xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/PPC64.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- PPC64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "SymbolTable.h"
12 #include "Symbols.h"
13 #include "SyntheticSections.h"
14 #include "Target.h"
15 #include "Thunks.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/Support/Endian.h"
18 
19 using namespace llvm;
20 using namespace llvm::object;
21 using namespace llvm::support::endian;
22 using namespace llvm::ELF;
23 using namespace lld;
24 using namespace lld::elf;
25 
26 constexpr uint64_t ppc64TocOffset = 0x8000;
27 constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
28 
29 namespace {
30 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
31 // instructions that can be used as part of the initial exec TLS sequence.
32 enum XFormOpcd {
33   LBZX = 87,
34   LHZX = 279,
35   LWZX = 23,
36   LDX = 21,
37   STBX = 215,
38   STHX = 407,
39   STWX = 151,
40   STDX = 149,
41   LHAX = 343,
42   LWAX = 341,
43   LFSX = 535,
44   LFDX = 599,
45   STFSX = 663,
46   STFDX = 727,
47   ADD = 266,
48 };
49 
50 enum DFormOpcd {
51   LBZ = 34,
52   LBZU = 35,
53   LHZ = 40,
54   LHZU = 41,
55   LHAU = 43,
56   LWZ = 32,
57   LWZU = 33,
58   LFSU = 49,
59   LFDU = 51,
60   STB = 38,
61   STBU = 39,
62   STH = 44,
63   STHU = 45,
64   STW = 36,
65   STWU = 37,
66   STFSU = 53,
67   STFDU = 55,
68   LHA = 42,
69   LFS = 48,
70   LFD = 50,
71   STFS = 52,
72   STFD = 54,
73   ADDI = 14
74 };
75 
76 enum DSFormOpcd {
77   LD = 58,
78   LWA = 58,
79   STD = 62
80 };
81 
82 constexpr uint32_t NOP = 0x60000000;
83 
84 enum class PPCLegacyInsn : uint32_t {
85   NOINSN = 0,
86   // Loads.
87   LBZ = 0x88000000,
88   LHZ = 0xa0000000,
89   LWZ = 0x80000000,
90   LHA = 0xa8000000,
91   LWA = 0xe8000002,
92   LD = 0xe8000000,
93   LFS = 0xC0000000,
94   LXSSP = 0xe4000003,
95   LFD = 0xc8000000,
96   LXSD = 0xe4000002,
97   LXV = 0xf4000001,
98   LXVP = 0x18000000,
99 
100   // Stores.
101   STB = 0x98000000,
102   STH = 0xb0000000,
103   STW = 0x90000000,
104   STD = 0xf8000000,
105   STFS = 0xd0000000,
106   STXSSP = 0xf4000003,
107   STFD = 0xd8000000,
108   STXSD = 0xf4000002,
109   STXV = 0xf4000005,
110   STXVP = 0x18000001
111 };
112 enum class PPCPrefixedInsn : uint64_t {
113   NOINSN = 0,
114   PREFIX_MLS = 0x0610000000000000,
115   PREFIX_8LS = 0x0410000000000000,
116 
117   // Loads.
118   PLBZ = PREFIX_MLS,
119   PLHZ = PREFIX_MLS,
120   PLWZ = PREFIX_MLS,
121   PLHA = PREFIX_MLS,
122   PLWA = PREFIX_8LS | 0xa4000000,
123   PLD = PREFIX_8LS | 0xe4000000,
124   PLFS = PREFIX_MLS,
125   PLXSSP = PREFIX_8LS | 0xac000000,
126   PLFD = PREFIX_MLS,
127   PLXSD = PREFIX_8LS | 0xa8000000,
128   PLXV = PREFIX_8LS | 0xc8000000,
129   PLXVP = PREFIX_8LS | 0xe8000000,
130 
131   // Stores.
132   PSTB = PREFIX_MLS,
133   PSTH = PREFIX_MLS,
134   PSTW = PREFIX_MLS,
135   PSTD = PREFIX_8LS | 0xf4000000,
136   PSTFS = PREFIX_MLS,
137   PSTXSSP = PREFIX_8LS | 0xbc000000,
138   PSTFD = PREFIX_MLS,
139   PSTXSD = PREFIX_8LS | 0xb8000000,
140   PSTXV = PREFIX_8LS | 0xd8000000,
141   PSTXVP = PREFIX_8LS | 0xf8000000
142 };
143 
144 static bool checkPPCLegacyInsn(uint32_t encoding) {
145   PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
146   if (insn == PPCLegacyInsn::NOINSN)
147     return false;
148 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
149   if (insn == PPCLegacyInsn::Legacy)                                           \
150     return true;
151 #include "PPCInsns.def"
152 #undef PCREL_OPT
153   return false;
154 }
155 
156 // Masks to apply to legacy instructions when converting them to prefixed,
157 // pc-relative versions. For the most part, the primary opcode is shared
158 // between the legacy instruction and the suffix of its prefixed version.
159 // However, there are some instances where that isn't the case (DS-Form and
160 // DQ-form instructions).
161 enum class LegacyToPrefixMask : uint64_t {
162   NOMASK = 0x0,
163   OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
164   ONLY_RST = 0x3e00000,     // [RS]T (6-10).
165   ST_STX28_TO5 =
166       0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
167 };
168 
169 class PPC64 final : public TargetInfo {
170 public:
171   PPC64();
172   int getTlsGdRelaxSkip(RelType type) const override;
173   uint32_t calcEFlags() const override;
174   RelExpr getRelExpr(RelType type, const Symbol &s,
175                      const uint8_t *loc) const override;
176   RelType getDynRel(RelType type) const override;
177   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
178   void writePltHeader(uint8_t *buf) const override;
179   void writePlt(uint8_t *buf, const Symbol &sym,
180                 uint64_t pltEntryAddr) const override;
181   void writeIplt(uint8_t *buf, const Symbol &sym,
182                  uint64_t pltEntryAddr) const override;
183   void relocate(uint8_t *loc, const Relocation &rel,
184                 uint64_t val) const override;
185   void writeGotHeader(uint8_t *buf) const override;
186   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
187                   uint64_t branchAddr, const Symbol &s,
188                   int64_t a) const override;
189   uint32_t getThunkSectionSpacing() const override;
190   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
191   RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
192   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
193                           const uint8_t *loc) const override;
194   void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const;
195   void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
196 
197   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
198                                         uint8_t stOther) const override;
199 
200 private:
201   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
202   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
203   void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
204   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
205 };
206 } // namespace
207 
208 uint64_t elf::getPPC64TocBase() {
209   // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
210   // TOC starts where the first of these sections starts. We always create a
211   // .got when we see a relocation that uses it, so for us the start is always
212   // the .got.
213   uint64_t tocVA = in.got->getVA();
214 
215   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
216   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
217   // code (crt1.o) assumes that you can get from the TOC base to the
218   // start of the .toc section with only a single (signed) 16-bit relocation.
219   return tocVA + ppc64TocOffset;
220 }
221 
222 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
223   // The offset is encoded into the 3 most significant bits of the st_other
224   // field, with some special values described in section 3.4.1 of the ABI:
225   // 0   --> Zero offset between the GEP and LEP, and the function does NOT use
226   //         the TOC pointer (r2). r2 will hold the same value on returning from
227   //         the function as it did on entering the function.
228   // 1   --> Zero offset between the GEP and LEP, and r2 should be treated as a
229   //         caller-saved register for all callers.
230   // 2-6 --> The  binary logarithm of the offset eg:
231   //         2 --> 2^2 = 4 bytes -->  1 instruction.
232   //         6 --> 2^6 = 64 bytes --> 16 instructions.
233   // 7   --> Reserved.
234   uint8_t gepToLep = (stOther >> 5) & 7;
235   if (gepToLep < 2)
236     return 0;
237 
238   // The value encoded in the st_other bits is the
239   // log-base-2(offset).
240   if (gepToLep < 7)
241     return 1 << gepToLep;
242 
243   error("reserved value of 7 in the 3 most-significant-bits of st_other");
244   return 0;
245 }
246 
247 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
248   insn = config->isLE ? insn << 32 | insn >> 32 : insn;
249   write64(loc, insn);
250 }
251 
252 static bool addOptional(StringRef name, uint64_t value,
253                         std::vector<Defined *> &defined) {
254   Symbol *sym = symtab.find(name);
255   if (!sym || sym->isDefined())
256     return false;
257   sym->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, STV_HIDDEN,
258                        STT_FUNC, value,
259                        /*size=*/0, /*section=*/nullptr});
260   defined.push_back(cast<Defined>(sym));
261   return true;
262 }
263 
264 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
265 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
266 // The labels are defined only if they exist in the symbol table.
267 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
268                           int from, uint32_t firstInsn,
269                           ArrayRef<uint32_t> tail) {
270   std::vector<Defined *> defined;
271   char name[16];
272   int first;
273   uint32_t *ptr = buf.data();
274   for (int r = from; r < 32; ++r) {
275     format("%s%d", prefix, r).snprint(name, sizeof(name));
276     if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
277       first = r - from;
278     write32(ptr++, firstInsn + 0x200008 * (r - from));
279   }
280   for (uint32_t insn : tail)
281     write32(ptr++, insn);
282   assert(ptr == &*buf.end());
283 
284   if (defined.empty())
285     return;
286   // The full section content has the extent of [begin, end). We drop unused
287   // instructions and write [first,end).
288   auto *sec = make<InputSection>(
289       nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
290       ArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
291                4 * (buf.size() - first)),
292       ".text");
293   ctx.inputSections.push_back(sec);
294   for (Defined *sym : defined) {
295     sym->section = sec;
296     sym->value -= 4 * first;
297   }
298 }
299 
300 // Implements some save and restore functions as described by ELF V2 ABI to be
301 // compatible with GCC. With GCC -Os, when the number of call-saved registers
302 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
303 // expects the linker to define them. See
304 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
305 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
306 // weird because libgcc.a would be the natural place. The linker generation
307 // approach has the advantage that the linker can generate multiple copies to
308 // avoid long branch thunks. However, we don't consider the advantage
309 // significant enough to complicate our trunk implementation, so we take the
310 // simple approach and synthesize .text sections providing the implementation.
311 void elf::addPPC64SaveRestore() {
312   static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
313   constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
314 
315   // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
316   // Tail: ld 0, 16(1); mtlr 0; blr
317   writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
318                 {0xe8010010, mtlr_0, blr});
319   // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
320   // Tail: blr
321   writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
322   // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
323   // Tail: std 0, 16(1); blr
324   writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
325   // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
326   // Tail: blr
327   writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
328 }
329 
330 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
331 template <typename ELFT>
332 static std::pair<Defined *, int64_t>
333 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
334   // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
335   // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
336   // relocation index in most cases.
337   //
338   // In rare cases a TOC entry may store a constant that doesn't need an
339   // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
340   // points to a relocation with larger r_offset. Do a linear probe then.
341   // Constants are extremely uncommon in .toc and the extra number of array
342   // accesses can be seen as a small constant.
343   ArrayRef<typename ELFT::Rela> relas =
344       tocSec->template relsOrRelas<ELFT>().relas;
345   if (relas.empty())
346     return {};
347   uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
348   for (;;) {
349     if (relas[index].r_offset == offset) {
350       Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
351       return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
352     }
353     if (relas[index].r_offset < offset || index == 0)
354       break;
355     --index;
356   }
357   return {};
358 }
359 
360 // When accessing a symbol defined in another translation unit, compilers
361 // reserve a .toc entry, allocate a local label and generate toc-indirect
362 // instructions:
363 //
364 //   addis 3, 2, .LC0@toc@ha  # R_PPC64_TOC16_HA
365 //   ld    3, .LC0@toc@l(3)   # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
366 //   ld/lwa 3, 0(3)           # load the value from the address
367 //
368 //   .section .toc,"aw",@progbits
369 //   .LC0: .tc var[TC],var
370 //
371 // If var is defined, non-preemptable and addressable with a 32-bit signed
372 // offset from the toc base, the address of var can be computed by adding an
373 // offset to the toc base, saving a load.
374 //
375 //   addis 3,2,var@toc@ha     # this may be relaxed to a nop,
376 //   addi  3,3,var@toc@l      # then this becomes addi 3,2,var@toc
377 //   ld/lwa 3, 0(3)           # load the value from the address
378 //
379 // Returns true if the relaxation is performed.
380 static bool tryRelaxPPC64TocIndirection(const Relocation &rel,
381                                         uint8_t *bufLoc) {
382   assert(config->tocOptimize);
383   if (rel.addend < 0)
384     return false;
385 
386   // If the symbol is not the .toc section, this isn't a toc-indirection.
387   Defined *defSym = dyn_cast<Defined>(rel.sym);
388   if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
389     return false;
390 
391   Defined *d;
392   int64_t addend;
393   auto *tocISB = cast<InputSectionBase>(defSym->section);
394   std::tie(d, addend) =
395       config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
396                    : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
397 
398   // Only non-preemptable defined symbols can be relaxed.
399   if (!d || d->isPreemptible)
400     return false;
401 
402   // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
403   // ifunc and changed its type to STT_FUNC.
404   assert(!d->isGnuIFunc());
405 
406   // Two instructions can materialize a 32-bit signed offset from the toc base.
407   uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
408   if (!isInt<32>(tocRelative))
409     return false;
410 
411   // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
412   static_cast<const PPC64 &>(*target).relaxGot(bufLoc, rel,
413                                                tocRelative + ppc64TocOffset);
414   return true;
415 }
416 
417 // Relocation masks following the #lo(value), #hi(value), #ha(value),
418 // #higher(value), #highera(value), #highest(value), and #highesta(value)
419 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
420 // document.
421 static uint16_t lo(uint64_t v) { return v; }
422 static uint16_t hi(uint64_t v) { return v >> 16; }
423 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
424 static uint16_t higher(uint64_t v) { return v >> 32; }
425 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
426 static uint16_t highest(uint64_t v) { return v >> 48; }
427 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
428 
429 // Extracts the 'PO' field of an instruction encoding.
430 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
431 
432 static bool isDQFormInstruction(uint32_t encoding) {
433   switch (getPrimaryOpCode(encoding)) {
434   default:
435     return false;
436   case 6: // Power10 paired loads/stores (lxvp, stxvp).
437   case 56:
438     // The only instruction with a primary opcode of 56 is `lq`.
439     return true;
440   case 61:
441     // There are both DS and DQ instruction forms with this primary opcode.
442     // Namely `lxv` and `stxv` are the DQ-forms that use it.
443     // The DS 'XO' bits being set to 01 is restricted to DQ form.
444     return (encoding & 3) == 0x1;
445   }
446 }
447 
448 static bool isDSFormInstruction(PPCLegacyInsn insn) {
449   switch (insn) {
450   default:
451     return false;
452   case PPCLegacyInsn::LWA:
453   case PPCLegacyInsn::LD:
454   case PPCLegacyInsn::LXSD:
455   case PPCLegacyInsn::LXSSP:
456   case PPCLegacyInsn::STD:
457   case PPCLegacyInsn::STXSD:
458   case PPCLegacyInsn::STXSSP:
459     return true;
460   }
461 }
462 
463 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
464   uint32_t opc = encoding & 0xfc000000;
465 
466   // If the primary opcode is shared between multiple instructions, we need to
467   // fix it up to match the actual instruction we are after.
468   if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
469        opc == 0xf8000000) &&
470       !isDQFormInstruction(encoding))
471     opc = encoding & 0xfc000003;
472   else if (opc == 0xf4000000)
473     opc = encoding & 0xfc000007;
474   else if (opc == 0x18000000)
475     opc = encoding & 0xfc00000f;
476 
477   // If the value is not one of the enumerators in PPCLegacyInsn, we want to
478   // return PPCLegacyInsn::NOINSN.
479   if (!checkPPCLegacyInsn(opc))
480     return PPCLegacyInsn::NOINSN;
481   return static_cast<PPCLegacyInsn>(opc);
482 }
483 
484 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
485   switch (insn) {
486 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
487   case PPCLegacyInsn::Legacy:                                                  \
488     return PPCPrefixedInsn::PCRel
489 #include "PPCInsns.def"
490 #undef PCREL_OPT
491   }
492   return PPCPrefixedInsn::NOINSN;
493 }
494 
495 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
496   switch (insn) {
497 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
498   case PPCLegacyInsn::Legacy:                                                  \
499     return LegacyToPrefixMask::InsnMask
500 #include "PPCInsns.def"
501 #undef PCREL_OPT
502   }
503   return LegacyToPrefixMask::NOMASK;
504 }
505 static uint64_t getPCRelativeForm(uint32_t encoding) {
506   PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
507   PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
508   if (pcrelInsn == PPCPrefixedInsn::NOINSN)
509     return UINT64_C(-1);
510   LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
511   uint64_t pcrelEncoding =
512       (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
513 
514   // If the mask requires moving bit 28 to bit 5, do that now.
515   if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
516     pcrelEncoding |= (encoding & 0x8) << 23;
517   return pcrelEncoding;
518 }
519 
520 static bool isInstructionUpdateForm(uint32_t encoding) {
521   switch (getPrimaryOpCode(encoding)) {
522   default:
523     return false;
524   case LBZU:
525   case LHAU:
526   case LHZU:
527   case LWZU:
528   case LFSU:
529   case LFDU:
530   case STBU:
531   case STHU:
532   case STWU:
533   case STFSU:
534   case STFDU:
535     return true;
536     // LWA has the same opcode as LD, and the DS bits is what differentiates
537     // between LD/LDU/LWA
538   case LD:
539   case STD:
540     return (encoding & 3) == 1;
541   }
542 }
543 
544 // Compute the total displacement between the prefixed instruction that gets
545 // to the start of the data and the load/store instruction that has the offset
546 // into the data structure.
547 // For example:
548 // paddi 3, 0, 1000, 1
549 // lwz 3, 20(3)
550 // Should add up to 1020 for total displacement.
551 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
552   int64_t disp34 = llvm::SignExtend64(
553       ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
554   int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
555   // For DS and DQ form instructions, we need to mask out the XO bits.
556   if (isDQFormInstruction(accessInsn))
557     disp16 &= ~0xf;
558   else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
559     disp16 &= ~0x3;
560   return disp34 + disp16;
561 }
562 
563 // There are a number of places when we either want to read or write an
564 // instruction when handling a half16 relocation type. On big-endian the buffer
565 // pointer is pointing into the middle of the word we want to extract, and on
566 // little-endian it is pointing to the start of the word. These 2 helpers are to
567 // simplify reading and writing in that context.
568 static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
569   write32(config->isLE ? loc : loc - 2, insn);
570 }
571 
572 static uint32_t readFromHalf16(const uint8_t *loc) {
573   return read32(config->isLE ? loc : loc - 2);
574 }
575 
576 static uint64_t readPrefixedInstruction(const uint8_t *loc) {
577   uint64_t fullInstr = read64(loc);
578   return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
579 }
580 
581 PPC64::PPC64() {
582   copyRel = R_PPC64_COPY;
583   gotRel = R_PPC64_GLOB_DAT;
584   pltRel = R_PPC64_JMP_SLOT;
585   relativeRel = R_PPC64_RELATIVE;
586   iRelativeRel = R_PPC64_IRELATIVE;
587   symbolicRel = R_PPC64_ADDR64;
588   pltHeaderSize = 60;
589   pltEntrySize = 4;
590   ipltEntrySize = 16; // PPC64PltCallStub::size
591   gotHeaderEntriesNum = 1;
592   gotPltHeaderEntriesNum = 2;
593   needsThunks = true;
594 
595   tlsModuleIndexRel = R_PPC64_DTPMOD64;
596   tlsOffsetRel = R_PPC64_DTPREL64;
597 
598   tlsGotRel = R_PPC64_TPREL64;
599 
600   needsMoreStackNonSplit = false;
601 
602   // We need 64K pages (at least under glibc/Linux, the loader won't
603   // set different permissions on a finer granularity than that).
604   defaultMaxPageSize = 65536;
605 
606   // The PPC64 ELF ABI v1 spec, says:
607   //
608   //   It is normally desirable to put segments with different characteristics
609   //   in separate 256 Mbyte portions of the address space, to give the
610   //   operating system full paging flexibility in the 64-bit address space.
611   //
612   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
613   // use 0x10000000 as the starting address.
614   defaultImageBase = 0x10000000;
615 
616   write32(trapInstr.data(), 0x7fe00008);
617 }
618 
619 int PPC64::getTlsGdRelaxSkip(RelType type) const {
620   // A __tls_get_addr call instruction is marked with 2 relocations:
621   //
622   //   R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
623   //   R_PPC64_REL24: __tls_get_addr
624   //
625   // After the relaxation we no longer call __tls_get_addr and should skip both
626   // relocations to not create a false dependence on __tls_get_addr being
627   // defined.
628   if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
629     return 2;
630   return 1;
631 }
632 
633 static uint32_t getEFlags(InputFile *file) {
634   if (file->ekind == ELF64BEKind)
635     return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
636   return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
637 }
638 
639 // This file implements v2 ABI. This function makes sure that all
640 // object files have v2 or an unspecified version as an ABI version.
641 uint32_t PPC64::calcEFlags() const {
642   for (InputFile *f : ctx.objectFiles) {
643     uint32_t flag = getEFlags(f);
644     if (flag == 1)
645       error(toString(f) + ": ABI version 1 is not supported");
646     else if (flag > 2)
647       error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
648   }
649   return 2;
650 }
651 
652 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
653   switch (rel.type) {
654   case R_PPC64_TOC16_HA:
655     // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
656     relocate(loc, rel, val);
657     break;
658   case R_PPC64_TOC16_LO_DS: {
659     // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
660     // "addi reg, 2, var@toc".
661     uint32_t insn = readFromHalf16(loc);
662     if (getPrimaryOpCode(insn) != LD)
663       error("expected a 'ld' for got-indirect to toc-relative relaxing");
664     writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
665     relocateNoSym(loc, R_PPC64_TOC16_LO, val);
666     break;
667   }
668   case R_PPC64_GOT_PCREL34: {
669     // Clear the first 8 bits of the prefix and the first 6 bits of the
670     // instruction (the primary opcode).
671     uint64_t insn = readPrefixedInstruction(loc);
672     if ((insn & 0xfc000000) != 0xe4000000)
673       error("expected a 'pld' for got-indirect to pc-relative relaxing");
674     insn &= ~0xff000000fc000000;
675 
676     // Replace the cleared bits with the values for PADDI (0x600000038000000);
677     insn |= 0x600000038000000;
678     writePrefixedInstruction(loc, insn);
679     relocate(loc, rel, val);
680     break;
681   }
682   case R_PPC64_PCREL_OPT: {
683     // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
684     // be relaxed. The eligibility for the relaxation needs to be determined
685     // on that relocation since this one does not relocate a symbol.
686     uint64_t insn = readPrefixedInstruction(loc);
687     uint32_t accessInsn = read32(loc + rel.addend);
688     uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
689 
690     // This error is not necessary for correctness but is emitted for now
691     // to ensure we don't miss these opportunities in real code. It can be
692     // removed at a later date.
693     if (pcRelInsn == UINT64_C(-1)) {
694       errorOrWarn(
695           "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
696           Twine::utohexstr(accessInsn));
697       break;
698     }
699 
700     int64_t totalDisp = getTotalDisp(insn, accessInsn);
701     if (!isInt<34>(totalDisp))
702       break; // Displacement doesn't fit.
703     // Convert the PADDI to the prefixed version of accessInsn and convert
704     // accessInsn to a nop.
705     writePrefixedInstruction(loc, pcRelInsn |
706                                       ((totalDisp & 0x3ffff0000) << 16) |
707                                       (totalDisp & 0xffff));
708     write32(loc + rel.addend, NOP); // nop accessInsn.
709     break;
710   }
711   default:
712     llvm_unreachable("unexpected relocation type");
713   }
714 }
715 
716 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
717                            uint64_t val) const {
718   // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
719   // The general dynamic code sequence for a global `x` will look like:
720   // Instruction                    Relocation                Symbol
721   // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
722   // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
723   // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
724   //                                R_PPC64_REL24               __tls_get_addr
725   // nop                            None                       None
726 
727   // Relaxing to local exec entails converting:
728   // addis r3, r2, x@got@tlsgd@ha    into      nop
729   // addi  r3, r3, x@got@tlsgd@l     into      addis r3, r13, x@tprel@ha
730   // bl __tls_get_addr(x@tlsgd)      into      nop
731   // nop                             into      addi r3, r3, x@tprel@l
732 
733   switch (rel.type) {
734   case R_PPC64_GOT_TLSGD16_HA:
735     writeFromHalf16(loc, NOP);
736     break;
737   case R_PPC64_GOT_TLSGD16:
738   case R_PPC64_GOT_TLSGD16_LO:
739     writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
740     relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
741     break;
742   case R_PPC64_GOT_TLSGD_PCREL34:
743     // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
744     //            paddi r3, r13, x@tprel, 0
745     writePrefixedInstruction(loc, 0x06000000386d0000);
746     relocateNoSym(loc, R_PPC64_TPREL34, val);
747     break;
748   case R_PPC64_TLSGD: {
749     // PC Relative Relaxation:
750     // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
751     //            nop
752     // TOC Relaxation:
753     // Relax from bl __tls_get_addr(x@tlsgd)
754     //            nop
755     // to
756     //            nop
757     //            addi r3, r3, x@tprel@l
758     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
759     if (locAsInt % 4 == 0) {
760       write32(loc, NOP);            // nop
761       write32(loc + 4, 0x38630000); // addi r3, r3
762       // Since we are relocating a half16 type relocation and Loc + 4 points to
763       // the start of an instruction we need to advance the buffer by an extra
764       // 2 bytes on BE.
765       relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
766                     R_PPC64_TPREL16_LO, val);
767     } else if (locAsInt % 4 == 1) {
768       write32(loc - 1, NOP);
769     } else {
770       errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
771     }
772     break;
773   }
774   default:
775     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
776   }
777 }
778 
779 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
780                            uint64_t val) const {
781   // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
782   // The local dynamic code sequence for a global `x` will look like:
783   // Instruction                    Relocation                Symbol
784   // addis r3, r2, x@got@tlsld@ha   R_PPC64_GOT_TLSLD16_HA      x
785   // addi  r3, r3, x@got@tlsld@l    R_PPC64_GOT_TLSLD16_LO      x
786   // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSLD               x
787   //                                R_PPC64_REL24               __tls_get_addr
788   // nop                            None                       None
789 
790   // Relaxing to local exec entails converting:
791   // addis r3, r2, x@got@tlsld@ha   into      nop
792   // addi  r3, r3, x@got@tlsld@l    into      addis r3, r13, 0
793   // bl __tls_get_addr(x@tlsgd)     into      nop
794   // nop                            into      addi r3, r3, 4096
795 
796   switch (rel.type) {
797   case R_PPC64_GOT_TLSLD16_HA:
798     writeFromHalf16(loc, NOP);
799     break;
800   case R_PPC64_GOT_TLSLD16_LO:
801     writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
802     break;
803   case R_PPC64_GOT_TLSLD_PCREL34:
804     // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
805     //            paddi r3, r13, 0x1000, 0
806     writePrefixedInstruction(loc, 0x06000000386d1000);
807     break;
808   case R_PPC64_TLSLD: {
809     // PC Relative Relaxation:
810     // Relax from bl __tls_get_addr@notoc(x@tlsld)
811     // to
812     //            nop
813     // TOC Relaxation:
814     // Relax from bl __tls_get_addr(x@tlsld)
815     //            nop
816     // to
817     //            nop
818     //            addi r3, r3, 4096
819     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
820     if (locAsInt % 4 == 0) {
821       write32(loc, NOP);
822       write32(loc + 4, 0x38631000); // addi r3, r3, 4096
823     } else if (locAsInt % 4 == 1) {
824       write32(loc - 1, NOP);
825     } else {
826       errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
827     }
828     break;
829   }
830   case R_PPC64_DTPREL16:
831   case R_PPC64_DTPREL16_HA:
832   case R_PPC64_DTPREL16_HI:
833   case R_PPC64_DTPREL16_DS:
834   case R_PPC64_DTPREL16_LO:
835   case R_PPC64_DTPREL16_LO_DS:
836   case R_PPC64_DTPREL34:
837     relocate(loc, rel, val);
838     break;
839   default:
840     llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
841   }
842 }
843 
844 // Map X-Form instructions to their DS-Form counterparts, if applicable.
845 // The full encoding is returned here to distinguish between the different
846 // DS-Form instructions.
847 unsigned elf::getPPCDSFormOp(unsigned secondaryOp) {
848   switch (secondaryOp) {
849   case LWAX:
850     return (LWA << 26) | 0x2;
851   case LDX:
852     return LD << 26;
853   case STDX:
854     return STD << 26;
855   default:
856     return 0;
857   }
858 }
859 
860 unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
861   switch (secondaryOp) {
862   case LBZX:
863     return LBZ << 26;
864   case LHZX:
865     return LHZ << 26;
866   case LWZX:
867     return LWZ << 26;
868   case STBX:
869     return STB << 26;
870   case STHX:
871     return STH << 26;
872   case STWX:
873     return STW << 26;
874   case LHAX:
875     return LHA << 26;
876   case LFSX:
877     return LFS << 26;
878   case LFDX:
879     return LFD << 26;
880   case STFSX:
881     return STFS << 26;
882   case STFDX:
883     return STFD << 26;
884   case ADD:
885     return ADDI << 26;
886   default:
887     return 0;
888   }
889 }
890 
891 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
892                            uint64_t val) const {
893   // The initial exec code sequence for a global `x` will look like:
894   // Instruction                    Relocation                Symbol
895   // addis r9, r2, x@got@tprel@ha   R_PPC64_GOT_TPREL16_HA      x
896   // ld    r9, x@got@tprel@l(r9)    R_PPC64_GOT_TPREL16_LO_DS   x
897   // add r9, r9, x@tls              R_PPC64_TLS                 x
898 
899   // Relaxing to local exec entails converting:
900   // addis r9, r2, x@got@tprel@ha       into        nop
901   // ld r9, x@got@tprel@l(r9)           into        addis r9, r13, x@tprel@ha
902   // add r9, r9, x@tls                  into        addi r9, r9, x@tprel@l
903 
904   // x@tls R_PPC64_TLS is a relocation which does not compute anything,
905   // it is replaced with r13 (thread pointer).
906 
907   // The add instruction in the initial exec sequence has multiple variations
908   // that need to be handled. If we are building an address it will use an add
909   // instruction, if we are accessing memory it will use any of the X-form
910   // indexed load or store instructions.
911 
912   unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
913   switch (rel.type) {
914   case R_PPC64_GOT_TPREL16_HA:
915     write32(loc - offset, NOP);
916     break;
917   case R_PPC64_GOT_TPREL16_LO_DS:
918   case R_PPC64_GOT_TPREL16_DS: {
919     uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
920     write32(loc - offset, 0x3C0D0000 | regNo);          // addis RegNo, r13
921     relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
922     break;
923   }
924   case R_PPC64_GOT_TPREL_PCREL34: {
925     const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
926     // paddi RT(from pld), r13, symbol@tprel, 0
927     writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
928     relocateNoSym(loc, R_PPC64_TPREL34, val);
929     break;
930   }
931   case R_PPC64_TLS: {
932     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
933     if (locAsInt % 4 == 0) {
934       uint32_t primaryOp = getPrimaryOpCode(read32(loc));
935       if (primaryOp != 31)
936         error("unrecognized instruction for IE to LE R_PPC64_TLS");
937       uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
938       uint32_t dFormOp = getPPCDFormOp(secondaryOp);
939       uint32_t finalReloc;
940       if (dFormOp == 0) { // Expecting a DS-Form instruction.
941         dFormOp = getPPCDSFormOp(secondaryOp);
942         if (dFormOp == 0)
943           error("unrecognized instruction for IE to LE R_PPC64_TLS");
944         finalReloc = R_PPC64_TPREL16_LO_DS;
945       } else
946         finalReloc = R_PPC64_TPREL16_LO;
947       write32(loc, dFormOp | (read32(loc) & 0x03ff0000));
948       relocateNoSym(loc + offset, finalReloc, val);
949     } else if (locAsInt % 4 == 1) {
950       // If the offset is not 4 byte aligned then we have a PCRel type reloc.
951       // This version of the relocation is offset by one byte from the
952       // instruction it references.
953       uint32_t tlsInstr = read32(loc - 1);
954       uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
955       if (primaryOp != 31)
956         errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
957       uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
958       // The add is a special case and should be turned into a nop. The paddi
959       // that comes before it will already have computed the address of the
960       // symbol.
961       if (secondaryOp == 266) {
962         // Check if the add uses the same result register as the input register.
963         uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
964         uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
965         if (ra == rt) {
966           write32(loc - 1, NOP);
967         } else {
968           // mr rt, ra
969           write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
970         }
971       } else {
972         uint32_t dFormOp = getPPCDFormOp(secondaryOp);
973         if (dFormOp == 0) { // Expecting a DS-Form instruction.
974           dFormOp = getPPCDSFormOp(secondaryOp);
975           if (dFormOp == 0)
976             errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
977         }
978         write32(loc - 1, (dFormOp | (tlsInstr & 0x03ff0000)));
979       }
980     } else {
981       errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
982                   "offset from 4 byte aligned");
983     }
984     break;
985   }
986   default:
987     llvm_unreachable("unknown relocation for IE to LE");
988     break;
989   }
990 }
991 
992 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
993                           const uint8_t *loc) const {
994   switch (type) {
995   case R_PPC64_NONE:
996     return R_NONE;
997   case R_PPC64_ADDR16:
998   case R_PPC64_ADDR16_DS:
999   case R_PPC64_ADDR16_HA:
1000   case R_PPC64_ADDR16_HI:
1001   case R_PPC64_ADDR16_HIGH:
1002   case R_PPC64_ADDR16_HIGHER:
1003   case R_PPC64_ADDR16_HIGHERA:
1004   case R_PPC64_ADDR16_HIGHEST:
1005   case R_PPC64_ADDR16_HIGHESTA:
1006   case R_PPC64_ADDR16_LO:
1007   case R_PPC64_ADDR16_LO_DS:
1008   case R_PPC64_ADDR32:
1009   case R_PPC64_ADDR64:
1010     return R_ABS;
1011   case R_PPC64_GOT16:
1012   case R_PPC64_GOT16_DS:
1013   case R_PPC64_GOT16_HA:
1014   case R_PPC64_GOT16_HI:
1015   case R_PPC64_GOT16_LO:
1016   case R_PPC64_GOT16_LO_DS:
1017     return R_GOT_OFF;
1018   case R_PPC64_TOC16:
1019   case R_PPC64_TOC16_DS:
1020   case R_PPC64_TOC16_HI:
1021   case R_PPC64_TOC16_LO:
1022     return R_GOTREL;
1023   case R_PPC64_GOT_PCREL34:
1024   case R_PPC64_GOT_TPREL_PCREL34:
1025   case R_PPC64_PCREL_OPT:
1026     return R_GOT_PC;
1027   case R_PPC64_TOC16_HA:
1028   case R_PPC64_TOC16_LO_DS:
1029     return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
1030   case R_PPC64_TOC:
1031     return R_PPC64_TOCBASE;
1032   case R_PPC64_REL14:
1033   case R_PPC64_REL24:
1034     return R_PPC64_CALL_PLT;
1035   case R_PPC64_REL24_NOTOC:
1036     return R_PLT_PC;
1037   case R_PPC64_REL16_LO:
1038   case R_PPC64_REL16_HA:
1039   case R_PPC64_REL16_HI:
1040   case R_PPC64_REL32:
1041   case R_PPC64_REL64:
1042   case R_PPC64_PCREL34:
1043     return R_PC;
1044   case R_PPC64_GOT_TLSGD16:
1045   case R_PPC64_GOT_TLSGD16_HA:
1046   case R_PPC64_GOT_TLSGD16_HI:
1047   case R_PPC64_GOT_TLSGD16_LO:
1048     return R_TLSGD_GOT;
1049   case R_PPC64_GOT_TLSGD_PCREL34:
1050     return R_TLSGD_PC;
1051   case R_PPC64_GOT_TLSLD16:
1052   case R_PPC64_GOT_TLSLD16_HA:
1053   case R_PPC64_GOT_TLSLD16_HI:
1054   case R_PPC64_GOT_TLSLD16_LO:
1055     return R_TLSLD_GOT;
1056   case R_PPC64_GOT_TLSLD_PCREL34:
1057     return R_TLSLD_PC;
1058   case R_PPC64_GOT_TPREL16_HA:
1059   case R_PPC64_GOT_TPREL16_LO_DS:
1060   case R_PPC64_GOT_TPREL16_DS:
1061   case R_PPC64_GOT_TPREL16_HI:
1062     return R_GOT_OFF;
1063   case R_PPC64_GOT_DTPREL16_HA:
1064   case R_PPC64_GOT_DTPREL16_LO_DS:
1065   case R_PPC64_GOT_DTPREL16_DS:
1066   case R_PPC64_GOT_DTPREL16_HI:
1067     return R_TLSLD_GOT_OFF;
1068   case R_PPC64_TPREL16:
1069   case R_PPC64_TPREL16_HA:
1070   case R_PPC64_TPREL16_LO:
1071   case R_PPC64_TPREL16_HI:
1072   case R_PPC64_TPREL16_DS:
1073   case R_PPC64_TPREL16_LO_DS:
1074   case R_PPC64_TPREL16_HIGHER:
1075   case R_PPC64_TPREL16_HIGHERA:
1076   case R_PPC64_TPREL16_HIGHEST:
1077   case R_PPC64_TPREL16_HIGHESTA:
1078   case R_PPC64_TPREL34:
1079     return R_TPREL;
1080   case R_PPC64_DTPREL16:
1081   case R_PPC64_DTPREL16_DS:
1082   case R_PPC64_DTPREL16_HA:
1083   case R_PPC64_DTPREL16_HI:
1084   case R_PPC64_DTPREL16_HIGHER:
1085   case R_PPC64_DTPREL16_HIGHERA:
1086   case R_PPC64_DTPREL16_HIGHEST:
1087   case R_PPC64_DTPREL16_HIGHESTA:
1088   case R_PPC64_DTPREL16_LO:
1089   case R_PPC64_DTPREL16_LO_DS:
1090   case R_PPC64_DTPREL64:
1091   case R_PPC64_DTPREL34:
1092     return R_DTPREL;
1093   case R_PPC64_TLSGD:
1094     return R_TLSDESC_CALL;
1095   case R_PPC64_TLSLD:
1096     return R_TLSLD_HINT;
1097   case R_PPC64_TLS:
1098     return R_TLSIE_HINT;
1099   default:
1100     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
1101           ") against symbol " + toString(s));
1102     return R_NONE;
1103   }
1104 }
1105 
1106 RelType PPC64::getDynRel(RelType type) const {
1107   if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1108     return R_PPC64_ADDR64;
1109   return R_PPC64_NONE;
1110 }
1111 
1112 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const {
1113   switch (type) {
1114   case R_PPC64_NONE:
1115   case R_PPC64_GLOB_DAT:
1116   case R_PPC64_JMP_SLOT:
1117     return 0;
1118   case R_PPC64_REL32:
1119     return SignExtend64<32>(read32(buf));
1120   case R_PPC64_ADDR64:
1121   case R_PPC64_REL64:
1122   case R_PPC64_RELATIVE:
1123   case R_PPC64_IRELATIVE:
1124   case R_PPC64_DTPMOD64:
1125   case R_PPC64_DTPREL64:
1126   case R_PPC64_TPREL64:
1127     return read64(buf);
1128   default:
1129     internalLinkerError(getErrorLocation(buf),
1130                         "cannot read addend for relocation " + toString(type));
1131     return 0;
1132   }
1133 }
1134 
1135 void PPC64::writeGotHeader(uint8_t *buf) const {
1136   write64(buf, getPPC64TocBase());
1137 }
1138 
1139 void PPC64::writePltHeader(uint8_t *buf) const {
1140   // The generic resolver stub goes first.
1141   write32(buf +  0, 0x7c0802a6); // mflr r0
1142   write32(buf +  4, 0x429f0005); // bcl  20,4*cr7+so,8 <_glink+0x8>
1143   write32(buf +  8, 0x7d6802a6); // mflr r11
1144   write32(buf + 12, 0x7c0803a6); // mtlr r0
1145   write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
1146   write32(buf + 20, 0x380cffcc); // subi r0,r12,52
1147   write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
1148   write32(buf + 28, 0xe98b002c); // ld   r12,44(r11)
1149   write32(buf + 32, 0x7d6c5a14); // add  r11,r12,r11
1150   write32(buf + 36, 0xe98b0000); // ld   r12,0(r11)
1151   write32(buf + 40, 0xe96b0008); // ld   r11,8(r11)
1152   write32(buf + 44, 0x7d8903a6); // mtctr   r12
1153   write32(buf + 48, 0x4e800420); // bctr
1154 
1155   // The 'bcl' instruction will set the link register to the address of the
1156   // following instruction ('mflr r11'). Here we store the offset from that
1157   // instruction  to the first entry in the GotPlt section.
1158   int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
1159   write64(buf + 52, gotPltOffset);
1160 }
1161 
1162 void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1163                      uint64_t /*pltEntryAddr*/) const {
1164   int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize;
1165   // bl __glink_PLTresolve
1166   write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
1167 }
1168 
1169 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1170                       uint64_t /*pltEntryAddr*/) const {
1171   writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
1172 }
1173 
1174 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1175   // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1176   uint64_t tocBiasedVal = val - ppc64TocOffset;
1177   // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1178   uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1179 
1180   switch (type) {
1181   // TOC biased relocation.
1182   case R_PPC64_GOT16:
1183   case R_PPC64_GOT_TLSGD16:
1184   case R_PPC64_GOT_TLSLD16:
1185   case R_PPC64_TOC16:
1186     return {R_PPC64_ADDR16, tocBiasedVal};
1187   case R_PPC64_GOT16_DS:
1188   case R_PPC64_TOC16_DS:
1189   case R_PPC64_GOT_TPREL16_DS:
1190   case R_PPC64_GOT_DTPREL16_DS:
1191     return {R_PPC64_ADDR16_DS, tocBiasedVal};
1192   case R_PPC64_GOT16_HA:
1193   case R_PPC64_GOT_TLSGD16_HA:
1194   case R_PPC64_GOT_TLSLD16_HA:
1195   case R_PPC64_GOT_TPREL16_HA:
1196   case R_PPC64_GOT_DTPREL16_HA:
1197   case R_PPC64_TOC16_HA:
1198     return {R_PPC64_ADDR16_HA, tocBiasedVal};
1199   case R_PPC64_GOT16_HI:
1200   case R_PPC64_GOT_TLSGD16_HI:
1201   case R_PPC64_GOT_TLSLD16_HI:
1202   case R_PPC64_GOT_TPREL16_HI:
1203   case R_PPC64_GOT_DTPREL16_HI:
1204   case R_PPC64_TOC16_HI:
1205     return {R_PPC64_ADDR16_HI, tocBiasedVal};
1206   case R_PPC64_GOT16_LO:
1207   case R_PPC64_GOT_TLSGD16_LO:
1208   case R_PPC64_GOT_TLSLD16_LO:
1209   case R_PPC64_TOC16_LO:
1210     return {R_PPC64_ADDR16_LO, tocBiasedVal};
1211   case R_PPC64_GOT16_LO_DS:
1212   case R_PPC64_TOC16_LO_DS:
1213   case R_PPC64_GOT_TPREL16_LO_DS:
1214   case R_PPC64_GOT_DTPREL16_LO_DS:
1215     return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1216 
1217   // Dynamic Thread pointer biased relocation types.
1218   case R_PPC64_DTPREL16:
1219     return {R_PPC64_ADDR16, dtpBiasedVal};
1220   case R_PPC64_DTPREL16_DS:
1221     return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1222   case R_PPC64_DTPREL16_HA:
1223     return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1224   case R_PPC64_DTPREL16_HI:
1225     return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1226   case R_PPC64_DTPREL16_HIGHER:
1227     return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1228   case R_PPC64_DTPREL16_HIGHERA:
1229     return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1230   case R_PPC64_DTPREL16_HIGHEST:
1231     return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1232   case R_PPC64_DTPREL16_HIGHESTA:
1233     return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1234   case R_PPC64_DTPREL16_LO:
1235     return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1236   case R_PPC64_DTPREL16_LO_DS:
1237     return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1238   case R_PPC64_DTPREL64:
1239     return {R_PPC64_ADDR64, dtpBiasedVal};
1240 
1241   default:
1242     return {type, val};
1243   }
1244 }
1245 
1246 static bool isTocOptType(RelType type) {
1247   switch (type) {
1248   case R_PPC64_GOT16_HA:
1249   case R_PPC64_GOT16_LO_DS:
1250   case R_PPC64_TOC16_HA:
1251   case R_PPC64_TOC16_LO_DS:
1252   case R_PPC64_TOC16_LO:
1253     return true;
1254   default:
1255     return false;
1256   }
1257 }
1258 
1259 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1260   RelType type = rel.type;
1261   bool shouldTocOptimize =  isTocOptType(type);
1262   // For dynamic thread pointer relative, toc-relative, and got-indirect
1263   // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1264   std::tie(type, val) = toAddr16Rel(type, val);
1265 
1266   switch (type) {
1267   case R_PPC64_ADDR14: {
1268     checkAlignment(loc, val, 4, rel);
1269     // Preserve the AA/LK bits in the branch instruction
1270     uint8_t aalk = loc[3];
1271     write16(loc + 2, (aalk & 3) | (val & 0xfffc));
1272     break;
1273   }
1274   case R_PPC64_ADDR16:
1275     checkIntUInt(loc, val, 16, rel);
1276     write16(loc, val);
1277     break;
1278   case R_PPC64_ADDR32:
1279     checkIntUInt(loc, val, 32, rel);
1280     write32(loc, val);
1281     break;
1282   case R_PPC64_ADDR16_DS:
1283   case R_PPC64_TPREL16_DS: {
1284     checkInt(loc, val, 16, rel);
1285     // DQ-form instructions use bits 28-31 as part of the instruction encoding
1286     // DS-form instructions only use bits 30-31.
1287     uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
1288     checkAlignment(loc, lo(val), mask + 1, rel);
1289     write16(loc, (read16(loc) & mask) | lo(val));
1290   } break;
1291   case R_PPC64_ADDR16_HA:
1292   case R_PPC64_REL16_HA:
1293   case R_PPC64_TPREL16_HA:
1294     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
1295       writeFromHalf16(loc, NOP);
1296     else {
1297       checkInt(loc, val + 0x8000, 32, rel);
1298       write16(loc, ha(val));
1299     }
1300     break;
1301   case R_PPC64_ADDR16_HI:
1302   case R_PPC64_REL16_HI:
1303   case R_PPC64_TPREL16_HI:
1304     checkInt(loc, val, 32, rel);
1305     write16(loc, hi(val));
1306     break;
1307   case R_PPC64_ADDR16_HIGH:
1308     write16(loc, hi(val));
1309     break;
1310   case R_PPC64_ADDR16_HIGHER:
1311   case R_PPC64_TPREL16_HIGHER:
1312     write16(loc, higher(val));
1313     break;
1314   case R_PPC64_ADDR16_HIGHERA:
1315   case R_PPC64_TPREL16_HIGHERA:
1316     write16(loc, highera(val));
1317     break;
1318   case R_PPC64_ADDR16_HIGHEST:
1319   case R_PPC64_TPREL16_HIGHEST:
1320     write16(loc, highest(val));
1321     break;
1322   case R_PPC64_ADDR16_HIGHESTA:
1323   case R_PPC64_TPREL16_HIGHESTA:
1324     write16(loc, highesta(val));
1325     break;
1326   case R_PPC64_ADDR16_LO:
1327   case R_PPC64_REL16_LO:
1328   case R_PPC64_TPREL16_LO:
1329     // When the high-adjusted part of a toc relocation evaluates to 0, it is
1330     // changed into a nop. The lo part then needs to be updated to use the
1331     // toc-pointer register r2, as the base register.
1332     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1333       uint32_t insn = readFromHalf16(loc);
1334       if (isInstructionUpdateForm(insn))
1335         error(getErrorLocation(loc) +
1336               "can't toc-optimize an update instruction: 0x" +
1337               utohexstr(insn));
1338       writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1339     } else {
1340       write16(loc, lo(val));
1341     }
1342     break;
1343   case R_PPC64_ADDR16_LO_DS:
1344   case R_PPC64_TPREL16_LO_DS: {
1345     // DQ-form instructions use bits 28-31 as part of the instruction encoding
1346     // DS-form instructions only use bits 30-31.
1347     uint32_t insn = readFromHalf16(loc);
1348     uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1349     checkAlignment(loc, lo(val), mask + 1, rel);
1350     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1351       // When the high-adjusted part of a toc relocation evaluates to 0, it is
1352       // changed into a nop. The lo part then needs to be updated to use the toc
1353       // pointer register r2, as the base register.
1354       if (isInstructionUpdateForm(insn))
1355         error(getErrorLocation(loc) +
1356               "Can't toc-optimize an update instruction: 0x" +
1357               Twine::utohexstr(insn));
1358       insn &= 0xffe00000 | mask;
1359       writeFromHalf16(loc, insn | 0x00020000 | lo(val));
1360     } else {
1361       write16(loc, (read16(loc) & mask) | lo(val));
1362     }
1363   } break;
1364   case R_PPC64_TPREL16:
1365     checkInt(loc, val, 16, rel);
1366     write16(loc, val);
1367     break;
1368   case R_PPC64_REL32:
1369     checkInt(loc, val, 32, rel);
1370     write32(loc, val);
1371     break;
1372   case R_PPC64_ADDR64:
1373   case R_PPC64_REL64:
1374   case R_PPC64_TOC:
1375     write64(loc, val);
1376     break;
1377   case R_PPC64_REL14: {
1378     uint32_t mask = 0x0000FFFC;
1379     checkInt(loc, val, 16, rel);
1380     checkAlignment(loc, val, 4, rel);
1381     write32(loc, (read32(loc) & ~mask) | (val & mask));
1382     break;
1383   }
1384   case R_PPC64_REL24:
1385   case R_PPC64_REL24_NOTOC: {
1386     uint32_t mask = 0x03FFFFFC;
1387     checkInt(loc, val, 26, rel);
1388     checkAlignment(loc, val, 4, rel);
1389     write32(loc, (read32(loc) & ~mask) | (val & mask));
1390     break;
1391   }
1392   case R_PPC64_DTPREL64:
1393     write64(loc, val - dynamicThreadPointerOffset);
1394     break;
1395   case R_PPC64_DTPREL34:
1396     // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1397     // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1398     // need to subtract that value then fallthrough to the general case.
1399     val -= dynamicThreadPointerOffset;
1400     [[fallthrough]];
1401   case R_PPC64_PCREL34:
1402   case R_PPC64_GOT_PCREL34:
1403   case R_PPC64_GOT_TLSGD_PCREL34:
1404   case R_PPC64_GOT_TLSLD_PCREL34:
1405   case R_PPC64_GOT_TPREL_PCREL34:
1406   case R_PPC64_TPREL34: {
1407     const uint64_t si0Mask = 0x00000003ffff0000;
1408     const uint64_t si1Mask = 0x000000000000ffff;
1409     const uint64_t fullMask = 0x0003ffff0000ffff;
1410     checkInt(loc, val, 34, rel);
1411 
1412     uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
1413     writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
1414                              (val & si1Mask));
1415     break;
1416   }
1417   // If we encounter a PCREL_OPT relocation that we won't optimize.
1418   case R_PPC64_PCREL_OPT:
1419     break;
1420   default:
1421     llvm_unreachable("unknown relocation");
1422   }
1423 }
1424 
1425 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1426                        uint64_t branchAddr, const Symbol &s, int64_t a) const {
1427   if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1428       type != R_PPC64_REL24_NOTOC)
1429     return false;
1430 
1431   // If a function is in the Plt it needs to be called with a call-stub.
1432   if (s.isInPlt())
1433     return true;
1434 
1435   // This check looks at the st_other bits of the callee with relocation
1436   // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1437   // clobbers the TOC and we need an R2 save stub.
1438   if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1439     return true;
1440 
1441   if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1442     return true;
1443 
1444   // An undefined weak symbol not in a PLT does not need a thunk. If it is
1445   // hidden, its binding has been converted to local, so we just check
1446   // isUndefined() here. A undefined non-weak symbol has been errored.
1447   if (s.isUndefined())
1448     return false;
1449 
1450   // If the offset exceeds the range of the branch type then it will need
1451   // a range-extending thunk.
1452   // See the comment in getRelocTargetVA() about R_PPC64_CALL.
1453   return !inBranchRange(type, branchAddr,
1454                         s.getVA(a) +
1455                             getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
1456 }
1457 
1458 uint32_t PPC64::getThunkSectionSpacing() const {
1459   // See comment in Arch/ARM.cpp for a more detailed explanation of
1460   // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1461   // R_PPC64_REL24, which is used by unconditional branch instructions.
1462   // 0x2000000 = (1 << 24-1) * 4
1463   return 0x2000000;
1464 }
1465 
1466 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1467   int64_t offset = dst - src;
1468   if (type == R_PPC64_REL14)
1469     return isInt<16>(offset);
1470   if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1471     return isInt<26>(offset);
1472   llvm_unreachable("unsupported relocation type used in branch");
1473 }
1474 
1475 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1476   if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1477     return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1478   if (expr == R_RELAX_TLS_LD_TO_LE)
1479     return R_RELAX_TLS_LD_TO_LE_ABS;
1480   return expr;
1481 }
1482 
1483 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1484                                const uint8_t *loc) const {
1485   if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1486       config->pcRelOptimize) {
1487     // It only makes sense to optimize pld since paddi means that the address
1488     // of the object in the GOT is required rather than the object itself.
1489     if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
1490       return R_PPC64_RELAX_GOT_PC;
1491   }
1492   return R_GOT_PC;
1493 }
1494 
1495 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1496 // The general dynamic code sequence for a global `x` uses 4 instructions.
1497 // Instruction                    Relocation                Symbol
1498 // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
1499 // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
1500 // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
1501 //                                R_PPC64_REL24               __tls_get_addr
1502 // nop                            None                       None
1503 //
1504 // Relaxing to initial-exec entails:
1505 // 1) Convert the addis/addi pair that builds the address of the tls_index
1506 //    struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1507 // 2) Convert the call to __tls_get_addr to a nop.
1508 // 3) Convert the nop following the call to an add of the loaded offset to the
1509 //    thread pointer.
1510 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1511 // used as the relaxation hint for both steps 2 and 3.
1512 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1513                            uint64_t val) const {
1514   switch (rel.type) {
1515   case R_PPC64_GOT_TLSGD16_HA:
1516     // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1517     //                      addis rT, r2, sym@got@tprel@ha.
1518     relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1519     return;
1520   case R_PPC64_GOT_TLSGD16:
1521   case R_PPC64_GOT_TLSGD16_LO: {
1522     // Relax from addi  r3, rA, sym@got@tlsgd@l to
1523     //            ld r3, sym@got@tprel@l(rA)
1524     uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
1525     writeFromHalf16(loc, 0xe8600000 | ra);
1526     relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1527     return;
1528   }
1529   case R_PPC64_GOT_TLSGD_PCREL34: {
1530     // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1531     //            pld r3, sym@got@tprel@pcrel
1532     writePrefixedInstruction(loc, 0x04100000e4600000);
1533     relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1534     return;
1535   }
1536   case R_PPC64_TLSGD: {
1537     // PC Relative Relaxation:
1538     // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1539     //            nop
1540     // TOC Relaxation:
1541     // Relax from bl __tls_get_addr(x@tlsgd)
1542     //            nop
1543     // to
1544     //            nop
1545     //            add r3, r3, r13
1546     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1547     if (locAsInt % 4 == 0) {
1548       write32(loc, NOP);            // bl __tls_get_addr(sym@tlsgd) --> nop
1549       write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
1550     } else if (locAsInt % 4 == 1) {
1551       // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1552       write32(loc - 1, 0x7c636a14);
1553     } else {
1554       errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1555     }
1556     return;
1557   }
1558   default:
1559     llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1560   }
1561 }
1562 
1563 void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1564   uint64_t secAddr = sec.getOutputSection()->addr;
1565   if (auto *s = dyn_cast<InputSection>(&sec))
1566     secAddr += s->outSecOff;
1567   else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
1568     secAddr += ehIn->getParent()->outSecOff;
1569   uint64_t lastPPCRelaxedRelocOff = -1;
1570   for (const Relocation &rel : sec.relocs()) {
1571     uint8_t *loc = buf + rel.offset;
1572     const uint64_t val =
1573         sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
1574                              secAddr + rel.offset, *rel.sym, rel.expr);
1575     switch (rel.expr) {
1576     case R_PPC64_RELAX_GOT_PC: {
1577       // The R_PPC64_PCREL_OPT relocation must appear immediately after
1578       // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1579       // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1580       // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1581       // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1582       // and only relax the other if the saved offset matches.
1583       if (rel.type == R_PPC64_GOT_PCREL34)
1584         lastPPCRelaxedRelocOff = rel.offset;
1585       if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff)
1586         break;
1587       relaxGot(loc, rel, val);
1588       break;
1589     }
1590     case R_PPC64_RELAX_TOC:
1591       // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1592       // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1593       // entry, there may be R_PPC64_TOC16_HA not paired with
1594       // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1595       // opportunities but is safe.
1596       if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1597           !tryRelaxPPC64TocIndirection(rel, loc))
1598         relocate(loc, rel, val);
1599       break;
1600     case R_PPC64_CALL:
1601       // If this is a call to __tls_get_addr, it may be part of a TLS
1602       // sequence that has been relaxed and turned into a nop. In this
1603       // case, we don't want to handle it as a call.
1604       if (read32(loc) == 0x60000000) // nop
1605         break;
1606 
1607       // Patch a nop (0x60000000) to a ld.
1608       if (rel.sym->needsTocRestore()) {
1609         // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1610         // recursive calls even if the function is preemptible. This is not
1611         // wrong in the common case where the function is not preempted at
1612         // runtime. Just ignore.
1613         if ((rel.offset + 8 > sec.content().size() ||
1614              read32(loc + 4) != 0x60000000) &&
1615             rel.sym->file != sec.file) {
1616           // Use substr(6) to remove the "__plt_" prefix.
1617           errorOrWarn(getErrorLocation(loc) + "call to " +
1618                       lld::toString(*rel.sym).substr(6) +
1619                       " lacks nop, can't restore toc");
1620           break;
1621         }
1622         write32(loc + 4, 0xe8410018); // ld %r2, 24(%r1)
1623       }
1624       relocate(loc, rel, val);
1625       break;
1626     case R_RELAX_TLS_GD_TO_IE:
1627     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1628       relaxTlsGdToIe(loc, rel, val);
1629       break;
1630     case R_RELAX_TLS_GD_TO_LE:
1631       relaxTlsGdToLe(loc, rel, val);
1632       break;
1633     case R_RELAX_TLS_LD_TO_LE_ABS:
1634       relaxTlsLdToLe(loc, rel, val);
1635       break;
1636     case R_RELAX_TLS_IE_TO_LE:
1637       relaxTlsIeToLe(loc, rel, val);
1638       break;
1639     default:
1640       relocate(loc, rel, val);
1641       break;
1642     }
1643   }
1644 }
1645 
1646 // The prologue for a split-stack function is expected to look roughly
1647 // like this:
1648 //    .Lglobal_entry_point:
1649 //      # TOC pointer initialization.
1650 //      ...
1651 //    .Llocal_entry_point:
1652 //      # load the __private_ss member of the threads tcbhead.
1653 //      ld r0,-0x7000-64(r13)
1654 //      # subtract the functions stack size from the stack pointer.
1655 //      addis r12, r1, ha(-stack-frame size)
1656 //      addi  r12, r12, l(-stack-frame size)
1657 //      # compare needed to actual and branch to allocate_more_stack if more
1658 //      # space is needed, otherwise fallthrough to 'normal' function body.
1659 //      cmpld cr7,r12,r0
1660 //      blt- cr7, .Lallocate_more_stack
1661 //
1662 // -) The allocate_more_stack block might be placed after the split-stack
1663 //    prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1664 //    instead.
1665 // -) If either the addis or addi is not needed due to the stack size being
1666 //    smaller then 32K or a multiple of 64K they will be replaced with a nop,
1667 //    but there will always be 2 instructions the linker can overwrite for the
1668 //    adjusted stack size.
1669 //
1670 // The linkers job here is to increase the stack size used in the addis/addi
1671 // pair by split-stack-size-adjust.
1672 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1673 // addi  r12, r12, l(-stack-frame size - split-stack-adjust-size)
1674 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1675                                              uint8_t stOther) const {
1676   // If the caller has a global entry point adjust the buffer past it. The start
1677   // of the split-stack prologue will be at the local entry point.
1678   loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
1679 
1680   // At the very least we expect to see a load of some split-stack data from the
1681   // tcb, and 2 instructions that calculate the ending stack address this
1682   // function will require. If there is not enough room for at least 3
1683   // instructions it can't be a split-stack prologue.
1684   if (loc + 12 >= end)
1685     return false;
1686 
1687   // First instruction must be `ld r0, -0x7000-64(r13)`
1688   if (read32(loc) != 0xe80d8fc0)
1689     return false;
1690 
1691   int16_t hiImm = 0;
1692   int16_t loImm = 0;
1693   // First instruction can be either an addis if the frame size is larger then
1694   // 32K, or an addi if the size is less then 32K.
1695   int32_t firstInstr = read32(loc + 4);
1696   if (getPrimaryOpCode(firstInstr) == 15) {
1697     hiImm = firstInstr & 0xFFFF;
1698   } else if (getPrimaryOpCode(firstInstr) == 14) {
1699     loImm = firstInstr & 0xFFFF;
1700   } else {
1701     return false;
1702   }
1703 
1704   // Second instruction is either an addi or a nop. If the first instruction was
1705   // an addi then LoImm is set and the second instruction must be a nop.
1706   uint32_t secondInstr = read32(loc + 8);
1707   if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1708     loImm = secondInstr & 0xFFFF;
1709   } else if (secondInstr != NOP) {
1710     return false;
1711   }
1712 
1713   // The register operands of the first instruction should be the stack-pointer
1714   // (r1) as the input (RA) and r12 as the output (RT). If the second
1715   // instruction is not a nop, then it should use r12 as both input and output.
1716   auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1717                              uint8_t expectedRA) {
1718     return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1719            ((instr & 0x1F0000) >> 16 == expectedRA);
1720   };
1721   if (!checkRegOperands(firstInstr, 12, 1))
1722     return false;
1723   if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1724     return false;
1725 
1726   int32_t stackFrameSize = (hiImm * 65536) + loImm;
1727   // Check that the adjusted size doesn't overflow what we can represent with 2
1728   // instructions.
1729   if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
1730     error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
1731     return false;
1732   }
1733 
1734   int32_t adjustedStackFrameSize =
1735       stackFrameSize - config->splitStackAdjustSize;
1736 
1737   loImm = adjustedStackFrameSize & 0xFFFF;
1738   hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1739   if (hiImm) {
1740     write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
1741     // If the low immediate is zero the second instruction will be a nop.
1742     secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1743     write32(loc + 8, secondInstr);
1744   } else {
1745     // addi r12, r1, imm
1746     write32(loc + 4, (0x39810000) | (uint16_t)loImm);
1747     write32(loc + 8, NOP);
1748   }
1749 
1750   return true;
1751 }
1752 
1753 TargetInfo *elf::getPPC64TargetInfo() {
1754   static PPC64 target;
1755   return &target;
1756 }
1757