xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/PPC64.cpp (revision 5abaf0866445a61c11665fffc148ecd13a7bb9ac)
1 //===- PPC64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "SymbolTable.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "Thunks.h"
15 #include "lld/Common/CommonLinkerContext.h"
16 #include "llvm/Support/Endian.h"
17 
18 using namespace llvm;
19 using namespace llvm::object;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24 
25 constexpr uint64_t ppc64TocOffset = 0x8000;
26 constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
27 
28 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
29 // instructions that can be used as part of the initial exec TLS sequence.
30 enum XFormOpcd {
31   LBZX = 87,
32   LHZX = 279,
33   LWZX = 23,
34   LDX = 21,
35   STBX = 215,
36   STHX = 407,
37   STWX = 151,
38   STDX = 149,
39   ADD = 266,
40 };
41 
42 enum DFormOpcd {
43   LBZ = 34,
44   LBZU = 35,
45   LHZ = 40,
46   LHZU = 41,
47   LHAU = 43,
48   LWZ = 32,
49   LWZU = 33,
50   LFSU = 49,
51   LD = 58,
52   LFDU = 51,
53   STB = 38,
54   STBU = 39,
55   STH = 44,
56   STHU = 45,
57   STW = 36,
58   STWU = 37,
59   STFSU = 53,
60   STFDU = 55,
61   STD = 62,
62   ADDI = 14
63 };
64 
65 constexpr uint32_t NOP = 0x60000000;
66 
67 enum class PPCLegacyInsn : uint32_t {
68   NOINSN = 0,
69   // Loads.
70   LBZ = 0x88000000,
71   LHZ = 0xa0000000,
72   LWZ = 0x80000000,
73   LHA = 0xa8000000,
74   LWA = 0xe8000002,
75   LD = 0xe8000000,
76   LFS = 0xC0000000,
77   LXSSP = 0xe4000003,
78   LFD = 0xc8000000,
79   LXSD = 0xe4000002,
80   LXV = 0xf4000001,
81   LXVP = 0x18000000,
82 
83   // Stores.
84   STB = 0x98000000,
85   STH = 0xb0000000,
86   STW = 0x90000000,
87   STD = 0xf8000000,
88   STFS = 0xd0000000,
89   STXSSP = 0xf4000003,
90   STFD = 0xd8000000,
91   STXSD = 0xf4000002,
92   STXV = 0xf4000005,
93   STXVP = 0x18000001
94 };
95 enum class PPCPrefixedInsn : uint64_t {
96   NOINSN = 0,
97   PREFIX_MLS = 0x0610000000000000,
98   PREFIX_8LS = 0x0410000000000000,
99 
100   // Loads.
101   PLBZ = PREFIX_MLS,
102   PLHZ = PREFIX_MLS,
103   PLWZ = PREFIX_MLS,
104   PLHA = PREFIX_MLS,
105   PLWA = PREFIX_8LS | 0xa4000000,
106   PLD = PREFIX_8LS | 0xe4000000,
107   PLFS = PREFIX_MLS,
108   PLXSSP = PREFIX_8LS | 0xac000000,
109   PLFD = PREFIX_MLS,
110   PLXSD = PREFIX_8LS | 0xa8000000,
111   PLXV = PREFIX_8LS | 0xc8000000,
112   PLXVP = PREFIX_8LS | 0xe8000000,
113 
114   // Stores.
115   PSTB = PREFIX_MLS,
116   PSTH = PREFIX_MLS,
117   PSTW = PREFIX_MLS,
118   PSTD = PREFIX_8LS | 0xf4000000,
119   PSTFS = PREFIX_MLS,
120   PSTXSSP = PREFIX_8LS | 0xbc000000,
121   PSTFD = PREFIX_MLS,
122   PSTXSD = PREFIX_8LS | 0xb8000000,
123   PSTXV = PREFIX_8LS | 0xd8000000,
124   PSTXVP = PREFIX_8LS | 0xf8000000
125 };
126 static bool checkPPCLegacyInsn(uint32_t encoding) {
127   PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
128   if (insn == PPCLegacyInsn::NOINSN)
129     return false;
130 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
131   if (insn == PPCLegacyInsn::Legacy)                                           \
132     return true;
133 #include "PPCInsns.def"
134 #undef PCREL_OPT
135   return false;
136 }
137 
138 // Masks to apply to legacy instructions when converting them to prefixed,
139 // pc-relative versions. For the most part, the primary opcode is shared
140 // between the legacy instruction and the suffix of its prefixed version.
141 // However, there are some instances where that isn't the case (DS-Form and
142 // DQ-form instructions).
143 enum class LegacyToPrefixMask : uint64_t {
144   NOMASK = 0x0,
145   OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
146   ONLY_RST = 0x3e00000,     // [RS]T (6-10).
147   ST_STX28_TO5 =
148       0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
149 };
150 
151 uint64_t elf::getPPC64TocBase() {
152   // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
153   // TOC starts where the first of these sections starts. We always create a
154   // .got when we see a relocation that uses it, so for us the start is always
155   // the .got.
156   uint64_t tocVA = in.got->getVA();
157 
158   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
159   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
160   // code (crt1.o) assumes that you can get from the TOC base to the
161   // start of the .toc section with only a single (signed) 16-bit relocation.
162   return tocVA + ppc64TocOffset;
163 }
164 
165 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
166   // The offset is encoded into the 3 most significant bits of the st_other
167   // field, with some special values described in section 3.4.1 of the ABI:
168   // 0   --> Zero offset between the GEP and LEP, and the function does NOT use
169   //         the TOC pointer (r2). r2 will hold the same value on returning from
170   //         the function as it did on entering the function.
171   // 1   --> Zero offset between the GEP and LEP, and r2 should be treated as a
172   //         caller-saved register for all callers.
173   // 2-6 --> The  binary logarithm of the offset eg:
174   //         2 --> 2^2 = 4 bytes -->  1 instruction.
175   //         6 --> 2^6 = 64 bytes --> 16 instructions.
176   // 7   --> Reserved.
177   uint8_t gepToLep = (stOther >> 5) & 7;
178   if (gepToLep < 2)
179     return 0;
180 
181   // The value encoded in the st_other bits is the
182   // log-base-2(offset).
183   if (gepToLep < 7)
184     return 1 << gepToLep;
185 
186   error("reserved value of 7 in the 3 most-significant-bits of st_other");
187   return 0;
188 }
189 
190 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
191   insn = config->isLE ? insn << 32 | insn >> 32 : insn;
192   write64(loc, insn);
193 }
194 
195 static bool addOptional(StringRef name, uint64_t value,
196                         std::vector<Defined *> &defined) {
197   Symbol *sym = symtab->find(name);
198   if (!sym || sym->isDefined())
199     return false;
200   sym->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
201                        STT_FUNC, value,
202                        /*size=*/0, /*section=*/nullptr});
203   defined.push_back(cast<Defined>(sym));
204   return true;
205 }
206 
207 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
208 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
209 // The labels are defined only if they exist in the symbol table.
210 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
211                           int from, uint32_t firstInsn,
212                           ArrayRef<uint32_t> tail) {
213   std::vector<Defined *> defined;
214   char name[16];
215   int first;
216   uint32_t *ptr = buf.data();
217   for (int r = from; r < 32; ++r) {
218     format("%s%d", prefix, r).snprint(name, sizeof(name));
219     if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
220       first = r - from;
221     write32(ptr++, firstInsn + 0x200008 * (r - from));
222   }
223   for (uint32_t insn : tail)
224     write32(ptr++, insn);
225   assert(ptr == &*buf.end());
226 
227   if (defined.empty())
228     return;
229   // The full section content has the extent of [begin, end). We drop unused
230   // instructions and write [first,end).
231   auto *sec = make<InputSection>(
232       nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
233       makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
234                    4 * (buf.size() - first)),
235       ".text");
236   inputSections.push_back(sec);
237   for (Defined *sym : defined) {
238     sym->section = sec;
239     sym->value -= 4 * first;
240   }
241 }
242 
243 // Implements some save and restore functions as described by ELF V2 ABI to be
244 // compatible with GCC. With GCC -Os, when the number of call-saved registers
245 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
246 // expects the linker to define them. See
247 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
248 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
249 // weird because libgcc.a would be the natural place. The linker generation
250 // approach has the advantage that the linker can generate multiple copies to
251 // avoid long branch thunks. However, we don't consider the advantage
252 // significant enough to complicate our trunk implementation, so we take the
253 // simple approach and synthesize .text sections providing the implementation.
254 void elf::addPPC64SaveRestore() {
255   static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
256   constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
257 
258   // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
259   // Tail: ld 0, 16(1); mtlr 0; blr
260   writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
261                 {0xe8010010, mtlr_0, blr});
262   // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
263   // Tail: blr
264   writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
265   // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
266   // Tail: std 0, 16(1); blr
267   writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
268   // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
269   // Tail: blr
270   writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
271 }
272 
273 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
274 template <typename ELFT>
275 static std::pair<Defined *, int64_t>
276 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
277   // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
278   // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
279   // relocation index in most cases.
280   //
281   // In rare cases a TOC entry may store a constant that doesn't need an
282   // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
283   // points to a relocation with larger r_offset. Do a linear probe then.
284   // Constants are extremely uncommon in .toc and the extra number of array
285   // accesses can be seen as a small constant.
286   ArrayRef<typename ELFT::Rela> relas =
287       tocSec->template relsOrRelas<ELFT>().relas;
288   if (relas.empty())
289     return {};
290   uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
291   for (;;) {
292     if (relas[index].r_offset == offset) {
293       Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
294       return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
295     }
296     if (relas[index].r_offset < offset || index == 0)
297       break;
298     --index;
299   }
300   return {};
301 }
302 
303 // When accessing a symbol defined in another translation unit, compilers
304 // reserve a .toc entry, allocate a local label and generate toc-indirect
305 // instructions:
306 //
307 //   addis 3, 2, .LC0@toc@ha  # R_PPC64_TOC16_HA
308 //   ld    3, .LC0@toc@l(3)   # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
309 //   ld/lwa 3, 0(3)           # load the value from the address
310 //
311 //   .section .toc,"aw",@progbits
312 //   .LC0: .tc var[TC],var
313 //
314 // If var is defined, non-preemptable and addressable with a 32-bit signed
315 // offset from the toc base, the address of var can be computed by adding an
316 // offset to the toc base, saving a load.
317 //
318 //   addis 3,2,var@toc@ha     # this may be relaxed to a nop,
319 //   addi  3,3,var@toc@l      # then this becomes addi 3,2,var@toc
320 //   ld/lwa 3, 0(3)           # load the value from the address
321 //
322 // Returns true if the relaxation is performed.
323 bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) {
324   assert(config->tocOptimize);
325   if (rel.addend < 0)
326     return false;
327 
328   // If the symbol is not the .toc section, this isn't a toc-indirection.
329   Defined *defSym = dyn_cast<Defined>(rel.sym);
330   if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
331     return false;
332 
333   Defined *d;
334   int64_t addend;
335   auto *tocISB = cast<InputSectionBase>(defSym->section);
336   std::tie(d, addend) =
337       config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
338                    : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
339 
340   // Only non-preemptable defined symbols can be relaxed.
341   if (!d || d->isPreemptible)
342     return false;
343 
344   // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
345   // ifunc and changed its type to STT_FUNC.
346   assert(!d->isGnuIFunc());
347 
348   // Two instructions can materialize a 32-bit signed offset from the toc base.
349   uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
350   if (!isInt<32>(tocRelative))
351     return false;
352 
353   // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
354   target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset);
355   return true;
356 }
357 
358 namespace {
359 class PPC64 final : public TargetInfo {
360 public:
361   PPC64();
362   int getTlsGdRelaxSkip(RelType type) const override;
363   uint32_t calcEFlags() const override;
364   RelExpr getRelExpr(RelType type, const Symbol &s,
365                      const uint8_t *loc) const override;
366   RelType getDynRel(RelType type) const override;
367   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
368   void writePltHeader(uint8_t *buf) const override;
369   void writePlt(uint8_t *buf, const Symbol &sym,
370                 uint64_t pltEntryAddr) const override;
371   void writeIplt(uint8_t *buf, const Symbol &sym,
372                  uint64_t pltEntryAddr) const override;
373   void relocate(uint8_t *loc, const Relocation &rel,
374                 uint64_t val) const override;
375   void writeGotHeader(uint8_t *buf) const override;
376   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
377                   uint64_t branchAddr, const Symbol &s,
378                   int64_t a) const override;
379   uint32_t getThunkSectionSpacing() const override;
380   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
381   RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
382   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
383                           const uint8_t *loc) const override;
384   void relaxGot(uint8_t *loc, const Relocation &rel,
385                 uint64_t val) const override;
386   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
387                       uint64_t val) const override;
388   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
389                       uint64_t val) const override;
390   void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
391                       uint64_t val) const override;
392   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
393                       uint64_t val) const override;
394 
395   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
396                                         uint8_t stOther) const override;
397 };
398 } // namespace
399 
400 // Relocation masks following the #lo(value), #hi(value), #ha(value),
401 // #higher(value), #highera(value), #highest(value), and #highesta(value)
402 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
403 // document.
404 static uint16_t lo(uint64_t v) { return v; }
405 static uint16_t hi(uint64_t v) { return v >> 16; }
406 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
407 static uint16_t higher(uint64_t v) { return v >> 32; }
408 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
409 static uint16_t highest(uint64_t v) { return v >> 48; }
410 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
411 
412 // Extracts the 'PO' field of an instruction encoding.
413 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
414 
415 static bool isDQFormInstruction(uint32_t encoding) {
416   switch (getPrimaryOpCode(encoding)) {
417   default:
418     return false;
419   case 6: // Power10 paired loads/stores (lxvp, stxvp).
420   case 56:
421     // The only instruction with a primary opcode of 56 is `lq`.
422     return true;
423   case 61:
424     // There are both DS and DQ instruction forms with this primary opcode.
425     // Namely `lxv` and `stxv` are the DQ-forms that use it.
426     // The DS 'XO' bits being set to 01 is restricted to DQ form.
427     return (encoding & 3) == 0x1;
428   }
429 }
430 
431 static bool isDSFormInstruction(PPCLegacyInsn insn) {
432   switch (insn) {
433   default:
434     return false;
435   case PPCLegacyInsn::LWA:
436   case PPCLegacyInsn::LD:
437   case PPCLegacyInsn::LXSD:
438   case PPCLegacyInsn::LXSSP:
439   case PPCLegacyInsn::STD:
440   case PPCLegacyInsn::STXSD:
441   case PPCLegacyInsn::STXSSP:
442     return true;
443   }
444 }
445 
446 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
447   uint32_t opc = encoding & 0xfc000000;
448 
449   // If the primary opcode is shared between multiple instructions, we need to
450   // fix it up to match the actual instruction we are after.
451   if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
452        opc == 0xf8000000) &&
453       !isDQFormInstruction(encoding))
454     opc = encoding & 0xfc000003;
455   else if (opc == 0xf4000000)
456     opc = encoding & 0xfc000007;
457   else if (opc == 0x18000000)
458     opc = encoding & 0xfc00000f;
459 
460   // If the value is not one of the enumerators in PPCLegacyInsn, we want to
461   // return PPCLegacyInsn::NOINSN.
462   if (!checkPPCLegacyInsn(opc))
463     return PPCLegacyInsn::NOINSN;
464   return static_cast<PPCLegacyInsn>(opc);
465 }
466 
467 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
468   switch (insn) {
469 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
470   case PPCLegacyInsn::Legacy:                                                  \
471     return PPCPrefixedInsn::PCRel
472 #include "PPCInsns.def"
473 #undef PCREL_OPT
474   }
475   return PPCPrefixedInsn::NOINSN;
476 }
477 
478 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
479   switch (insn) {
480 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
481   case PPCLegacyInsn::Legacy:                                                  \
482     return LegacyToPrefixMask::InsnMask
483 #include "PPCInsns.def"
484 #undef PCREL_OPT
485   }
486   return LegacyToPrefixMask::NOMASK;
487 }
488 static uint64_t getPCRelativeForm(uint32_t encoding) {
489   PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
490   PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
491   if (pcrelInsn == PPCPrefixedInsn::NOINSN)
492     return UINT64_C(-1);
493   LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
494   uint64_t pcrelEncoding =
495       (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
496 
497   // If the mask requires moving bit 28 to bit 5, do that now.
498   if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
499     pcrelEncoding |= (encoding & 0x8) << 23;
500   return pcrelEncoding;
501 }
502 
503 static bool isInstructionUpdateForm(uint32_t encoding) {
504   switch (getPrimaryOpCode(encoding)) {
505   default:
506     return false;
507   case LBZU:
508   case LHAU:
509   case LHZU:
510   case LWZU:
511   case LFSU:
512   case LFDU:
513   case STBU:
514   case STHU:
515   case STWU:
516   case STFSU:
517   case STFDU:
518     return true;
519     // LWA has the same opcode as LD, and the DS bits is what differentiates
520     // between LD/LDU/LWA
521   case LD:
522   case STD:
523     return (encoding & 3) == 1;
524   }
525 }
526 
527 // Compute the total displacement between the prefixed instruction that gets
528 // to the start of the data and the load/store instruction that has the offset
529 // into the data structure.
530 // For example:
531 // paddi 3, 0, 1000, 1
532 // lwz 3, 20(3)
533 // Should add up to 1020 for total displacement.
534 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
535   int64_t disp34 = llvm::SignExtend64(
536       ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
537   int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
538   // For DS and DQ form instructions, we need to mask out the XO bits.
539   if (isDQFormInstruction(accessInsn))
540     disp16 &= ~0xf;
541   else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
542     disp16 &= ~0x3;
543   return disp34 + disp16;
544 }
545 
546 // There are a number of places when we either want to read or write an
547 // instruction when handling a half16 relocation type. On big-endian the buffer
548 // pointer is pointing into the middle of the word we want to extract, and on
549 // little-endian it is pointing to the start of the word. These 2 helpers are to
550 // simplify reading and writing in that context.
551 static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
552   write32(config->isLE ? loc : loc - 2, insn);
553 }
554 
555 static uint32_t readFromHalf16(const uint8_t *loc) {
556   return read32(config->isLE ? loc : loc - 2);
557 }
558 
559 static uint64_t readPrefixedInstruction(const uint8_t *loc) {
560   uint64_t fullInstr = read64(loc);
561   return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
562 }
563 
564 PPC64::PPC64() {
565   copyRel = R_PPC64_COPY;
566   gotRel = R_PPC64_GLOB_DAT;
567   pltRel = R_PPC64_JMP_SLOT;
568   relativeRel = R_PPC64_RELATIVE;
569   iRelativeRel = R_PPC64_IRELATIVE;
570   symbolicRel = R_PPC64_ADDR64;
571   pltHeaderSize = 60;
572   pltEntrySize = 4;
573   ipltEntrySize = 16; // PPC64PltCallStub::size
574   gotHeaderEntriesNum = 1;
575   gotPltHeaderEntriesNum = 2;
576   needsThunks = true;
577 
578   tlsModuleIndexRel = R_PPC64_DTPMOD64;
579   tlsOffsetRel = R_PPC64_DTPREL64;
580 
581   tlsGotRel = R_PPC64_TPREL64;
582 
583   needsMoreStackNonSplit = false;
584 
585   // We need 64K pages (at least under glibc/Linux, the loader won't
586   // set different permissions on a finer granularity than that).
587   defaultMaxPageSize = 65536;
588 
589   // The PPC64 ELF ABI v1 spec, says:
590   //
591   //   It is normally desirable to put segments with different characteristics
592   //   in separate 256 Mbyte portions of the address space, to give the
593   //   operating system full paging flexibility in the 64-bit address space.
594   //
595   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
596   // use 0x10000000 as the starting address.
597   defaultImageBase = 0x10000000;
598 
599   write32(trapInstr.data(), 0x7fe00008);
600 }
601 
602 int PPC64::getTlsGdRelaxSkip(RelType type) const {
603   // A __tls_get_addr call instruction is marked with 2 relocations:
604   //
605   //   R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
606   //   R_PPC64_REL24: __tls_get_addr
607   //
608   // After the relaxation we no longer call __tls_get_addr and should skip both
609   // relocations to not create a false dependence on __tls_get_addr being
610   // defined.
611   if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
612     return 2;
613   return 1;
614 }
615 
616 static uint32_t getEFlags(InputFile *file) {
617   if (config->ekind == ELF64BEKind)
618     return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
619   return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
620 }
621 
622 // This file implements v2 ABI. This function makes sure that all
623 // object files have v2 or an unspecified version as an ABI version.
624 uint32_t PPC64::calcEFlags() const {
625   for (InputFile *f : ctx->objectFiles) {
626     uint32_t flag = getEFlags(f);
627     if (flag == 1)
628       error(toString(f) + ": ABI version 1 is not supported");
629     else if (flag > 2)
630       error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
631   }
632   return 2;
633 }
634 
635 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
636   switch (rel.type) {
637   case R_PPC64_TOC16_HA:
638     // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
639     relocate(loc, rel, val);
640     break;
641   case R_PPC64_TOC16_LO_DS: {
642     // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
643     // "addi reg, 2, var@toc".
644     uint32_t insn = readFromHalf16(loc);
645     if (getPrimaryOpCode(insn) != LD)
646       error("expected a 'ld' for got-indirect to toc-relative relaxing");
647     writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
648     relocateNoSym(loc, R_PPC64_TOC16_LO, val);
649     break;
650   }
651   case R_PPC64_GOT_PCREL34: {
652     // Clear the first 8 bits of the prefix and the first 6 bits of the
653     // instruction (the primary opcode).
654     uint64_t insn = readPrefixedInstruction(loc);
655     if ((insn & 0xfc000000) != 0xe4000000)
656       error("expected a 'pld' for got-indirect to pc-relative relaxing");
657     insn &= ~0xff000000fc000000;
658 
659     // Replace the cleared bits with the values for PADDI (0x600000038000000);
660     insn |= 0x600000038000000;
661     writePrefixedInstruction(loc, insn);
662     relocate(loc, rel, val);
663     break;
664   }
665   case R_PPC64_PCREL_OPT: {
666     // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
667     // be relaxed. The eligibility for the relaxation needs to be determined
668     // on that relocation since this one does not relocate a symbol.
669     uint64_t insn = readPrefixedInstruction(loc);
670     uint32_t accessInsn = read32(loc + rel.addend);
671     uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
672 
673     // This error is not necessary for correctness but is emitted for now
674     // to ensure we don't miss these opportunities in real code. It can be
675     // removed at a later date.
676     if (pcRelInsn == UINT64_C(-1)) {
677       errorOrWarn(
678           "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
679           Twine::utohexstr(accessInsn));
680       break;
681     }
682 
683     int64_t totalDisp = getTotalDisp(insn, accessInsn);
684     if (!isInt<34>(totalDisp))
685       break; // Displacement doesn't fit.
686     // Convert the PADDI to the prefixed version of accessInsn and convert
687     // accessInsn to a nop.
688     writePrefixedInstruction(loc, pcRelInsn |
689                                       ((totalDisp & 0x3ffff0000) << 16) |
690                                       (totalDisp & 0xffff));
691     write32(loc + rel.addend, NOP); // nop accessInsn.
692     break;
693   }
694   default:
695     llvm_unreachable("unexpected relocation type");
696   }
697 }
698 
699 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
700                            uint64_t val) const {
701   // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
702   // The general dynamic code sequence for a global `x` will look like:
703   // Instruction                    Relocation                Symbol
704   // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
705   // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
706   // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
707   //                                R_PPC64_REL24               __tls_get_addr
708   // nop                            None                       None
709 
710   // Relaxing to local exec entails converting:
711   // addis r3, r2, x@got@tlsgd@ha    into      nop
712   // addi  r3, r3, x@got@tlsgd@l     into      addis r3, r13, x@tprel@ha
713   // bl __tls_get_addr(x@tlsgd)      into      nop
714   // nop                             into      addi r3, r3, x@tprel@l
715 
716   switch (rel.type) {
717   case R_PPC64_GOT_TLSGD16_HA:
718     writeFromHalf16(loc, NOP);
719     break;
720   case R_PPC64_GOT_TLSGD16:
721   case R_PPC64_GOT_TLSGD16_LO:
722     writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
723     relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
724     break;
725   case R_PPC64_GOT_TLSGD_PCREL34:
726     // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
727     //            paddi r3, r13, x@tprel, 0
728     writePrefixedInstruction(loc, 0x06000000386d0000);
729     relocateNoSym(loc, R_PPC64_TPREL34, val);
730     break;
731   case R_PPC64_TLSGD: {
732     // PC Relative Relaxation:
733     // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
734     //            nop
735     // TOC Relaxation:
736     // Relax from bl __tls_get_addr(x@tlsgd)
737     //            nop
738     // to
739     //            nop
740     //            addi r3, r3, x@tprel@l
741     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
742     if (locAsInt % 4 == 0) {
743       write32(loc, NOP);            // nop
744       write32(loc + 4, 0x38630000); // addi r3, r3
745       // Since we are relocating a half16 type relocation and Loc + 4 points to
746       // the start of an instruction we need to advance the buffer by an extra
747       // 2 bytes on BE.
748       relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
749                     R_PPC64_TPREL16_LO, val);
750     } else if (locAsInt % 4 == 1) {
751       write32(loc - 1, NOP);
752     } else {
753       errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
754     }
755     break;
756   }
757   default:
758     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
759   }
760 }
761 
762 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
763                            uint64_t val) const {
764   // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
765   // The local dynamic code sequence for a global `x` will look like:
766   // Instruction                    Relocation                Symbol
767   // addis r3, r2, x@got@tlsld@ha   R_PPC64_GOT_TLSLD16_HA      x
768   // addi  r3, r3, x@got@tlsld@l    R_PPC64_GOT_TLSLD16_LO      x
769   // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSLD               x
770   //                                R_PPC64_REL24               __tls_get_addr
771   // nop                            None                       None
772 
773   // Relaxing to local exec entails converting:
774   // addis r3, r2, x@got@tlsld@ha   into      nop
775   // addi  r3, r3, x@got@tlsld@l    into      addis r3, r13, 0
776   // bl __tls_get_addr(x@tlsgd)     into      nop
777   // nop                            into      addi r3, r3, 4096
778 
779   switch (rel.type) {
780   case R_PPC64_GOT_TLSLD16_HA:
781     writeFromHalf16(loc, NOP);
782     break;
783   case R_PPC64_GOT_TLSLD16_LO:
784     writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
785     break;
786   case R_PPC64_GOT_TLSLD_PCREL34:
787     // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
788     //            paddi r3, r13, 0x1000, 0
789     writePrefixedInstruction(loc, 0x06000000386d1000);
790     break;
791   case R_PPC64_TLSLD: {
792     // PC Relative Relaxation:
793     // Relax from bl __tls_get_addr@notoc(x@tlsld)
794     // to
795     //            nop
796     // TOC Relaxation:
797     // Relax from bl __tls_get_addr(x@tlsld)
798     //            nop
799     // to
800     //            nop
801     //            addi r3, r3, 4096
802     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
803     if (locAsInt % 4 == 0) {
804       write32(loc, NOP);
805       write32(loc + 4, 0x38631000); // addi r3, r3, 4096
806     } else if (locAsInt % 4 == 1) {
807       write32(loc - 1, NOP);
808     } else {
809       errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
810     }
811     break;
812   }
813   case R_PPC64_DTPREL16:
814   case R_PPC64_DTPREL16_HA:
815   case R_PPC64_DTPREL16_HI:
816   case R_PPC64_DTPREL16_DS:
817   case R_PPC64_DTPREL16_LO:
818   case R_PPC64_DTPREL16_LO_DS:
819   case R_PPC64_DTPREL34:
820     relocate(loc, rel, val);
821     break;
822   default:
823     llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
824   }
825 }
826 
827 unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
828   switch (secondaryOp) {
829   case LBZX:
830     return LBZ;
831   case LHZX:
832     return LHZ;
833   case LWZX:
834     return LWZ;
835   case LDX:
836     return LD;
837   case STBX:
838     return STB;
839   case STHX:
840     return STH;
841   case STWX:
842     return STW;
843   case STDX:
844     return STD;
845   case ADD:
846     return ADDI;
847   default:
848     return 0;
849   }
850 }
851 
852 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
853                            uint64_t val) const {
854   // The initial exec code sequence for a global `x` will look like:
855   // Instruction                    Relocation                Symbol
856   // addis r9, r2, x@got@tprel@ha   R_PPC64_GOT_TPREL16_HA      x
857   // ld    r9, x@got@tprel@l(r9)    R_PPC64_GOT_TPREL16_LO_DS   x
858   // add r9, r9, x@tls              R_PPC64_TLS                 x
859 
860   // Relaxing to local exec entails converting:
861   // addis r9, r2, x@got@tprel@ha       into        nop
862   // ld r9, x@got@tprel@l(r9)           into        addis r9, r13, x@tprel@ha
863   // add r9, r9, x@tls                  into        addi r9, r9, x@tprel@l
864 
865   // x@tls R_PPC64_TLS is a relocation which does not compute anything,
866   // it is replaced with r13 (thread pointer).
867 
868   // The add instruction in the initial exec sequence has multiple variations
869   // that need to be handled. If we are building an address it will use an add
870   // instruction, if we are accessing memory it will use any of the X-form
871   // indexed load or store instructions.
872 
873   unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
874   switch (rel.type) {
875   case R_PPC64_GOT_TPREL16_HA:
876     write32(loc - offset, NOP);
877     break;
878   case R_PPC64_GOT_TPREL16_LO_DS:
879   case R_PPC64_GOT_TPREL16_DS: {
880     uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
881     write32(loc - offset, 0x3C0D0000 | regNo);          // addis RegNo, r13
882     relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
883     break;
884   }
885   case R_PPC64_GOT_TPREL_PCREL34: {
886     const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
887     // paddi RT(from pld), r13, symbol@tprel, 0
888     writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
889     relocateNoSym(loc, R_PPC64_TPREL34, val);
890     break;
891   }
892   case R_PPC64_TLS: {
893     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
894     if (locAsInt % 4 == 0) {
895       uint32_t primaryOp = getPrimaryOpCode(read32(loc));
896       if (primaryOp != 31)
897         error("unrecognized instruction for IE to LE R_PPC64_TLS");
898       uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
899       uint32_t dFormOp = getPPCDFormOp(secondaryOp);
900       if (dFormOp == 0)
901         error("unrecognized instruction for IE to LE R_PPC64_TLS");
902       write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
903       relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
904     } else if (locAsInt % 4 == 1) {
905       // If the offset is not 4 byte aligned then we have a PCRel type reloc.
906       // This version of the relocation is offset by one byte from the
907       // instruction it references.
908       uint32_t tlsInstr = read32(loc - 1);
909       uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
910       if (primaryOp != 31)
911         errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
912       uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
913       // The add is a special case and should be turned into a nop. The paddi
914       // that comes before it will already have computed the address of the
915       // symbol.
916       if (secondaryOp == 266) {
917         // Check if the add uses the same result register as the input register.
918         uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
919         uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
920         if (ra == rt) {
921           write32(loc - 1, NOP);
922         } else {
923           // mr rt, ra
924           write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
925         }
926       } else {
927         uint32_t dFormOp = getPPCDFormOp(secondaryOp);
928         if (dFormOp == 0)
929           errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
930         write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000)));
931       }
932     } else {
933       errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
934                   "offset from 4 byte aligned");
935     }
936     break;
937   }
938   default:
939     llvm_unreachable("unknown relocation for IE to LE");
940     break;
941   }
942 }
943 
944 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
945                           const uint8_t *loc) const {
946   switch (type) {
947   case R_PPC64_NONE:
948     return R_NONE;
949   case R_PPC64_ADDR16:
950   case R_PPC64_ADDR16_DS:
951   case R_PPC64_ADDR16_HA:
952   case R_PPC64_ADDR16_HI:
953   case R_PPC64_ADDR16_HIGH:
954   case R_PPC64_ADDR16_HIGHER:
955   case R_PPC64_ADDR16_HIGHERA:
956   case R_PPC64_ADDR16_HIGHEST:
957   case R_PPC64_ADDR16_HIGHESTA:
958   case R_PPC64_ADDR16_LO:
959   case R_PPC64_ADDR16_LO_DS:
960   case R_PPC64_ADDR32:
961   case R_PPC64_ADDR64:
962     return R_ABS;
963   case R_PPC64_GOT16:
964   case R_PPC64_GOT16_DS:
965   case R_PPC64_GOT16_HA:
966   case R_PPC64_GOT16_HI:
967   case R_PPC64_GOT16_LO:
968   case R_PPC64_GOT16_LO_DS:
969     return R_GOT_OFF;
970   case R_PPC64_TOC16:
971   case R_PPC64_TOC16_DS:
972   case R_PPC64_TOC16_HI:
973   case R_PPC64_TOC16_LO:
974     return R_GOTREL;
975   case R_PPC64_GOT_PCREL34:
976   case R_PPC64_GOT_TPREL_PCREL34:
977   case R_PPC64_PCREL_OPT:
978     return R_GOT_PC;
979   case R_PPC64_TOC16_HA:
980   case R_PPC64_TOC16_LO_DS:
981     return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
982   case R_PPC64_TOC:
983     return R_PPC64_TOCBASE;
984   case R_PPC64_REL14:
985   case R_PPC64_REL24:
986     return R_PPC64_CALL_PLT;
987   case R_PPC64_REL24_NOTOC:
988     return R_PLT_PC;
989   case R_PPC64_REL16_LO:
990   case R_PPC64_REL16_HA:
991   case R_PPC64_REL16_HI:
992   case R_PPC64_REL32:
993   case R_PPC64_REL64:
994   case R_PPC64_PCREL34:
995     return R_PC;
996   case R_PPC64_GOT_TLSGD16:
997   case R_PPC64_GOT_TLSGD16_HA:
998   case R_PPC64_GOT_TLSGD16_HI:
999   case R_PPC64_GOT_TLSGD16_LO:
1000     return R_TLSGD_GOT;
1001   case R_PPC64_GOT_TLSGD_PCREL34:
1002     return R_TLSGD_PC;
1003   case R_PPC64_GOT_TLSLD16:
1004   case R_PPC64_GOT_TLSLD16_HA:
1005   case R_PPC64_GOT_TLSLD16_HI:
1006   case R_PPC64_GOT_TLSLD16_LO:
1007     return R_TLSLD_GOT;
1008   case R_PPC64_GOT_TLSLD_PCREL34:
1009     return R_TLSLD_PC;
1010   case R_PPC64_GOT_TPREL16_HA:
1011   case R_PPC64_GOT_TPREL16_LO_DS:
1012   case R_PPC64_GOT_TPREL16_DS:
1013   case R_PPC64_GOT_TPREL16_HI:
1014     return R_GOT_OFF;
1015   case R_PPC64_GOT_DTPREL16_HA:
1016   case R_PPC64_GOT_DTPREL16_LO_DS:
1017   case R_PPC64_GOT_DTPREL16_DS:
1018   case R_PPC64_GOT_DTPREL16_HI:
1019     return R_TLSLD_GOT_OFF;
1020   case R_PPC64_TPREL16:
1021   case R_PPC64_TPREL16_HA:
1022   case R_PPC64_TPREL16_LO:
1023   case R_PPC64_TPREL16_HI:
1024   case R_PPC64_TPREL16_DS:
1025   case R_PPC64_TPREL16_LO_DS:
1026   case R_PPC64_TPREL16_HIGHER:
1027   case R_PPC64_TPREL16_HIGHERA:
1028   case R_PPC64_TPREL16_HIGHEST:
1029   case R_PPC64_TPREL16_HIGHESTA:
1030   case R_PPC64_TPREL34:
1031     return R_TPREL;
1032   case R_PPC64_DTPREL16:
1033   case R_PPC64_DTPREL16_DS:
1034   case R_PPC64_DTPREL16_HA:
1035   case R_PPC64_DTPREL16_HI:
1036   case R_PPC64_DTPREL16_HIGHER:
1037   case R_PPC64_DTPREL16_HIGHERA:
1038   case R_PPC64_DTPREL16_HIGHEST:
1039   case R_PPC64_DTPREL16_HIGHESTA:
1040   case R_PPC64_DTPREL16_LO:
1041   case R_PPC64_DTPREL16_LO_DS:
1042   case R_PPC64_DTPREL64:
1043   case R_PPC64_DTPREL34:
1044     return R_DTPREL;
1045   case R_PPC64_TLSGD:
1046     return R_TLSDESC_CALL;
1047   case R_PPC64_TLSLD:
1048     return R_TLSLD_HINT;
1049   case R_PPC64_TLS:
1050     return R_TLSIE_HINT;
1051   default:
1052     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
1053           ") against symbol " + toString(s));
1054     return R_NONE;
1055   }
1056 }
1057 
1058 RelType PPC64::getDynRel(RelType type) const {
1059   if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1060     return R_PPC64_ADDR64;
1061   return R_PPC64_NONE;
1062 }
1063 
1064 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const {
1065   switch (type) {
1066   case R_PPC64_NONE:
1067     return 0;
1068   case R_PPC64_REL32:
1069     return SignExtend64<32>(read32(buf));
1070   case R_PPC64_ADDR64:
1071   case R_PPC64_REL64:
1072     return read64(buf);
1073   default:
1074     internalLinkerError(getErrorLocation(buf),
1075                         "cannot read addend for relocation " + toString(type));
1076     return 0;
1077   }
1078 }
1079 
1080 void PPC64::writeGotHeader(uint8_t *buf) const {
1081   write64(buf, getPPC64TocBase());
1082 }
1083 
1084 void PPC64::writePltHeader(uint8_t *buf) const {
1085   // The generic resolver stub goes first.
1086   write32(buf +  0, 0x7c0802a6); // mflr r0
1087   write32(buf +  4, 0x429f0005); // bcl  20,4*cr7+so,8 <_glink+0x8>
1088   write32(buf +  8, 0x7d6802a6); // mflr r11
1089   write32(buf + 12, 0x7c0803a6); // mtlr r0
1090   write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
1091   write32(buf + 20, 0x380cffcc); // subi r0,r12,52
1092   write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
1093   write32(buf + 28, 0xe98b002c); // ld   r12,44(r11)
1094   write32(buf + 32, 0x7d6c5a14); // add  r11,r12,r11
1095   write32(buf + 36, 0xe98b0000); // ld   r12,0(r11)
1096   write32(buf + 40, 0xe96b0008); // ld   r11,8(r11)
1097   write32(buf + 44, 0x7d8903a6); // mtctr   r12
1098   write32(buf + 48, 0x4e800420); // bctr
1099 
1100   // The 'bcl' instruction will set the link register to the address of the
1101   // following instruction ('mflr r11'). Here we store the offset from that
1102   // instruction  to the first entry in the GotPlt section.
1103   int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
1104   write64(buf + 52, gotPltOffset);
1105 }
1106 
1107 void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1108                      uint64_t /*pltEntryAddr*/) const {
1109   int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize;
1110   // bl __glink_PLTresolve
1111   write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
1112 }
1113 
1114 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1115                       uint64_t /*pltEntryAddr*/) const {
1116   writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
1117 }
1118 
1119 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1120   // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1121   uint64_t tocBiasedVal = val - ppc64TocOffset;
1122   // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1123   uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1124 
1125   switch (type) {
1126   // TOC biased relocation.
1127   case R_PPC64_GOT16:
1128   case R_PPC64_GOT_TLSGD16:
1129   case R_PPC64_GOT_TLSLD16:
1130   case R_PPC64_TOC16:
1131     return {R_PPC64_ADDR16, tocBiasedVal};
1132   case R_PPC64_GOT16_DS:
1133   case R_PPC64_TOC16_DS:
1134   case R_PPC64_GOT_TPREL16_DS:
1135   case R_PPC64_GOT_DTPREL16_DS:
1136     return {R_PPC64_ADDR16_DS, tocBiasedVal};
1137   case R_PPC64_GOT16_HA:
1138   case R_PPC64_GOT_TLSGD16_HA:
1139   case R_PPC64_GOT_TLSLD16_HA:
1140   case R_PPC64_GOT_TPREL16_HA:
1141   case R_PPC64_GOT_DTPREL16_HA:
1142   case R_PPC64_TOC16_HA:
1143     return {R_PPC64_ADDR16_HA, tocBiasedVal};
1144   case R_PPC64_GOT16_HI:
1145   case R_PPC64_GOT_TLSGD16_HI:
1146   case R_PPC64_GOT_TLSLD16_HI:
1147   case R_PPC64_GOT_TPREL16_HI:
1148   case R_PPC64_GOT_DTPREL16_HI:
1149   case R_PPC64_TOC16_HI:
1150     return {R_PPC64_ADDR16_HI, tocBiasedVal};
1151   case R_PPC64_GOT16_LO:
1152   case R_PPC64_GOT_TLSGD16_LO:
1153   case R_PPC64_GOT_TLSLD16_LO:
1154   case R_PPC64_TOC16_LO:
1155     return {R_PPC64_ADDR16_LO, tocBiasedVal};
1156   case R_PPC64_GOT16_LO_DS:
1157   case R_PPC64_TOC16_LO_DS:
1158   case R_PPC64_GOT_TPREL16_LO_DS:
1159   case R_PPC64_GOT_DTPREL16_LO_DS:
1160     return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1161 
1162   // Dynamic Thread pointer biased relocation types.
1163   case R_PPC64_DTPREL16:
1164     return {R_PPC64_ADDR16, dtpBiasedVal};
1165   case R_PPC64_DTPREL16_DS:
1166     return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1167   case R_PPC64_DTPREL16_HA:
1168     return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1169   case R_PPC64_DTPREL16_HI:
1170     return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1171   case R_PPC64_DTPREL16_HIGHER:
1172     return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1173   case R_PPC64_DTPREL16_HIGHERA:
1174     return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1175   case R_PPC64_DTPREL16_HIGHEST:
1176     return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1177   case R_PPC64_DTPREL16_HIGHESTA:
1178     return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1179   case R_PPC64_DTPREL16_LO:
1180     return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1181   case R_PPC64_DTPREL16_LO_DS:
1182     return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1183   case R_PPC64_DTPREL64:
1184     return {R_PPC64_ADDR64, dtpBiasedVal};
1185 
1186   default:
1187     return {type, val};
1188   }
1189 }
1190 
1191 static bool isTocOptType(RelType type) {
1192   switch (type) {
1193   case R_PPC64_GOT16_HA:
1194   case R_PPC64_GOT16_LO_DS:
1195   case R_PPC64_TOC16_HA:
1196   case R_PPC64_TOC16_LO_DS:
1197   case R_PPC64_TOC16_LO:
1198     return true;
1199   default:
1200     return false;
1201   }
1202 }
1203 
1204 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1205   RelType type = rel.type;
1206   bool shouldTocOptimize =  isTocOptType(type);
1207   // For dynamic thread pointer relative, toc-relative, and got-indirect
1208   // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1209   std::tie(type, val) = toAddr16Rel(type, val);
1210 
1211   switch (type) {
1212   case R_PPC64_ADDR14: {
1213     checkAlignment(loc, val, 4, rel);
1214     // Preserve the AA/LK bits in the branch instruction
1215     uint8_t aalk = loc[3];
1216     write16(loc + 2, (aalk & 3) | (val & 0xfffc));
1217     break;
1218   }
1219   case R_PPC64_ADDR16:
1220     checkIntUInt(loc, val, 16, rel);
1221     write16(loc, val);
1222     break;
1223   case R_PPC64_ADDR32:
1224     checkIntUInt(loc, val, 32, rel);
1225     write32(loc, val);
1226     break;
1227   case R_PPC64_ADDR16_DS:
1228   case R_PPC64_TPREL16_DS: {
1229     checkInt(loc, val, 16, rel);
1230     // DQ-form instructions use bits 28-31 as part of the instruction encoding
1231     // DS-form instructions only use bits 30-31.
1232     uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
1233     checkAlignment(loc, lo(val), mask + 1, rel);
1234     write16(loc, (read16(loc) & mask) | lo(val));
1235   } break;
1236   case R_PPC64_ADDR16_HA:
1237   case R_PPC64_REL16_HA:
1238   case R_PPC64_TPREL16_HA:
1239     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
1240       writeFromHalf16(loc, NOP);
1241     else {
1242       checkInt(loc, val + 0x8000, 32, rel);
1243       write16(loc, ha(val));
1244     }
1245     break;
1246   case R_PPC64_ADDR16_HI:
1247   case R_PPC64_REL16_HI:
1248   case R_PPC64_TPREL16_HI:
1249     checkInt(loc, val, 32, rel);
1250     write16(loc, hi(val));
1251     break;
1252   case R_PPC64_ADDR16_HIGH:
1253     write16(loc, hi(val));
1254     break;
1255   case R_PPC64_ADDR16_HIGHER:
1256   case R_PPC64_TPREL16_HIGHER:
1257     write16(loc, higher(val));
1258     break;
1259   case R_PPC64_ADDR16_HIGHERA:
1260   case R_PPC64_TPREL16_HIGHERA:
1261     write16(loc, highera(val));
1262     break;
1263   case R_PPC64_ADDR16_HIGHEST:
1264   case R_PPC64_TPREL16_HIGHEST:
1265     write16(loc, highest(val));
1266     break;
1267   case R_PPC64_ADDR16_HIGHESTA:
1268   case R_PPC64_TPREL16_HIGHESTA:
1269     write16(loc, highesta(val));
1270     break;
1271   case R_PPC64_ADDR16_LO:
1272   case R_PPC64_REL16_LO:
1273   case R_PPC64_TPREL16_LO:
1274     // When the high-adjusted part of a toc relocation evaluates to 0, it is
1275     // changed into a nop. The lo part then needs to be updated to use the
1276     // toc-pointer register r2, as the base register.
1277     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1278       uint32_t insn = readFromHalf16(loc);
1279       if (isInstructionUpdateForm(insn))
1280         error(getErrorLocation(loc) +
1281               "can't toc-optimize an update instruction: 0x" +
1282               utohexstr(insn));
1283       writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1284     } else {
1285       write16(loc, lo(val));
1286     }
1287     break;
1288   case R_PPC64_ADDR16_LO_DS:
1289   case R_PPC64_TPREL16_LO_DS: {
1290     // DQ-form instructions use bits 28-31 as part of the instruction encoding
1291     // DS-form instructions only use bits 30-31.
1292     uint32_t insn = readFromHalf16(loc);
1293     uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1294     checkAlignment(loc, lo(val), mask + 1, rel);
1295     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1296       // When the high-adjusted part of a toc relocation evaluates to 0, it is
1297       // changed into a nop. The lo part then needs to be updated to use the toc
1298       // pointer register r2, as the base register.
1299       if (isInstructionUpdateForm(insn))
1300         error(getErrorLocation(loc) +
1301               "Can't toc-optimize an update instruction: 0x" +
1302               Twine::utohexstr(insn));
1303       insn &= 0xffe00000 | mask;
1304       writeFromHalf16(loc, insn | 0x00020000 | lo(val));
1305     } else {
1306       write16(loc, (read16(loc) & mask) | lo(val));
1307     }
1308   } break;
1309   case R_PPC64_TPREL16:
1310     checkInt(loc, val, 16, rel);
1311     write16(loc, val);
1312     break;
1313   case R_PPC64_REL32:
1314     checkInt(loc, val, 32, rel);
1315     write32(loc, val);
1316     break;
1317   case R_PPC64_ADDR64:
1318   case R_PPC64_REL64:
1319   case R_PPC64_TOC:
1320     write64(loc, val);
1321     break;
1322   case R_PPC64_REL14: {
1323     uint32_t mask = 0x0000FFFC;
1324     checkInt(loc, val, 16, rel);
1325     checkAlignment(loc, val, 4, rel);
1326     write32(loc, (read32(loc) & ~mask) | (val & mask));
1327     break;
1328   }
1329   case R_PPC64_REL24:
1330   case R_PPC64_REL24_NOTOC: {
1331     uint32_t mask = 0x03FFFFFC;
1332     checkInt(loc, val, 26, rel);
1333     checkAlignment(loc, val, 4, rel);
1334     write32(loc, (read32(loc) & ~mask) | (val & mask));
1335     break;
1336   }
1337   case R_PPC64_DTPREL64:
1338     write64(loc, val - dynamicThreadPointerOffset);
1339     break;
1340   case R_PPC64_DTPREL34:
1341     // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1342     // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1343     // need to subtract that value then fallthrough to the general case.
1344     val -= dynamicThreadPointerOffset;
1345     LLVM_FALLTHROUGH;
1346   case R_PPC64_PCREL34:
1347   case R_PPC64_GOT_PCREL34:
1348   case R_PPC64_GOT_TLSGD_PCREL34:
1349   case R_PPC64_GOT_TLSLD_PCREL34:
1350   case R_PPC64_GOT_TPREL_PCREL34:
1351   case R_PPC64_TPREL34: {
1352     const uint64_t si0Mask = 0x00000003ffff0000;
1353     const uint64_t si1Mask = 0x000000000000ffff;
1354     const uint64_t fullMask = 0x0003ffff0000ffff;
1355     checkInt(loc, val, 34, rel);
1356 
1357     uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
1358     writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
1359                              (val & si1Mask));
1360     break;
1361   }
1362   // If we encounter a PCREL_OPT relocation that we won't optimize.
1363   case R_PPC64_PCREL_OPT:
1364     break;
1365   default:
1366     llvm_unreachable("unknown relocation");
1367   }
1368 }
1369 
1370 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1371                        uint64_t branchAddr, const Symbol &s, int64_t a) const {
1372   if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1373       type != R_PPC64_REL24_NOTOC)
1374     return false;
1375 
1376   // If a function is in the Plt it needs to be called with a call-stub.
1377   if (s.isInPlt())
1378     return true;
1379 
1380   // This check looks at the st_other bits of the callee with relocation
1381   // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1382   // clobbers the TOC and we need an R2 save stub.
1383   if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1384     return true;
1385 
1386   if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1387     return true;
1388 
1389   // An undefined weak symbol not in a PLT does not need a thunk. If it is
1390   // hidden, its binding has been converted to local, so we just check
1391   // isUndefined() here. A undefined non-weak symbol has been errored.
1392   if (s.isUndefined())
1393     return false;
1394 
1395   // If the offset exceeds the range of the branch type then it will need
1396   // a range-extending thunk.
1397   // See the comment in getRelocTargetVA() about R_PPC64_CALL.
1398   return !inBranchRange(type, branchAddr,
1399                         s.getVA(a) +
1400                             getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
1401 }
1402 
1403 uint32_t PPC64::getThunkSectionSpacing() const {
1404   // See comment in Arch/ARM.cpp for a more detailed explanation of
1405   // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1406   // R_PPC64_REL24, which is used by unconditional branch instructions.
1407   // 0x2000000 = (1 << 24-1) * 4
1408   return 0x2000000;
1409 }
1410 
1411 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1412   int64_t offset = dst - src;
1413   if (type == R_PPC64_REL14)
1414     return isInt<16>(offset);
1415   if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1416     return isInt<26>(offset);
1417   llvm_unreachable("unsupported relocation type used in branch");
1418 }
1419 
1420 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1421   if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1422     return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1423   if (expr == R_RELAX_TLS_LD_TO_LE)
1424     return R_RELAX_TLS_LD_TO_LE_ABS;
1425   return expr;
1426 }
1427 
1428 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1429                                const uint8_t *loc) const {
1430   if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1431       config->pcRelOptimize) {
1432     // It only makes sense to optimize pld since paddi means that the address
1433     // of the object in the GOT is required rather than the object itself.
1434     if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
1435       return R_PPC64_RELAX_GOT_PC;
1436   }
1437   return R_GOT_PC;
1438 }
1439 
1440 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1441 // The general dynamic code sequence for a global `x` uses 4 instructions.
1442 // Instruction                    Relocation                Symbol
1443 // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
1444 // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
1445 // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
1446 //                                R_PPC64_REL24               __tls_get_addr
1447 // nop                            None                       None
1448 //
1449 // Relaxing to initial-exec entails:
1450 // 1) Convert the addis/addi pair that builds the address of the tls_index
1451 //    struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1452 // 2) Convert the call to __tls_get_addr to a nop.
1453 // 3) Convert the nop following the call to an add of the loaded offset to the
1454 //    thread pointer.
1455 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1456 // used as the relaxation hint for both steps 2 and 3.
1457 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1458                            uint64_t val) const {
1459   switch (rel.type) {
1460   case R_PPC64_GOT_TLSGD16_HA:
1461     // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1462     //                      addis rT, r2, sym@got@tprel@ha.
1463     relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1464     return;
1465   case R_PPC64_GOT_TLSGD16:
1466   case R_PPC64_GOT_TLSGD16_LO: {
1467     // Relax from addi  r3, rA, sym@got@tlsgd@l to
1468     //            ld r3, sym@got@tprel@l(rA)
1469     uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
1470     writeFromHalf16(loc, 0xe8600000 | ra);
1471     relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1472     return;
1473   }
1474   case R_PPC64_GOT_TLSGD_PCREL34: {
1475     // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1476     //            pld r3, sym@got@tprel@pcrel
1477     writePrefixedInstruction(loc, 0x04100000e4600000);
1478     relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1479     return;
1480   }
1481   case R_PPC64_TLSGD: {
1482     // PC Relative Relaxation:
1483     // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1484     //            nop
1485     // TOC Relaxation:
1486     // Relax from bl __tls_get_addr(x@tlsgd)
1487     //            nop
1488     // to
1489     //            nop
1490     //            add r3, r3, r13
1491     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1492     if (locAsInt % 4 == 0) {
1493       write32(loc, NOP);            // bl __tls_get_addr(sym@tlsgd) --> nop
1494       write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
1495     } else if (locAsInt % 4 == 1) {
1496       // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1497       write32(loc - 1, 0x7c636a14);
1498     } else {
1499       errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1500     }
1501     return;
1502   }
1503   default:
1504     llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1505   }
1506 }
1507 
1508 // The prologue for a split-stack function is expected to look roughly
1509 // like this:
1510 //    .Lglobal_entry_point:
1511 //      # TOC pointer initialization.
1512 //      ...
1513 //    .Llocal_entry_point:
1514 //      # load the __private_ss member of the threads tcbhead.
1515 //      ld r0,-0x7000-64(r13)
1516 //      # subtract the functions stack size from the stack pointer.
1517 //      addis r12, r1, ha(-stack-frame size)
1518 //      addi  r12, r12, l(-stack-frame size)
1519 //      # compare needed to actual and branch to allocate_more_stack if more
1520 //      # space is needed, otherwise fallthrough to 'normal' function body.
1521 //      cmpld cr7,r12,r0
1522 //      blt- cr7, .Lallocate_more_stack
1523 //
1524 // -) The allocate_more_stack block might be placed after the split-stack
1525 //    prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1526 //    instead.
1527 // -) If either the addis or addi is not needed due to the stack size being
1528 //    smaller then 32K or a multiple of 64K they will be replaced with a nop,
1529 //    but there will always be 2 instructions the linker can overwrite for the
1530 //    adjusted stack size.
1531 //
1532 // The linkers job here is to increase the stack size used in the addis/addi
1533 // pair by split-stack-size-adjust.
1534 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1535 // addi  r12, r12, l(-stack-frame size - split-stack-adjust-size)
1536 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1537                                              uint8_t stOther) const {
1538   // If the caller has a global entry point adjust the buffer past it. The start
1539   // of the split-stack prologue will be at the local entry point.
1540   loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
1541 
1542   // At the very least we expect to see a load of some split-stack data from the
1543   // tcb, and 2 instructions that calculate the ending stack address this
1544   // function will require. If there is not enough room for at least 3
1545   // instructions it can't be a split-stack prologue.
1546   if (loc + 12 >= end)
1547     return false;
1548 
1549   // First instruction must be `ld r0, -0x7000-64(r13)`
1550   if (read32(loc) != 0xe80d8fc0)
1551     return false;
1552 
1553   int16_t hiImm = 0;
1554   int16_t loImm = 0;
1555   // First instruction can be either an addis if the frame size is larger then
1556   // 32K, or an addi if the size is less then 32K.
1557   int32_t firstInstr = read32(loc + 4);
1558   if (getPrimaryOpCode(firstInstr) == 15) {
1559     hiImm = firstInstr & 0xFFFF;
1560   } else if (getPrimaryOpCode(firstInstr) == 14) {
1561     loImm = firstInstr & 0xFFFF;
1562   } else {
1563     return false;
1564   }
1565 
1566   // Second instruction is either an addi or a nop. If the first instruction was
1567   // an addi then LoImm is set and the second instruction must be a nop.
1568   uint32_t secondInstr = read32(loc + 8);
1569   if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1570     loImm = secondInstr & 0xFFFF;
1571   } else if (secondInstr != NOP) {
1572     return false;
1573   }
1574 
1575   // The register operands of the first instruction should be the stack-pointer
1576   // (r1) as the input (RA) and r12 as the output (RT). If the second
1577   // instruction is not a nop, then it should use r12 as both input and output.
1578   auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1579                              uint8_t expectedRA) {
1580     return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1581            ((instr & 0x1F0000) >> 16 == expectedRA);
1582   };
1583   if (!checkRegOperands(firstInstr, 12, 1))
1584     return false;
1585   if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1586     return false;
1587 
1588   int32_t stackFrameSize = (hiImm * 65536) + loImm;
1589   // Check that the adjusted size doesn't overflow what we can represent with 2
1590   // instructions.
1591   if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
1592     error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
1593     return false;
1594   }
1595 
1596   int32_t adjustedStackFrameSize =
1597       stackFrameSize - config->splitStackAdjustSize;
1598 
1599   loImm = adjustedStackFrameSize & 0xFFFF;
1600   hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1601   if (hiImm) {
1602     write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
1603     // If the low immediate is zero the second instruction will be a nop.
1604     secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1605     write32(loc + 8, secondInstr);
1606   } else {
1607     // addi r12, r1, imm
1608     write32(loc + 4, (0x39810000) | (uint16_t)loImm);
1609     write32(loc + 8, NOP);
1610   }
1611 
1612   return true;
1613 }
1614 
1615 TargetInfo *elf::getPPC64TargetInfo() {
1616   static PPC64 target;
1617   return &target;
1618 }
1619