_PPC64_TPREL16_LO; 946 write32(loc, dFormOp | (read32(loc) & 0x03ff0000)); 947 relocateNoSym(loc + offset, finalReloc, val); 948 } else if (locAsInt % 4 == 1) { 949 // If the offset is not 4 byte aligned then we have a PCRel type reloc. 950 // This version of the relocation is offset by one byte from the 951 // instruction it references. 952 uint32_t tlsInstr = read32(loc - 1); 953 uint32_t primaryOp = getPrimaryOpCode(tlsInstr); 954 if (primaryOp != 31) 955 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 956 uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30 957 // The add is a special case and should be turned into a nop. The paddi 958 // that comes before it will already have computed the address of the 959 // symbol. 960 if (secondaryOp == 266) { 961 // Check if the add uses the same result register as the input register. 962 uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10 963 uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15 964 if (ra == rt) { 965 write32(loc - 1, NOP); 966 } else { 967 // mr rt, ra 968 write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11)); 969 } 970 } else { 971 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 972 if (dFormOp == 0) { // Expecting a DS-Form instruction. 973 dFormOp = getPPCDSFormOp(secondaryOp); 974 if (dFormOp == 0) 975 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 976 } 977 write32(loc - 1, (dFormOp | (tlsInstr & 0x03ff0000))); 978 } 979 } else { 980 errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte " 981 "offset from 4 byte aligned"); 982 } 983 break; 984 } 985 default: 986 llvm_unreachable("unknown relocation for IE to LE"); 987 break; 988 } 989 } 990 991 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s, 992 const uint8_t *loc) const { 993 switch (type) { 994 case R_PPC64_NONE: 995 return R_NONE; 996 case R_PPC64_ADDR16: 997 case R_PPC64_ADDR16_DS: 998 case R_PPC64_ADDR16_HA: 999 case R_PPC64_ADDR16_HI: 1000 case R_PPC64_ADDR16_HIGH: 1001 case R_PPC64_ADDR16_HIGHER: 1002 case R_PPC64_ADDR16_HIGHERA: 1003 case R_PPC64_ADDR16_HIGHEST: 1004 case R_PPC64_ADDR16_HIGHESTA: 1005 case R_PPC64_ADDR16_LO: 1006 case R_PPC64_ADDR16_LO_DS: 1007 case R_PPC64_ADDR32: 1008 case R_PPC64_ADDR64: 1009 return R_ABS; 1010 case R_PPC64_GOT16: 1011 case R_PPC64_GOT16_DS: 1012 case R_PPC64_GOT16_HA: 1013 case R_PPC64_GOT16_HI: 1014 case R_PPC64_GOT16_LO: 1015 case R_PPC64_GOT16_LO_DS: 1016 return R_GOT_OFF; 1017 case R_PPC64_TOC16: 1018 case R_PPC64_TOC16_DS: 1019 case R_PPC64_TOC16_HI: 1020 case R_PPC64_TOC16_LO: 1021 return R_GOTREL; 1022 case R_PPC64_GOT_PCREL34: 1023 case R_PPC64_GOT_TPREL_PCREL34: 1024 case R_PPC64_PCREL_OPT: 1025 return R_GOT_PC; 1026 case R_PPC64_TOC16_HA: 1027 case R_PPC64_TOC16_LO_DS: 1028 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL; 1029 case R_PPC64_TOC: 1030 return R_PPC64_TOCBASE; 1031 case R_PPC64_REL14: 1032 case R_PPC64_REL24: 1033 return R_PPC64_CALL_PLT; 1034 case R_PPC64_REL24_NOTOC: 1035 return R_PLT_PC; 1036 case R_PPC64_REL16_LO: 1037 case R_PPC64_REL16_HA: 1038 case R_PPC64_REL16_HI: 1039 case R_PPC64_REL32: 1040 case R_PPC64_REL64: 1041 case R_PPC64_PCREL34: 1042 return R_PC; 1043 case R_PPC64_GOT_TLSGD16: 1044 case R_PPC64_GOT_TLSGD16_HA: 1045 case R_PPC64_GOT_TLSGD16_HI: 1046 case R_PPC64_GOT_TLSGD16_LO: 1047 return R_TLSGD_GOT; 1048 case R_PPC64_GOT_TLSGD_PCREL34: 1049 return R_TLSGD_PC; 1050 case R_PPC64_GOT_TLSLD16: 1051 case R_PPC64_GOT_TLSLD16_HA: 1052 case R_PPC64_GOT_TLSLD16_HI: 1053 case R_PPC64_GOT_TLSLD16_LO: 1054 return R_TLSLD_GOT; 1055 case R_PPC64_GOT_TLSLD_PCREL34: 1056 return R_TLSLD_PC; 1057 case R_PPC64_GOT_TPREL16_HA: 1058 case R_PPC64_GOT_TPREL16_LO_DS: 1059 case R_PPC64_GOT_TPREL16_DS: 1060 case R_PPC64_GOT_TPREL16_HI: 1061 return R_GOT_OFF; 1062 case R_PPC64_GOT_DTPREL16_HA: 1063 case R_PPC64_GOT_DTPREL16_LO_DS: 1064 case R_PPC64_GOT_DTPREL16_DS: 1065 case R_PPC64_GOT_DTPREL16_HI: 1066 return R_TLSLD_GOT_OFF; 1067 case R_PPC64_TPREL16: 1068 case R_PPC64_TPREL16_HA: 1069 case R_PPC64_TPREL16_LO: 1070 case R_PPC64_TPREL16_HI: 1071 case R_PPC64_TPREL16_DS: 1072 case R_PPC64_TPREL16_LO_DS: 1073 case R_PPC64_TPREL16_HIGHER: 1074 case R_PPC64_TPREL16_HIGHERA: 1075 case R_PPC64_TPREL16_HIGHEST: 1076 case R_PPC64_TPREL16_HIGHESTA: 1077 case R_PPC64_TPREL34: 1078 return R_TPREL; 1079 case R_PPC64_DTPREL16: 1080 case R_PPC64_DTPREL16_DS: 1081 case R_PPC64_DTPREL16_HA: 1082 case R_PPC64_DTPREL16_HI: 1083 case R_PPC64_DTPREL16_HIGHER: 1084 case R_PPC64_DTPREL16_HIGHERA: 1085 case R_PPC64_DTPREL16_HIGHEST: 1086 case R_PPC64_DTPREL16_HIGHESTA: 1087 case R_PPC64_DTPREL16_LO: 1088 case R_PPC64_DTPREL16_LO_DS: 1089 case R_PPC64_DTPREL64: 1090 case R_PPC64_DTPREL34: 1091 return R_DTPREL; 1092 case R_PPC64_TLSGD: 1093 return R_TLSDESC_CALL; 1094 case R_PPC64_TLSLD: 1095 return R_TLSLD_HINT; 1096 case R_PPC64_TLS: 1097 return R_TLSIE_HINT; 1098 default: 1099 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 1100 ") against symbol " + toString(s)); 1101 return R_NONE; 1102 } 1103 } 1104 1105 RelType PPC64::getDynRel(RelType type) const { 1106 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC) 1107 return R_PPC64_ADDR64; 1108 return R_PPC64_NONE; 1109 } 1110 1111 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const { 1112 switch (type) { 1113 case R_PPC64_NONE: 1114 case R_PPC64_GLOB_DAT: 1115 case R_PPC64_JMP_SLOT: 1116 return 0; 1117 case R_PPC64_REL32: 1118 return SignExtend64<32>(read32(buf)); 1119 case R_PPC64_ADDR64: 1120 case R_PPC64_REL64: 1121 case R_PPC64_RELATIVE: 1122 case R_PPC64_IRELATIVE: 1123 case R_PPC64_DTPMOD64: 1124 case R_PPC64_DTPREL64: 1125 case R_PPC64_TPREL64: 1126 return read64(buf); 1127 default: 1128 internalLinkerError(getErrorLocation(buf), 1129 "cannot read addend for relocation " + toString(type)); 1130 return 0; 1131 } 1132 } 1133 1134 void PPC64::writeGotHeader(uint8_t *buf) const { 1135 write64(buf, getPPC64TocBase()); 1136 } 1137 1138 void PPC64::writePltHeader(uint8_t *buf) const { 1139 // The generic resolver stub goes first. 1140 write32(buf + 0, 0x7c0802a6); // mflr r0 1141 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> 1142 write32(buf + 8, 0x7d6802a6); // mflr r11 1143 write32(buf + 12, 0x7c0803a6); // mtlr r0 1144 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12 1145 write32(buf + 20, 0x380cffcc); // subi r0,r12,52 1146 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2 1147 write32(buf + 28, 0xe98b002c); // ld r12,44(r11) 1148 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11 1149 write32(buf + 36, 0xe98b0000); // ld r12,0(r11) 1150 write32(buf + 40, 0xe96b0008); // ld r11,8(r11) 1151 write32(buf + 44, 0x7d8903a6); // mtctr r12 1152 write32(buf + 48, 0x4e800420); // bctr 1153 1154 // The 'bcl' instruction will set the link register to the address of the 1155 // following instruction ('mflr r11'). Here we store the offset from that 1156 // instruction to the first entry in the GotPlt section. 1157 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8); 1158 write64(buf + 52, gotPltOffset); 1159 } 1160 1161 void PPC64::writePlt(uint8_t *buf, const Symbol &sym, 1162 uint64_t /*pltEntryAddr*/) const { 1163 int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize; 1164 // bl __glink_PLTresolve 1165 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc)); 1166 } 1167 1168 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym, 1169 uint64_t /*pltEntryAddr*/) const { 1170 writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase()); 1171 } 1172 1173 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) { 1174 // Relocations relative to the toc-base need to be adjusted by the Toc offset. 1175 uint64_t tocBiasedVal = val - ppc64TocOffset; 1176 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. 1177 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset; 1178 1179 switch (type) { 1180 // TOC biased relocation. 1181 case R_PPC64_GOT16: 1182 case R_PPC64_GOT_TLSGD16: 1183 case R_PPC64_GOT_TLSLD16: 1184 case R_PPC64_TOC16: 1185 return {R_PPC64_ADDR16, tocBiasedVal}; 1186 case R_PPC64_GOT16_DS: 1187 case R_PPC64_TOC16_DS: 1188 case R_PPC64_GOT_TPREL16_DS: 1189 case R_PPC64_GOT_DTPREL16_DS: 1190 return {R_PPC64_ADDR16_DS, tocBiasedVal}; 1191 case R_PPC64_GOT16_HA: 1192 case R_PPC64_GOT_TLSGD16_HA: 1193 case R_PPC64_GOT_TLSLD16_HA: 1194 case R_PPC64_GOT_TPREL16_HA: 1195 case R_PPC64_GOT_DTPREL16_HA: 1196 case R_PPC64_TOC16_HA: 1197 return {R_PPC64_ADDR16_HA, tocBiasedVal}; 1198 case R_PPC64_GOT16_HI: 1199 case R_PPC64_GOT_TLSGD16_HI: 1200 case R_PPC64_GOT_TLSLD16_HI: 1201 case R_PPC64_GOT_TPREL16_HI: 1202 case R_PPC64_GOT_DTPREL16_HI: 1203 case R_PPC64_TOC16_HI: 1204 return {R_PPC64_ADDR16_HI, tocBiasedVal}; 1205 case R_PPC64_GOT16_LO: 1206 case R_PPC64_GOT_TLSGD16_LO: 1207 case R_PPC64_GOT_TLSLD16_LO: 1208 case R_PPC64_TOC16_LO: 1209 return {R_PPC64_ADDR16_LO, tocBiasedVal}; 1210 case R_PPC64_GOT16_LO_DS: 1211 case R_PPC64_TOC16_LO_DS: 1212 case R_PPC64_GOT_TPREL16_LO_DS: 1213 case R_PPC64_GOT_DTPREL16_LO_DS: 1214 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal}; 1215 1216 // Dynamic Thread pointer biased relocation types. 1217 case R_PPC64_DTPREL16: 1218 return {R_PPC64_ADDR16, dtpBiasedVal}; 1219 case R_PPC64_DTPREL16_DS: 1220 return {R_PPC64_ADDR16_DS, dtpBiasedVal}; 1221 case R_PPC64_DTPREL16_HA: 1222 return {R_PPC64_ADDR16_HA, dtpBiasedVal}; 1223 case R_PPC64_DTPREL16_HI: 1224 return {R_PPC64_ADDR16_HI, dtpBiasedVal}; 1225 case R_PPC64_DTPREL16_HIGHER: 1226 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal}; 1227 case R_PPC64_DTPREL16_HIGHERA: 1228 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal}; 1229 case R_PPC64_DTPREL16_HIGHEST: 1230 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal}; 1231 case R_PPC64_DTPREL16_HIGHESTA: 1232 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal}; 1233 case R_PPC64_DTPREL16_LO: 1234 return {R_PPC64_ADDR16_LO, dtpBiasedVal}; 1235 case R_PPC64_DTPREL16_LO_DS: 1236 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal}; 1237 case R_PPC64_DTPREL64: 1238 return {R_PPC64_ADDR64, dtpBiasedVal}; 1239 1240 default: 1241 return {type, val}; 1242 } 1243 } 1244 1245 static bool isTocOptType(RelType type) { 1246 switch (type) { 1247 case R_PPC64_GOT16_HA: 1248 case R_PPC64_GOT16_LO_DS: 1249 case R_PPC64_TOC16_HA: 1250 case R_PPC64_TOC16_LO_DS: 1251 case R_PPC64_TOC16_LO: 1252 return true; 1253 default: 1254 return false; 1255 } 1256 } 1257 1258 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 1259 RelType type = rel.type; 1260 bool shouldTocOptimize = isTocOptType(type); 1261 // For dynamic thread pointer relative, toc-relative, and got-indirect 1262 // relocations, proceed in terms of the corresponding ADDR16 relocation type. 1263 std::tie(type, val) = toAddr16Rel(type, val); 1264 1265 switch (type) { 1266 case R_PPC64_ADDR14: { 1267 checkAlignment(loc, val, 4, rel); 1268 // Preserve the AA/LK bits in the branch instruction 1269 uint8_t aalk = loc[3]; 1270 write16(loc + 2, (aalk & 3) | (val & 0xfffc)); 1271 break; 1272 } 1273 case R_PPC64_ADDR16: 1274 checkIntUInt(loc, val, 16, rel); 1275 write16(loc, val); 1276 break; 1277 case R_PPC64_ADDR32: 1278 checkIntUInt(loc, val, 32, rel); 1279 write32(loc, val); 1280 break; 1281 case R_PPC64_ADDR16_DS: 1282 case R_PPC64_TPREL16_DS: { 1283 checkInt(loc, val, 16, rel); 1284 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1285 // DS-form instructions only use bits 30-31. 1286 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3; 1287 checkAlignment(loc, lo(val), mask + 1, rel); 1288 write16(loc, (read16(loc) & mask) | lo(val)); 1289 } break; 1290 case R_PPC64_ADDR16_HA: 1291 case R_PPC64_REL16_HA: 1292 case R_PPC64_TPREL16_HA: 1293 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) 1294 writeFromHalf16(loc, NOP); 1295 else { 1296 checkInt(loc, val + 0x8000, 32, rel); 1297 write16(loc, ha(val)); 1298 } 1299 break; 1300 case R_PPC64_ADDR16_HI: 1301 case R_PPC64_REL16_HI: 1302 case R_PPC64_TPREL16_HI: 1303 checkInt(loc, val, 32, rel); 1304 write16(loc, hi(val)); 1305 break; 1306 case R_PPC64_ADDR16_HIGH: 1307 write16(loc, hi(val)); 1308 break; 1309 case R_PPC64_ADDR16_HIGHER: 1310 case R_PPC64_TPREL16_HIGHER: 1311 write16(loc, higher(val)); 1312 break; 1313 case R_PPC64_ADDR16_HIGHERA: 1314 case R_PPC64_TPREL16_HIGHERA: 1315 write16(loc, highera(val)); 1316 break; 1317 case R_PPC64_ADDR16_HIGHEST: 1318 case R_PPC64_TPREL16_HIGHEST: 1319 write16(loc, highest(val)); 1320 break; 1321 case R_PPC64_ADDR16_HIGHESTA: 1322 case R_PPC64_TPREL16_HIGHESTA: 1323 write16(loc, highesta(val)); 1324 break; 1325 case R_PPC64_ADDR16_LO: 1326 case R_PPC64_REL16_LO: 1327 case R_PPC64_TPREL16_LO: 1328 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1329 // changed into a nop. The lo part then needs to be updated to use the 1330 // toc-pointer register r2, as the base register. 1331 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1332 uint32_t insn = readFromHalf16(loc); 1333 if (isInstructionUpdateForm(insn)) 1334 error(getErrorLocation(loc) + 1335 "can't toc-optimize an update instruction: 0x" + 1336 utohexstr(insn)); 1337 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val)); 1338 } else { 1339 write16(loc, lo(val)); 1340 } 1341 break; 1342 case R_PPC64_ADDR16_LO_DS: 1343 case R_PPC64_TPREL16_LO_DS: { 1344 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1345 // DS-form instructions only use bits 30-31. 1346 uint32_t insn = readFromHalf16(loc); 1347 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3; 1348 checkAlignment(loc, lo(val), mask + 1, rel); 1349 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1350 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1351 // changed into a nop. The lo part then needs to be updated to use the toc 1352 // pointer register r2, as the base register. 1353 if (isInstructionUpdateForm(insn)) 1354 error(getErrorLocation(loc) + 1355 "Can't toc-optimize an update instruction: 0x" + 1356 Twine::utohexstr(insn)); 1357 insn &= 0xffe00000 | mask; 1358 writeFromHalf16(loc, insn | 0x00020000 | lo(val)); 1359 } else { 1360 write16(loc, (read16(loc) & mask) | lo(val)); 1361 } 1362 } break; 1363 case R_PPC64_TPREL16: 1364 checkInt(loc, val, 16, rel); 1365 write16(loc, val); 1366 break; 1367 case R_PPC64_REL32: 1368 checkInt(loc, val, 32, rel); 1369 write32(loc, val); 1370 break; 1371 case R_PPC64_ADDR64: 1372 case R_PPC64_REL64: 1373 case R_PPC64_TOC: 1374 write64(loc, val); 1375 break; 1376 case R_PPC64_REL14: { 1377 uint32_t mask = 0x0000FFFC; 1378 checkInt(loc, val, 16, rel); 1379 checkAlignment(loc, val, 4, rel); 1380 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1381 break; 1382 } 1383 case R_PPC64_REL24: 1384 case R_PPC64_REL24_NOTOC: { 1385 uint32_t mask = 0x03FFFFFC; 1386 checkInt(loc, val, 26, rel); 1387 checkAlignment(loc, val, 4, rel); 1388 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1389 break; 1390 } 1391 case R_PPC64_DTPREL64: 1392 write64(loc, val - dynamicThreadPointerOffset); 1393 break; 1394 case R_PPC64_DTPREL34: 1395 // The Dynamic Thread Vector actually points 0x8000 bytes past the start 1396 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first 1397 // need to subtract that value then fallthrough to the general case. 1398 val -= dynamicThreadPointerOffset; 1399 [[fallthrough]]; 1400 case R_PPC64_PCREL34: 1401 case R_PPC64_GOT_PCREL34: 1402 case R_PPC64_GOT_TLSGD_PCREL34: 1403 case R_PPC64_GOT_TLSLD_PCREL34: 1404 case R_PPC64_GOT_TPREL_PCREL34: 1405 case R_PPC64_TPREL34: { 1406 const uint64_t si0Mask = 0x00000003ffff0000; 1407 const uint64_t si1Mask = 0x000000000000ffff; 1408 const uint64_t fullMask = 0x0003ffff0000ffff; 1409 checkInt(loc, val, 34, rel); 1410 1411 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask; 1412 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) | 1413 (val & si1Mask)); 1414 break; 1415 } 1416 // If we encounter a PCREL_OPT relocation that we won't optimize. 1417 case R_PPC64_PCREL_OPT: 1418 break; 1419 default: 1420 llvm_unreachable("unknown relocation"); 1421 } 1422 } 1423 1424 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file, 1425 uint64_t branchAddr, const Symbol &s, int64_t a) const { 1426 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 && 1427 type != R_PPC64_REL24_NOTOC) 1428 return false; 1429 1430 // If a function is in the Plt it needs to be called with a call-stub. 1431 if (s.isInPlt()) 1432 return true; 1433 1434 // This check looks at the st_other bits of the callee with relocation 1435 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee 1436 // clobbers the TOC and we need an R2 save stub. 1437 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1) 1438 return true; 1439 1440 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1) 1441 return true; 1442 1443 // An undefined weak symbol not in a PLT does not need a thunk. If it is 1444 // hidden, its binding has been converted to local, so we just check 1445 // isUndefined() here. A undefined non-weak symbol has been errored. 1446 if (s.isUndefined()) 1447 return false; 1448 1449 // If the offset exceeds the range of the branch type then it will need 1450 // a range-extending thunk. 1451 // See the comment in getRelocTargetVA() about R_PPC64_CALL. 1452 return !inBranchRange(type, branchAddr, 1453 s.getVA(a) + 1454 getPPC64GlobalEntryToLocalEntryOffset(s.stOther)); 1455 } 1456 1457 uint32_t PPC64::getThunkSectionSpacing() const { 1458 // See comment in Arch/ARM.cpp for a more detailed explanation of 1459 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on 1460 // R_PPC64_REL24, which is used by unconditional branch instructions. 1461 // 0x2000000 = (1 << 24-1) * 4 1462 return 0x2000000; 1463 } 1464 1465 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { 1466 int64_t offset = dst - src; 1467 if (type == R_PPC64_REL14) 1468 return isInt<16>(offset); 1469 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) 1470 return isInt<26>(offset); 1471 llvm_unreachable("unsupported relocation type used in branch"); 1472 } 1473 1474 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const { 1475 if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE) 1476 return R_RELAX_TLS_GD_TO_IE_GOT_OFF; 1477 if (expr == R_RELAX_TLS_LD_TO_LE) 1478 return R_RELAX_TLS_LD_TO_LE_ABS; 1479 return expr; 1480 } 1481 1482 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend, 1483 const uint8_t *loc) const { 1484 if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) && 1485 config->pcRelOptimize) { 1486 // It only makes sense to optimize pld since paddi means that the address 1487 // of the object in the GOT is required rather than the object itself. 1488 if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000) 1489 return R_PPC64_RELAX_GOT_PC; 1490 } 1491 return R_GOT_PC; 1492 } 1493 1494 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. 1495 // The general dynamic code sequence for a global `x` uses 4 instructions. 1496 // Instruction Relocation Symbol 1497 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 1498 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 1499 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 1500 // R_PPC64_REL24 __tls_get_addr 1501 // nop None None 1502 // 1503 // Relaxing to initial-exec entails: 1504 // 1) Convert the addis/addi pair that builds the address of the tls_index 1505 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. 1506 // 2) Convert the call to __tls_get_addr to a nop. 1507 // 3) Convert the nop following the call to an add of the loaded offset to the 1508 // thread pointer. 1509 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is 1510 // used as the relaxation hint for both steps 2 and 3. 1511 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 1512 uint64_t val) const { 1513 switch (rel.type) { 1514 case R_PPC64_GOT_TLSGD16_HA: 1515 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to 1516 // addis rT, r2, sym@got@tprel@ha. 1517 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val); 1518 return; 1519 case R_PPC64_GOT_TLSGD16: 1520 case R_PPC64_GOT_TLSGD16_LO: { 1521 // Relax from addi r3, rA, sym@got@tlsgd@l to 1522 // ld r3, sym@got@tprel@l(rA) 1523 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16)); 1524 writeFromHalf16(loc, 0xe8600000 | ra); 1525 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val); 1526 return; 1527 } 1528 case R_PPC64_GOT_TLSGD_PCREL34: { 1529 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to 1530 // pld r3, sym@got@tprel@pcrel 1531 writePrefixedInstruction(loc, 0x04100000e4600000); 1532 relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val); 1533 return; 1534 } 1535 case R_PPC64_TLSGD: { 1536 // PC Relative Relaxation: 1537 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 1538 // nop 1539 // TOC Relaxation: 1540 // Relax from bl __tls_get_addr(x@tlsgd) 1541 // nop 1542 // to 1543 // nop 1544 // add r3, r3, r13 1545 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 1546 if (locAsInt % 4 == 0) { 1547 write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop 1548 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13 1549 } else if (locAsInt % 4 == 1) { 1550 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13 1551 write32(loc - 1, 0x7c636a14); 1552 } else { 1553 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 1554 } 1555 return; 1556 } 1557 default: 1558 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); 1559 } 1560 } 1561 1562 void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { 1563 uint64_t secAddr = sec.getOutputSection()->addr; 1564 if (auto *s = dyn_cast<InputSection>(&sec)) 1565 secAddr += s->outSecOff; 1566 uint64_t lastPPCRelaxedRelocOff = -1; 1567 for (const Relocation &rel : sec.relocs()) { 1568 uint8_t *loc = buf + rel.offset; 1569 const uint64_t val = 1570 sec.getRelocTargetVA(sec.file, rel.type, rel.addend, 1571 secAddr + rel.offset, *rel.sym, rel.expr); 1572 switch (rel.expr) { 1573 case R_PPC64_RELAX_GOT_PC: { 1574 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1575 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1576 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1577 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1578 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1579 // and only relax the other if the saved offset matches. 1580 if (rel.type == R_PPC64_GOT_PCREL34) 1581 lastPPCRelaxedRelocOff = rel.offset; 1582 if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff) 1583 break; 1584 relaxGot(loc, rel, val); 1585 break; 1586 } 1587 case R_PPC64_RELAX_TOC: 1588 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1589 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1590 // entry, there may be R_PPC64_TOC16_HA not paired with 1591 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1592 // opportunities but is safe. 1593 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1594 !tryRelaxPPC64TocIndirection(rel, loc)) 1595 relocate(loc, rel, val); 1596 break; 1597 case R_PPC64_CALL: 1598 // If this is a call to __tls_get_addr, it may be part of a TLS 1599 // sequence that has been relaxed and turned into a nop. In this 1600 // case, we don't want to handle it as a call. 1601 if (read32(loc) == 0x60000000) // nop 1602 break; 1603 1604 // Patch a nop (0x60000000) to a ld. 1605 if (rel.sym->needsTocRestore) { 1606 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1607 // recursive calls even if the function is preemptible. This is not 1608 // wrong in the common case where the function is not preempted at 1609 // runtime. Just ignore. 1610 if ((rel.offset + 8 > sec.content().size() || 1611 read32(loc + 4) != 0x60000000) && 1612 rel.sym->file != sec.file) { 1613 // Use substr(6) to remove the "__plt_" prefix. 1614 errorOrWarn(getErrorLocation(loc) + "call to " + 1615 lld::toString(*rel.sym).substr(6) + 1616 " lacks nop, can't restore toc"); 1617 break; 1618 } 1619 write32(loc + 4, 0xe8410018); // ld %r2, 24(%r1) 1620 } 1621 relocate(loc, rel, val); 1622 break; 1623 case R_RELAX_TLS_GD_TO_IE: 1624 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1625 relaxTlsGdToIe(loc, rel, val); 1626 break; 1627 case R_RELAX_TLS_GD_TO_LE: 1628 relaxTlsGdToLe(loc, rel, val); 1629 break; 1630 case R_RELAX_TLS_LD_TO_LE_ABS: 1631 relaxTlsLdToLe(loc, rel, val); 1632 break; 1633 case R_RELAX_TLS_IE_TO_LE: 1634 relaxTlsIeToLe(loc, rel, val); 1635 break; 1636 default: 1637 relocate(loc, rel, val); 1638 break; 1639 } 1640 } 1641 } 1642 1643 // The prologue for a split-stack function is expected to look roughly 1644 // like this: 1645 // .Lglobal_entry_point: 1646 // # TOC pointer initialization. 1647 // ... 1648 // .Llocal_entry_point: 1649 // # load the __private_ss member of the threads tcbhead. 1650 // ld r0,-0x7000-64(r13) 1651 // # subtract the functions stack size from the stack pointer. 1652 // addis r12, r1, ha(-stack-frame size) 1653 // addi r12, r12, l(-stack-frame size) 1654 // # compare needed to actual and branch to allocate_more_stack if more 1655 // # space is needed, otherwise fallthrough to 'normal' function body. 1656 // cmpld cr7,r12,r0 1657 // blt- cr7, .Lallocate_more_stack 1658 // 1659 // -) The allocate_more_stack block might be placed after the split-stack 1660 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` 1661 // instead. 1662 // -) If either the addis or addi is not needed due to the stack size being 1663 // smaller then 32K or a multiple of 64K they will be replaced with a nop, 1664 // but there will always be 2 instructions the linker can overwrite for the 1665 // adjusted stack size. 1666 // 1667 // The linkers job here is to increase the stack size used in the addis/addi 1668 // pair by split-stack-size-adjust. 1669 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) 1670 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) 1671 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 1672 uint8_t stOther) const { 1673 // If the caller has a global entry point adjust the buffer past it. The start 1674 // of the split-stack prologue will be at the local entry point. 1675 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther); 1676 1677 // At the very least we expect to see a load of some split-stack data from the 1678 // tcb, and 2 instructions that calculate the ending stack address this 1679 // function will require. If there is not enough room for at least 3 1680 // instructions it can't be a split-stack prologue. 1681 if (loc + 12 >= end) 1682 return false; 1683 1684 // First instruction must be `ld r0, -0x7000-64(r13)` 1685 if (read32(loc) != 0xe80d8fc0) 1686 return false; 1687 1688 int16_t hiImm = 0; 1689 int16_t loImm = 0; 1690 // First instruction can be either an addis if the frame size is larger then 1691 // 32K, or an addi if the size is less then 32K. 1692 int32_t firstInstr = read32(loc + 4); 1693 if (getPrimaryOpCode(firstInstr) == 15) { 1694 hiImm = firstInstr & 0xFFFF; 1695 } else if (getPrimaryOpCode(firstInstr) == 14) { 1696 loImm = firstInstr & 0xFFFF; 1697 } else { 1698 return false; 1699 } 1700 1701 // Second instruction is either an addi or a nop. If the first instruction was 1702 // an addi then LoImm is set and the second instruction must be a nop. 1703 uint32_t secondInstr = read32(loc + 8); 1704 if (!loImm && getPrimaryOpCode(secondInstr) == 14) { 1705 loImm = secondInstr & 0xFFFF; 1706 } else if (secondInstr != NOP) { 1707 return false; 1708 } 1709 1710 // The register operands of the first instruction should be the stack-pointer 1711 // (r1) as the input (RA) and r12 as the output (RT). If the second 1712 // instruction is not a nop, then it should use r12 as both input and output. 1713 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT, 1714 uint8_t expectedRA) { 1715 return ((instr & 0x3E00000) >> 21 == expectedRT) && 1716 ((instr & 0x1F0000) >> 16 == expectedRA); 1717 }; 1718 if (!checkRegOperands(firstInstr, 12, 1)) 1719 return false; 1720 if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12)) 1721 return false; 1722 1723 int32_t stackFrameSize = (hiImm * 65536) + loImm; 1724 // Check that the adjusted size doesn't overflow what we can represent with 2 1725 // instructions. 1726 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) { 1727 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows"); 1728 return false; 1729 } 1730 1731 int32_t adjustedStackFrameSize = 1732 stackFrameSize - config->splitStackAdjustSize; 1733 1734 loImm = adjustedStackFrameSize & 0xFFFF; 1735 hiImm = (adjustedStackFrameSize + 0x8000) >> 16; 1736 if (hiImm) { 1737 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm); 1738 // If the low immediate is zero the second instruction will be a nop. 1739 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP; 1740 write32(loc + 8, secondInstr); 1741 } else { 1742 // addi r12, r1, imm 1743 write32(loc + 4, (0x39810000) | (uint16_t)loImm); 1744 write32(loc + 8, NOP); 1745 } 1746 1747 return true; 1748 } 1749 1750 TargetInfo *elf::getPPC64TargetInfo() { 1751 static PPC64 target; 1752 return ⌖ 1753 } 1754