1 //===- PPC64.cpp ----------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SymbolTable.h" 10 #include "Symbols.h" 11 #include "SyntheticSections.h" 12 #include "Target.h" 13 #include "Thunks.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "lld/Common/Memory.h" 16 #include "llvm/Support/Endian.h" 17 18 using namespace llvm; 19 using namespace llvm::object; 20 using namespace llvm::support::endian; 21 using namespace llvm::ELF; 22 using namespace lld; 23 using namespace lld::elf; 24 25 constexpr uint64_t ppc64TocOffset = 0x8000; 26 constexpr uint64_t dynamicThreadPointerOffset = 0x8000; 27 28 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform 29 // instructions that can be used as part of the initial exec TLS sequence. 30 enum XFormOpcd { 31 LBZX = 87, 32 LHZX = 279, 33 LWZX = 23, 34 LDX = 21, 35 STBX = 215, 36 STHX = 407, 37 STWX = 151, 38 STDX = 149, 39 ADD = 266, 40 }; 41 42 enum DFormOpcd { 43 LBZ = 34, 44 LBZU = 35, 45 LHZ = 40, 46 LHZU = 41, 47 LHAU = 43, 48 LWZ = 32, 49 LWZU = 33, 50 LFSU = 49, 51 LD = 58, 52 LFDU = 51, 53 STB = 38, 54 STBU = 39, 55 STH = 44, 56 STHU = 45, 57 STW = 36, 58 STWU = 37, 59 STFSU = 53, 60 STFDU = 55, 61 STD = 62, 62 ADDI = 14 63 }; 64 65 constexpr uint32_t NOP = 0x60000000; 66 67 enum class PPCLegacyInsn : uint32_t { 68 NOINSN = 0, 69 // Loads. 70 LBZ = 0x88000000, 71 LHZ = 0xa0000000, 72 LWZ = 0x80000000, 73 LHA = 0xa8000000, 74 LWA = 0xe8000002, 75 LD = 0xe8000000, 76 LFS = 0xC0000000, 77 LXSSP = 0xe4000003, 78 LFD = 0xc8000000, 79 LXSD = 0xe4000002, 80 LXV = 0xf4000001, 81 LXVP = 0x18000000, 82 83 // Stores. 84 STB = 0x98000000, 85 STH = 0xb0000000, 86 STW = 0x90000000, 87 STD = 0xf8000000, 88 STFS = 0xd0000000, 89 STXSSP = 0xf4000003, 90 STFD = 0xd8000000, 91 STXSD = 0xf4000002, 92 STXV = 0xf4000005, 93 STXVP = 0x18000001 94 }; 95 enum class PPCPrefixedInsn : uint64_t { 96 NOINSN = 0, 97 PREFIX_MLS = 0x0610000000000000, 98 PREFIX_8LS = 0x0410000000000000, 99 100 // Loads. 101 PLBZ = PREFIX_MLS, 102 PLHZ = PREFIX_MLS, 103 PLWZ = PREFIX_MLS, 104 PLHA = PREFIX_MLS, 105 PLWA = PREFIX_8LS | 0xa4000000, 106 PLD = PREFIX_8LS | 0xe4000000, 107 PLFS = PREFIX_MLS, 108 PLXSSP = PREFIX_8LS | 0xac000000, 109 PLFD = PREFIX_MLS, 110 PLXSD = PREFIX_8LS | 0xa8000000, 111 PLXV = PREFIX_8LS | 0xc8000000, 112 PLXVP = PREFIX_8LS | 0xe8000000, 113 114 // Stores. 115 PSTB = PREFIX_MLS, 116 PSTH = PREFIX_MLS, 117 PSTW = PREFIX_MLS, 118 PSTD = PREFIX_8LS | 0xf4000000, 119 PSTFS = PREFIX_MLS, 120 PSTXSSP = PREFIX_8LS | 0xbc000000, 121 PSTFD = PREFIX_MLS, 122 PSTXSD = PREFIX_8LS | 0xb8000000, 123 PSTXV = PREFIX_8LS | 0xd8000000, 124 PSTXVP = PREFIX_8LS | 0xf8000000 125 }; 126 static bool checkPPCLegacyInsn(uint32_t encoding) { 127 PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding); 128 if (insn == PPCLegacyInsn::NOINSN) 129 return false; 130 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 131 if (insn == PPCLegacyInsn::Legacy) \ 132 return true; 133 #include "PPCInsns.def" 134 #undef PCREL_OPT 135 return false; 136 } 137 138 // Masks to apply to legacy instructions when converting them to prefixed, 139 // pc-relative versions. For the most part, the primary opcode is shared 140 // between the legacy instruction and the suffix of its prefixed version. 141 // However, there are some instances where that isn't the case (DS-Form and 142 // DQ-form instructions). 143 enum class LegacyToPrefixMask : uint64_t { 144 NOMASK = 0x0, 145 OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10). 146 ONLY_RST = 0x3e00000, // [RS]T (6-10). 147 ST_STX28_TO5 = 148 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5. 149 }; 150 151 uint64_t elf::getPPC64TocBase() { 152 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 153 // TOC starts where the first of these sections starts. We always create a 154 // .got when we see a relocation that uses it, so for us the start is always 155 // the .got. 156 uint64_t tocVA = in.got->getVA(); 157 158 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 159 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 160 // code (crt1.o) assumes that you can get from the TOC base to the 161 // start of the .toc section with only a single (signed) 16-bit relocation. 162 return tocVA + ppc64TocOffset; 163 } 164 165 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) { 166 // The offset is encoded into the 3 most significant bits of the st_other 167 // field, with some special values described in section 3.4.1 of the ABI: 168 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use 169 // the TOC pointer (r2). r2 will hold the same value on returning from 170 // the function as it did on entering the function. 171 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a 172 // caller-saved register for all callers. 173 // 2-6 --> The binary logarithm of the offset eg: 174 // 2 --> 2^2 = 4 bytes --> 1 instruction. 175 // 6 --> 2^6 = 64 bytes --> 16 instructions. 176 // 7 --> Reserved. 177 uint8_t gepToLep = (stOther >> 5) & 7; 178 if (gepToLep < 2) 179 return 0; 180 181 // The value encoded in the st_other bits is the 182 // log-base-2(offset). 183 if (gepToLep < 7) 184 return 1 << gepToLep; 185 186 error("reserved value of 7 in the 3 most-significant-bits of st_other"); 187 return 0; 188 } 189 190 bool elf::isPPC64SmallCodeModelTocReloc(RelType type) { 191 // The only small code model relocations that access the .toc section. 192 return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS; 193 } 194 195 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) { 196 insn = config->isLE ? insn << 32 | insn >> 32 : insn; 197 write64(loc, insn); 198 } 199 200 static bool addOptional(StringRef name, uint64_t value, 201 std::vector<Defined *> &defined) { 202 Symbol *sym = symtab->find(name); 203 if (!sym || sym->isDefined()) 204 return false; 205 sym->resolve(Defined{/*file=*/nullptr, saver.save(name), STB_GLOBAL, 206 STV_HIDDEN, STT_FUNC, value, 207 /*size=*/0, /*section=*/nullptr}); 208 defined.push_back(cast<Defined>(sym)); 209 return true; 210 } 211 212 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15: 213 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail 214 // The labels are defined only if they exist in the symbol table. 215 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix, 216 int from, uint32_t firstInsn, 217 ArrayRef<uint32_t> tail) { 218 std::vector<Defined *> defined; 219 char name[16]; 220 int first; 221 uint32_t *ptr = buf.data(); 222 for (int r = from; r < 32; ++r) { 223 format("%s%d", prefix, r).snprint(name, sizeof(name)); 224 if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1) 225 first = r - from; 226 write32(ptr++, firstInsn + 0x200008 * (r - from)); 227 } 228 for (uint32_t insn : tail) 229 write32(ptr++, insn); 230 assert(ptr == &*buf.end()); 231 232 if (defined.empty()) 233 return; 234 // The full section content has the extent of [begin, end). We drop unused 235 // instructions and write [first,end). 236 auto *sec = make<InputSection>( 237 nullptr, SHF_ALLOC, SHT_PROGBITS, 4, 238 makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first), 239 4 * (buf.size() - first)), 240 ".text"); 241 inputSections.push_back(sec); 242 for (Defined *sym : defined) { 243 sym->section = sec; 244 sym->value -= 4 * first; 245 } 246 } 247 248 // Implements some save and restore functions as described by ELF V2 ABI to be 249 // compatible with GCC. With GCC -Os, when the number of call-saved registers 250 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and 251 // expects the linker to define them. See 252 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and 253 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is 254 // weird because libgcc.a would be the natural place. The linker generation 255 // approach has the advantage that the linker can generate multiple copies to 256 // avoid long branch thunks. However, we don't consider the advantage 257 // significant enough to complicate our trunk implementation, so we take the 258 // simple approach and synthesize .text sections providing the implementation. 259 void elf::addPPC64SaveRestore() { 260 static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19]; 261 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6; 262 263 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ... 264 // Tail: ld 0, 16(1); mtlr 0; blr 265 writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70, 266 {0xe8010010, mtlr_0, blr}); 267 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ... 268 // Tail: blr 269 writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr}); 270 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ... 271 // Tail: std 0, 16(1); blr 272 writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr}); 273 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ... 274 // Tail: blr 275 writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr}); 276 } 277 278 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset. 279 template <typename ELFT> 280 static std::pair<Defined *, int64_t> 281 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) { 282 if (tocSec->numRelocations == 0) 283 return {}; 284 285 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by 286 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the 287 // relocation index in most cases. 288 // 289 // In rare cases a TOC entry may store a constant that doesn't need an 290 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8 291 // points to a relocation with larger r_offset. Do a linear probe then. 292 // Constants are extremely uncommon in .toc and the extra number of array 293 // accesses can be seen as a small constant. 294 ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>(); 295 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1); 296 for (;;) { 297 if (relas[index].r_offset == offset) { 298 Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]); 299 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])}; 300 } 301 if (relas[index].r_offset < offset || index == 0) 302 break; 303 --index; 304 } 305 return {}; 306 } 307 308 // When accessing a symbol defined in another translation unit, compilers 309 // reserve a .toc entry, allocate a local label and generate toc-indirect 310 // instructions: 311 // 312 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA 313 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry 314 // ld/lwa 3, 0(3) # load the value from the address 315 // 316 // .section .toc,"aw",@progbits 317 // .LC0: .tc var[TC],var 318 // 319 // If var is defined, non-preemptable and addressable with a 32-bit signed 320 // offset from the toc base, the address of var can be computed by adding an 321 // offset to the toc base, saving a load. 322 // 323 // addis 3,2,var@toc@ha # this may be relaxed to a nop, 324 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc 325 // ld/lwa 3, 0(3) # load the value from the address 326 // 327 // Returns true if the relaxation is performed. 328 bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) { 329 assert(config->tocOptimize); 330 if (rel.addend < 0) 331 return false; 332 333 // If the symbol is not the .toc section, this isn't a toc-indirection. 334 Defined *defSym = dyn_cast<Defined>(rel.sym); 335 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc") 336 return false; 337 338 Defined *d; 339 int64_t addend; 340 auto *tocISB = cast<InputSectionBase>(defSym->section); 341 std::tie(d, addend) = 342 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend) 343 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend); 344 345 // Only non-preemptable defined symbols can be relaxed. 346 if (!d || d->isPreemptible) 347 return false; 348 349 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable 350 // ifunc and changed its type to STT_FUNC. 351 assert(!d->isGnuIFunc()); 352 353 // Two instructions can materialize a 32-bit signed offset from the toc base. 354 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase(); 355 if (!isInt<32>(tocRelative)) 356 return false; 357 358 // Add PPC64TocOffset that will be subtracted by PPC64::relocate(). 359 target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset); 360 return true; 361 } 362 363 namespace { 364 class PPC64 final : public TargetInfo { 365 public: 366 PPC64(); 367 int getTlsGdRelaxSkip(RelType type) const override; 368 uint32_t calcEFlags() const override; 369 RelExpr getRelExpr(RelType type, const Symbol &s, 370 const uint8_t *loc) const override; 371 RelType getDynRel(RelType type) const override; 372 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; 373 void writePltHeader(uint8_t *buf) const override; 374 void writePlt(uint8_t *buf, const Symbol &sym, 375 uint64_t pltEntryAddr) const override; 376 void writeIplt(uint8_t *buf, const Symbol &sym, 377 uint64_t pltEntryAddr) const override; 378 void relocate(uint8_t *loc, const Relocation &rel, 379 uint64_t val) const override; 380 void writeGotHeader(uint8_t *buf) const override; 381 bool needsThunk(RelExpr expr, RelType type, const InputFile *file, 382 uint64_t branchAddr, const Symbol &s, 383 int64_t a) const override; 384 uint32_t getThunkSectionSpacing() const override; 385 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; 386 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; 387 RelExpr adjustGotPcExpr(RelType type, int64_t addend, 388 const uint8_t *loc) const override; 389 void relaxGot(uint8_t *loc, const Relocation &rel, 390 uint64_t val) const override; 391 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 392 uint64_t val) const override; 393 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 394 uint64_t val) const override; 395 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 396 uint64_t val) const override; 397 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 398 uint64_t val) const override; 399 400 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 401 uint8_t stOther) const override; 402 }; 403 } // namespace 404 405 // Relocation masks following the #lo(value), #hi(value), #ha(value), 406 // #higher(value), #highera(value), #highest(value), and #highesta(value) 407 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 408 // document. 409 static uint16_t lo(uint64_t v) { return v; } 410 static uint16_t hi(uint64_t v) { return v >> 16; } 411 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; } 412 static uint16_t higher(uint64_t v) { return v >> 32; } 413 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; } 414 static uint16_t highest(uint64_t v) { return v >> 48; } 415 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; } 416 417 // Extracts the 'PO' field of an instruction encoding. 418 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); } 419 420 static bool isDQFormInstruction(uint32_t encoding) { 421 switch (getPrimaryOpCode(encoding)) { 422 default: 423 return false; 424 case 6: // Power10 paired loads/stores (lxvp, stxvp). 425 case 56: 426 // The only instruction with a primary opcode of 56 is `lq`. 427 return true; 428 case 61: 429 // There are both DS and DQ instruction forms with this primary opcode. 430 // Namely `lxv` and `stxv` are the DQ-forms that use it. 431 // The DS 'XO' bits being set to 01 is restricted to DQ form. 432 return (encoding & 3) == 0x1; 433 } 434 } 435 436 static bool isDSFormInstruction(PPCLegacyInsn insn) { 437 switch (insn) { 438 default: 439 return false; 440 case PPCLegacyInsn::LWA: 441 case PPCLegacyInsn::LD: 442 case PPCLegacyInsn::LXSD: 443 case PPCLegacyInsn::LXSSP: 444 case PPCLegacyInsn::STD: 445 case PPCLegacyInsn::STXSD: 446 case PPCLegacyInsn::STXSSP: 447 return true; 448 } 449 } 450 451 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) { 452 uint32_t opc = encoding & 0xfc000000; 453 454 // If the primary opcode is shared between multiple instructions, we need to 455 // fix it up to match the actual instruction we are after. 456 if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 || 457 opc == 0xf8000000) && 458 !isDQFormInstruction(encoding)) 459 opc = encoding & 0xfc000003; 460 else if (opc == 0xf4000000) 461 opc = encoding & 0xfc000007; 462 else if (opc == 0x18000000) 463 opc = encoding & 0xfc00000f; 464 465 // If the value is not one of the enumerators in PPCLegacyInsn, we want to 466 // return PPCLegacyInsn::NOINSN. 467 if (!checkPPCLegacyInsn(opc)) 468 return PPCLegacyInsn::NOINSN; 469 return static_cast<PPCLegacyInsn>(opc); 470 } 471 472 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) { 473 switch (insn) { 474 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 475 case PPCLegacyInsn::Legacy: \ 476 return PPCPrefixedInsn::PCRel 477 #include "PPCInsns.def" 478 #undef PCREL_OPT 479 } 480 return PPCPrefixedInsn::NOINSN; 481 } 482 483 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) { 484 switch (insn) { 485 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 486 case PPCLegacyInsn::Legacy: \ 487 return LegacyToPrefixMask::InsnMask 488 #include "PPCInsns.def" 489 #undef PCREL_OPT 490 } 491 return LegacyToPrefixMask::NOMASK; 492 } 493 static uint64_t getPCRelativeForm(uint32_t encoding) { 494 PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding); 495 PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn); 496 if (pcrelInsn == PPCPrefixedInsn::NOINSN) 497 return UINT64_C(-1); 498 LegacyToPrefixMask origInsnMask = getInsnMask(origInsn); 499 uint64_t pcrelEncoding = 500 (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask); 501 502 // If the mask requires moving bit 28 to bit 5, do that now. 503 if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5) 504 pcrelEncoding |= (encoding & 0x8) << 23; 505 return pcrelEncoding; 506 } 507 508 static bool isInstructionUpdateForm(uint32_t encoding) { 509 switch (getPrimaryOpCode(encoding)) { 510 default: 511 return false; 512 case LBZU: 513 case LHAU: 514 case LHZU: 515 case LWZU: 516 case LFSU: 517 case LFDU: 518 case STBU: 519 case STHU: 520 case STWU: 521 case STFSU: 522 case STFDU: 523 return true; 524 // LWA has the same opcode as LD, and the DS bits is what differentiates 525 // between LD/LDU/LWA 526 case LD: 527 case STD: 528 return (encoding & 3) == 1; 529 } 530 } 531 532 // Compute the total displacement between the prefixed instruction that gets 533 // to the start of the data and the load/store instruction that has the offset 534 // into the data structure. 535 // For example: 536 // paddi 3, 0, 1000, 1 537 // lwz 3, 20(3) 538 // Should add up to 1020 for total displacement. 539 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) { 540 int64_t disp34 = llvm::SignExtend64( 541 ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34); 542 int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16); 543 // For DS and DQ form instructions, we need to mask out the XO bits. 544 if (isDQFormInstruction(accessInsn)) 545 disp16 &= ~0xf; 546 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn))) 547 disp16 &= ~0x3; 548 return disp34 + disp16; 549 } 550 551 // There are a number of places when we either want to read or write an 552 // instruction when handling a half16 relocation type. On big-endian the buffer 553 // pointer is pointing into the middle of the word we want to extract, and on 554 // little-endian it is pointing to the start of the word. These 2 helpers are to 555 // simplify reading and writing in that context. 556 static void writeFromHalf16(uint8_t *loc, uint32_t insn) { 557 write32(config->isLE ? loc : loc - 2, insn); 558 } 559 560 static uint32_t readFromHalf16(const uint8_t *loc) { 561 return read32(config->isLE ? loc : loc - 2); 562 } 563 564 static uint64_t readPrefixedInstruction(const uint8_t *loc) { 565 uint64_t fullInstr = read64(loc); 566 return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr; 567 } 568 569 PPC64::PPC64() { 570 copyRel = R_PPC64_COPY; 571 gotRel = R_PPC64_GLOB_DAT; 572 noneRel = R_PPC64_NONE; 573 pltRel = R_PPC64_JMP_SLOT; 574 relativeRel = R_PPC64_RELATIVE; 575 iRelativeRel = R_PPC64_IRELATIVE; 576 symbolicRel = R_PPC64_ADDR64; 577 pltHeaderSize = 60; 578 pltEntrySize = 4; 579 ipltEntrySize = 16; // PPC64PltCallStub::size 580 gotBaseSymInGotPlt = false; 581 gotHeaderEntriesNum = 1; 582 gotPltHeaderEntriesNum = 2; 583 needsThunks = true; 584 585 tlsModuleIndexRel = R_PPC64_DTPMOD64; 586 tlsOffsetRel = R_PPC64_DTPREL64; 587 588 tlsGotRel = R_PPC64_TPREL64; 589 590 needsMoreStackNonSplit = false; 591 592 // We need 64K pages (at least under glibc/Linux, the loader won't 593 // set different permissions on a finer granularity than that). 594 defaultMaxPageSize = 65536; 595 596 // The PPC64 ELF ABI v1 spec, says: 597 // 598 // It is normally desirable to put segments with different characteristics 599 // in separate 256 Mbyte portions of the address space, to give the 600 // operating system full paging flexibility in the 64-bit address space. 601 // 602 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 603 // use 0x10000000 as the starting address. 604 defaultImageBase = 0x10000000; 605 606 write32(trapInstr.data(), 0x7fe00008); 607 } 608 609 int PPC64::getTlsGdRelaxSkip(RelType type) const { 610 // A __tls_get_addr call instruction is marked with 2 relocations: 611 // 612 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation 613 // R_PPC64_REL24: __tls_get_addr 614 // 615 // After the relaxation we no longer call __tls_get_addr and should skip both 616 // relocations to not create a false dependence on __tls_get_addr being 617 // defined. 618 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD) 619 return 2; 620 return 1; 621 } 622 623 static uint32_t getEFlags(InputFile *file) { 624 if (config->ekind == ELF64BEKind) 625 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags; 626 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags; 627 } 628 629 // This file implements v2 ABI. This function makes sure that all 630 // object files have v2 or an unspecified version as an ABI version. 631 uint32_t PPC64::calcEFlags() const { 632 for (InputFile *f : objectFiles) { 633 uint32_t flag = getEFlags(f); 634 if (flag == 1) 635 error(toString(f) + ": ABI version 1 is not supported"); 636 else if (flag > 2) 637 error(toString(f) + ": unrecognized e_flags: " + Twine(flag)); 638 } 639 return 2; 640 } 641 642 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const { 643 switch (rel.type) { 644 case R_PPC64_TOC16_HA: 645 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop". 646 relocate(loc, rel, val); 647 break; 648 case R_PPC64_TOC16_LO_DS: { 649 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or 650 // "addi reg, 2, var@toc". 651 uint32_t insn = readFromHalf16(loc); 652 if (getPrimaryOpCode(insn) != LD) 653 error("expected a 'ld' for got-indirect to toc-relative relaxing"); 654 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000); 655 relocateNoSym(loc, R_PPC64_TOC16_LO, val); 656 break; 657 } 658 case R_PPC64_GOT_PCREL34: { 659 // Clear the first 8 bits of the prefix and the first 6 bits of the 660 // instruction (the primary opcode). 661 uint64_t insn = readPrefixedInstruction(loc); 662 if ((insn & 0xfc000000) != 0xe4000000) 663 error("expected a 'pld' for got-indirect to pc-relative relaxing"); 664 insn &= ~0xff000000fc000000; 665 666 // Replace the cleared bits with the values for PADDI (0x600000038000000); 667 insn |= 0x600000038000000; 668 writePrefixedInstruction(loc, insn); 669 relocate(loc, rel, val); 670 break; 671 } 672 case R_PPC64_PCREL_OPT: { 673 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can 674 // be relaxed. The eligibility for the relaxation needs to be determined 675 // on that relocation since this one does not relocate a symbol. 676 uint64_t insn = readPrefixedInstruction(loc); 677 uint32_t accessInsn = read32(loc + rel.addend); 678 uint64_t pcRelInsn = getPCRelativeForm(accessInsn); 679 680 // This error is not necessary for correctness but is emitted for now 681 // to ensure we don't miss these opportunities in real code. It can be 682 // removed at a later date. 683 if (pcRelInsn == UINT64_C(-1)) { 684 errorOrWarn( 685 "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" + 686 Twine::utohexstr(accessInsn)); 687 break; 688 } 689 690 int64_t totalDisp = getTotalDisp(insn, accessInsn); 691 if (!isInt<34>(totalDisp)) 692 break; // Displacement doesn't fit. 693 // Convert the PADDI to the prefixed version of accessInsn and convert 694 // accessInsn to a nop. 695 writePrefixedInstruction(loc, pcRelInsn | 696 ((totalDisp & 0x3ffff0000) << 16) | 697 (totalDisp & 0xffff)); 698 write32(loc + rel.addend, NOP); // nop accessInsn. 699 break; 700 } 701 default: 702 llvm_unreachable("unexpected relocation type"); 703 } 704 } 705 706 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 707 uint64_t val) const { 708 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. 709 // The general dynamic code sequence for a global `x` will look like: 710 // Instruction Relocation Symbol 711 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 712 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 713 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 714 // R_PPC64_REL24 __tls_get_addr 715 // nop None None 716 717 // Relaxing to local exec entails converting: 718 // addis r3, r2, x@got@tlsgd@ha into nop 719 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha 720 // bl __tls_get_addr(x@tlsgd) into nop 721 // nop into addi r3, r3, x@tprel@l 722 723 switch (rel.type) { 724 case R_PPC64_GOT_TLSGD16_HA: 725 writeFromHalf16(loc, NOP); 726 break; 727 case R_PPC64_GOT_TLSGD16: 728 case R_PPC64_GOT_TLSGD16_LO: 729 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13 730 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 731 break; 732 case R_PPC64_GOT_TLSGD_PCREL34: 733 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to 734 // paddi r3, r13, x@tprel, 0 735 writePrefixedInstruction(loc, 0x06000000386d0000); 736 relocateNoSym(loc, R_PPC64_TPREL34, val); 737 break; 738 case R_PPC64_TLSGD: { 739 // PC Relative Relaxation: 740 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 741 // nop 742 // TOC Relaxation: 743 // Relax from bl __tls_get_addr(x@tlsgd) 744 // nop 745 // to 746 // nop 747 // addi r3, r3, x@tprel@l 748 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 749 if (locAsInt % 4 == 0) { 750 write32(loc, NOP); // nop 751 write32(loc + 4, 0x38630000); // addi r3, r3 752 // Since we are relocating a half16 type relocation and Loc + 4 points to 753 // the start of an instruction we need to advance the buffer by an extra 754 // 2 bytes on BE. 755 relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0), 756 R_PPC64_TPREL16_LO, val); 757 } else if (locAsInt % 4 == 1) { 758 write32(loc - 1, NOP); 759 } else { 760 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 761 } 762 break; 763 } 764 default: 765 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 766 } 767 } 768 769 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 770 uint64_t val) const { 771 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. 772 // The local dynamic code sequence for a global `x` will look like: 773 // Instruction Relocation Symbol 774 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x 775 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x 776 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x 777 // R_PPC64_REL24 __tls_get_addr 778 // nop None None 779 780 // Relaxing to local exec entails converting: 781 // addis r3, r2, x@got@tlsld@ha into nop 782 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 783 // bl __tls_get_addr(x@tlsgd) into nop 784 // nop into addi r3, r3, 4096 785 786 switch (rel.type) { 787 case R_PPC64_GOT_TLSLD16_HA: 788 writeFromHalf16(loc, NOP); 789 break; 790 case R_PPC64_GOT_TLSLD16_LO: 791 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0 792 break; 793 case R_PPC64_GOT_TLSLD_PCREL34: 794 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to 795 // paddi r3, r13, 0x1000, 0 796 writePrefixedInstruction(loc, 0x06000000386d1000); 797 break; 798 case R_PPC64_TLSLD: { 799 // PC Relative Relaxation: 800 // Relax from bl __tls_get_addr@notoc(x@tlsld) 801 // to 802 // nop 803 // TOC Relaxation: 804 // Relax from bl __tls_get_addr(x@tlsld) 805 // nop 806 // to 807 // nop 808 // addi r3, r3, 4096 809 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 810 if (locAsInt % 4 == 0) { 811 write32(loc, NOP); 812 write32(loc + 4, 0x38631000); // addi r3, r3, 4096 813 } else if (locAsInt % 4 == 1) { 814 write32(loc - 1, NOP); 815 } else { 816 errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment"); 817 } 818 break; 819 } 820 case R_PPC64_DTPREL16: 821 case R_PPC64_DTPREL16_HA: 822 case R_PPC64_DTPREL16_HI: 823 case R_PPC64_DTPREL16_DS: 824 case R_PPC64_DTPREL16_LO: 825 case R_PPC64_DTPREL16_LO_DS: 826 case R_PPC64_DTPREL34: 827 relocate(loc, rel, val); 828 break; 829 default: 830 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); 831 } 832 } 833 834 unsigned elf::getPPCDFormOp(unsigned secondaryOp) { 835 switch (secondaryOp) { 836 case LBZX: 837 return LBZ; 838 case LHZX: 839 return LHZ; 840 case LWZX: 841 return LWZ; 842 case LDX: 843 return LD; 844 case STBX: 845 return STB; 846 case STHX: 847 return STH; 848 case STWX: 849 return STW; 850 case STDX: 851 return STD; 852 case ADD: 853 return ADDI; 854 default: 855 return 0; 856 } 857 } 858 859 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 860 uint64_t val) const { 861 // The initial exec code sequence for a global `x` will look like: 862 // Instruction Relocation Symbol 863 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x 864 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x 865 // add r9, r9, x@tls R_PPC64_TLS x 866 867 // Relaxing to local exec entails converting: 868 // addis r9, r2, x@got@tprel@ha into nop 869 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha 870 // add r9, r9, x@tls into addi r9, r9, x@tprel@l 871 872 // x@tls R_PPC64_TLS is a relocation which does not compute anything, 873 // it is replaced with r13 (thread pointer). 874 875 // The add instruction in the initial exec sequence has multiple variations 876 // that need to be handled. If we are building an address it will use an add 877 // instruction, if we are accessing memory it will use any of the X-form 878 // indexed load or store instructions. 879 880 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0; 881 switch (rel.type) { 882 case R_PPC64_GOT_TPREL16_HA: 883 write32(loc - offset, NOP); 884 break; 885 case R_PPC64_GOT_TPREL16_LO_DS: 886 case R_PPC64_GOT_TPREL16_DS: { 887 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10 888 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13 889 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 890 break; 891 } 892 case R_PPC64_GOT_TPREL_PCREL34: { 893 const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000; 894 // paddi RT(from pld), r13, symbol@tprel, 0 895 writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT); 896 relocateNoSym(loc, R_PPC64_TPREL34, val); 897 break; 898 } 899 case R_PPC64_TLS: { 900 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 901 if (locAsInt % 4 == 0) { 902 uint32_t primaryOp = getPrimaryOpCode(read32(loc)); 903 if (primaryOp != 31) 904 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 905 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30 906 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 907 if (dFormOp == 0) 908 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 909 write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF))); 910 relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val); 911 } else if (locAsInt % 4 == 1) { 912 // If the offset is not 4 byte aligned then we have a PCRel type reloc. 913 // This version of the relocation is offset by one byte from the 914 // instruction it references. 915 uint32_t tlsInstr = read32(loc - 1); 916 uint32_t primaryOp = getPrimaryOpCode(tlsInstr); 917 if (primaryOp != 31) 918 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 919 uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30 920 // The add is a special case and should be turned into a nop. The paddi 921 // that comes before it will already have computed the address of the 922 // symbol. 923 if (secondaryOp == 266) { 924 // Check if the add uses the same result register as the input register. 925 uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10 926 uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15 927 if (ra == rt) { 928 write32(loc - 1, NOP); 929 } else { 930 // mr rt, ra 931 write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11)); 932 } 933 } else { 934 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 935 if (dFormOp == 0) 936 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 937 write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000))); 938 } 939 } else { 940 errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte " 941 "offset from 4 byte aligned"); 942 } 943 break; 944 } 945 default: 946 llvm_unreachable("unknown relocation for IE to LE"); 947 break; 948 } 949 } 950 951 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s, 952 const uint8_t *loc) const { 953 switch (type) { 954 case R_PPC64_NONE: 955 return R_NONE; 956 case R_PPC64_ADDR16: 957 case R_PPC64_ADDR16_DS: 958 case R_PPC64_ADDR16_HA: 959 case R_PPC64_ADDR16_HI: 960 case R_PPC64_ADDR16_HIGH: 961 case R_PPC64_ADDR16_HIGHER: 962 case R_PPC64_ADDR16_HIGHERA: 963 case R_PPC64_ADDR16_HIGHEST: 964 case R_PPC64_ADDR16_HIGHESTA: 965 case R_PPC64_ADDR16_LO: 966 case R_PPC64_ADDR16_LO_DS: 967 case R_PPC64_ADDR32: 968 case R_PPC64_ADDR64: 969 return R_ABS; 970 case R_PPC64_GOT16: 971 case R_PPC64_GOT16_DS: 972 case R_PPC64_GOT16_HA: 973 case R_PPC64_GOT16_HI: 974 case R_PPC64_GOT16_LO: 975 case R_PPC64_GOT16_LO_DS: 976 return R_GOT_OFF; 977 case R_PPC64_TOC16: 978 case R_PPC64_TOC16_DS: 979 case R_PPC64_TOC16_HI: 980 case R_PPC64_TOC16_LO: 981 return R_GOTREL; 982 case R_PPC64_GOT_PCREL34: 983 case R_PPC64_GOT_TPREL_PCREL34: 984 case R_PPC64_PCREL_OPT: 985 return R_GOT_PC; 986 case R_PPC64_TOC16_HA: 987 case R_PPC64_TOC16_LO_DS: 988 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL; 989 case R_PPC64_TOC: 990 return R_PPC64_TOCBASE; 991 case R_PPC64_REL14: 992 case R_PPC64_REL24: 993 return R_PPC64_CALL_PLT; 994 case R_PPC64_REL24_NOTOC: 995 return R_PLT_PC; 996 case R_PPC64_REL16_LO: 997 case R_PPC64_REL16_HA: 998 case R_PPC64_REL16_HI: 999 case R_PPC64_REL32: 1000 case R_PPC64_REL64: 1001 case R_PPC64_PCREL34: 1002 return R_PC; 1003 case R_PPC64_GOT_TLSGD16: 1004 case R_PPC64_GOT_TLSGD16_HA: 1005 case R_PPC64_GOT_TLSGD16_HI: 1006 case R_PPC64_GOT_TLSGD16_LO: 1007 return R_TLSGD_GOT; 1008 case R_PPC64_GOT_TLSGD_PCREL34: 1009 return R_TLSGD_PC; 1010 case R_PPC64_GOT_TLSLD16: 1011 case R_PPC64_GOT_TLSLD16_HA: 1012 case R_PPC64_GOT_TLSLD16_HI: 1013 case R_PPC64_GOT_TLSLD16_LO: 1014 return R_TLSLD_GOT; 1015 case R_PPC64_GOT_TLSLD_PCREL34: 1016 return R_TLSLD_PC; 1017 case R_PPC64_GOT_TPREL16_HA: 1018 case R_PPC64_GOT_TPREL16_LO_DS: 1019 case R_PPC64_GOT_TPREL16_DS: 1020 case R_PPC64_GOT_TPREL16_HI: 1021 return R_GOT_OFF; 1022 case R_PPC64_GOT_DTPREL16_HA: 1023 case R_PPC64_GOT_DTPREL16_LO_DS: 1024 case R_PPC64_GOT_DTPREL16_DS: 1025 case R_PPC64_GOT_DTPREL16_HI: 1026 return R_TLSLD_GOT_OFF; 1027 case R_PPC64_TPREL16: 1028 case R_PPC64_TPREL16_HA: 1029 case R_PPC64_TPREL16_LO: 1030 case R_PPC64_TPREL16_HI: 1031 case R_PPC64_TPREL16_DS: 1032 case R_PPC64_TPREL16_LO_DS: 1033 case R_PPC64_TPREL16_HIGHER: 1034 case R_PPC64_TPREL16_HIGHERA: 1035 case R_PPC64_TPREL16_HIGHEST: 1036 case R_PPC64_TPREL16_HIGHESTA: 1037 case R_PPC64_TPREL34: 1038 return R_TPREL; 1039 case R_PPC64_DTPREL16: 1040 case R_PPC64_DTPREL16_DS: 1041 case R_PPC64_DTPREL16_HA: 1042 case R_PPC64_DTPREL16_HI: 1043 case R_PPC64_DTPREL16_HIGHER: 1044 case R_PPC64_DTPREL16_HIGHERA: 1045 case R_PPC64_DTPREL16_HIGHEST: 1046 case R_PPC64_DTPREL16_HIGHESTA: 1047 case R_PPC64_DTPREL16_LO: 1048 case R_PPC64_DTPREL16_LO_DS: 1049 case R_PPC64_DTPREL64: 1050 case R_PPC64_DTPREL34: 1051 return R_DTPREL; 1052 case R_PPC64_TLSGD: 1053 return R_TLSDESC_CALL; 1054 case R_PPC64_TLSLD: 1055 return R_TLSLD_HINT; 1056 case R_PPC64_TLS: 1057 return R_TLSIE_HINT; 1058 default: 1059 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 1060 ") against symbol " + toString(s)); 1061 return R_NONE; 1062 } 1063 } 1064 1065 RelType PPC64::getDynRel(RelType type) const { 1066 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC) 1067 return R_PPC64_ADDR64; 1068 return R_PPC64_NONE; 1069 } 1070 1071 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const { 1072 switch (type) { 1073 case R_PPC64_NONE: 1074 return 0; 1075 case R_PPC64_REL32: 1076 return SignExtend64<32>(read32(buf)); 1077 case R_PPC64_ADDR64: 1078 case R_PPC64_REL64: 1079 return read64(buf); 1080 default: 1081 internalLinkerError(getErrorLocation(buf), 1082 "cannot read addend for relocation " + toString(type)); 1083 return 0; 1084 } 1085 } 1086 1087 void PPC64::writeGotHeader(uint8_t *buf) const { 1088 write64(buf, getPPC64TocBase()); 1089 } 1090 1091 void PPC64::writePltHeader(uint8_t *buf) const { 1092 // The generic resolver stub goes first. 1093 write32(buf + 0, 0x7c0802a6); // mflr r0 1094 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> 1095 write32(buf + 8, 0x7d6802a6); // mflr r11 1096 write32(buf + 12, 0x7c0803a6); // mtlr r0 1097 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12 1098 write32(buf + 20, 0x380cffcc); // subi r0,r12,52 1099 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2 1100 write32(buf + 28, 0xe98b002c); // ld r12,44(r11) 1101 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11 1102 write32(buf + 36, 0xe98b0000); // ld r12,0(r11) 1103 write32(buf + 40, 0xe96b0008); // ld r11,8(r11) 1104 write32(buf + 44, 0x7d8903a6); // mtctr r12 1105 write32(buf + 48, 0x4e800420); // bctr 1106 1107 // The 'bcl' instruction will set the link register to the address of the 1108 // following instruction ('mflr r11'). Here we store the offset from that 1109 // instruction to the first entry in the GotPlt section. 1110 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8); 1111 write64(buf + 52, gotPltOffset); 1112 } 1113 1114 void PPC64::writePlt(uint8_t *buf, const Symbol &sym, 1115 uint64_t /*pltEntryAddr*/) const { 1116 int32_t offset = pltHeaderSize + sym.pltIndex * pltEntrySize; 1117 // bl __glink_PLTresolve 1118 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc)); 1119 } 1120 1121 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym, 1122 uint64_t /*pltEntryAddr*/) const { 1123 writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase()); 1124 } 1125 1126 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) { 1127 // Relocations relative to the toc-base need to be adjusted by the Toc offset. 1128 uint64_t tocBiasedVal = val - ppc64TocOffset; 1129 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. 1130 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset; 1131 1132 switch (type) { 1133 // TOC biased relocation. 1134 case R_PPC64_GOT16: 1135 case R_PPC64_GOT_TLSGD16: 1136 case R_PPC64_GOT_TLSLD16: 1137 case R_PPC64_TOC16: 1138 return {R_PPC64_ADDR16, tocBiasedVal}; 1139 case R_PPC64_GOT16_DS: 1140 case R_PPC64_TOC16_DS: 1141 case R_PPC64_GOT_TPREL16_DS: 1142 case R_PPC64_GOT_DTPREL16_DS: 1143 return {R_PPC64_ADDR16_DS, tocBiasedVal}; 1144 case R_PPC64_GOT16_HA: 1145 case R_PPC64_GOT_TLSGD16_HA: 1146 case R_PPC64_GOT_TLSLD16_HA: 1147 case R_PPC64_GOT_TPREL16_HA: 1148 case R_PPC64_GOT_DTPREL16_HA: 1149 case R_PPC64_TOC16_HA: 1150 return {R_PPC64_ADDR16_HA, tocBiasedVal}; 1151 case R_PPC64_GOT16_HI: 1152 case R_PPC64_GOT_TLSGD16_HI: 1153 case R_PPC64_GOT_TLSLD16_HI: 1154 case R_PPC64_GOT_TPREL16_HI: 1155 case R_PPC64_GOT_DTPREL16_HI: 1156 case R_PPC64_TOC16_HI: 1157 return {R_PPC64_ADDR16_HI, tocBiasedVal}; 1158 case R_PPC64_GOT16_LO: 1159 case R_PPC64_GOT_TLSGD16_LO: 1160 case R_PPC64_GOT_TLSLD16_LO: 1161 case R_PPC64_TOC16_LO: 1162 return {R_PPC64_ADDR16_LO, tocBiasedVal}; 1163 case R_PPC64_GOT16_LO_DS: 1164 case R_PPC64_TOC16_LO_DS: 1165 case R_PPC64_GOT_TPREL16_LO_DS: 1166 case R_PPC64_GOT_DTPREL16_LO_DS: 1167 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal}; 1168 1169 // Dynamic Thread pointer biased relocation types. 1170 case R_PPC64_DTPREL16: 1171 return {R_PPC64_ADDR16, dtpBiasedVal}; 1172 case R_PPC64_DTPREL16_DS: 1173 return {R_PPC64_ADDR16_DS, dtpBiasedVal}; 1174 case R_PPC64_DTPREL16_HA: 1175 return {R_PPC64_ADDR16_HA, dtpBiasedVal}; 1176 case R_PPC64_DTPREL16_HI: 1177 return {R_PPC64_ADDR16_HI, dtpBiasedVal}; 1178 case R_PPC64_DTPREL16_HIGHER: 1179 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal}; 1180 case R_PPC64_DTPREL16_HIGHERA: 1181 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal}; 1182 case R_PPC64_DTPREL16_HIGHEST: 1183 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal}; 1184 case R_PPC64_DTPREL16_HIGHESTA: 1185 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal}; 1186 case R_PPC64_DTPREL16_LO: 1187 return {R_PPC64_ADDR16_LO, dtpBiasedVal}; 1188 case R_PPC64_DTPREL16_LO_DS: 1189 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal}; 1190 case R_PPC64_DTPREL64: 1191 return {R_PPC64_ADDR64, dtpBiasedVal}; 1192 1193 default: 1194 return {type, val}; 1195 } 1196 } 1197 1198 static bool isTocOptType(RelType type) { 1199 switch (type) { 1200 case R_PPC64_GOT16_HA: 1201 case R_PPC64_GOT16_LO_DS: 1202 case R_PPC64_TOC16_HA: 1203 case R_PPC64_TOC16_LO_DS: 1204 case R_PPC64_TOC16_LO: 1205 return true; 1206 default: 1207 return false; 1208 } 1209 } 1210 1211 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 1212 RelType type = rel.type; 1213 bool shouldTocOptimize = isTocOptType(type); 1214 // For dynamic thread pointer relative, toc-relative, and got-indirect 1215 // relocations, proceed in terms of the corresponding ADDR16 relocation type. 1216 std::tie(type, val) = toAddr16Rel(type, val); 1217 1218 switch (type) { 1219 case R_PPC64_ADDR14: { 1220 checkAlignment(loc, val, 4, rel); 1221 // Preserve the AA/LK bits in the branch instruction 1222 uint8_t aalk = loc[3]; 1223 write16(loc + 2, (aalk & 3) | (val & 0xfffc)); 1224 break; 1225 } 1226 case R_PPC64_ADDR16: 1227 checkIntUInt(loc, val, 16, rel); 1228 write16(loc, val); 1229 break; 1230 case R_PPC64_ADDR32: 1231 checkIntUInt(loc, val, 32, rel); 1232 write32(loc, val); 1233 break; 1234 case R_PPC64_ADDR16_DS: 1235 case R_PPC64_TPREL16_DS: { 1236 checkInt(loc, val, 16, rel); 1237 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1238 // DS-form instructions only use bits 30-31. 1239 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3; 1240 checkAlignment(loc, lo(val), mask + 1, rel); 1241 write16(loc, (read16(loc) & mask) | lo(val)); 1242 } break; 1243 case R_PPC64_ADDR16_HA: 1244 case R_PPC64_REL16_HA: 1245 case R_PPC64_TPREL16_HA: 1246 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) 1247 writeFromHalf16(loc, NOP); 1248 else { 1249 checkInt(loc, val + 0x8000, 32, rel); 1250 write16(loc, ha(val)); 1251 } 1252 break; 1253 case R_PPC64_ADDR16_HI: 1254 case R_PPC64_REL16_HI: 1255 case R_PPC64_TPREL16_HI: 1256 checkInt(loc, val, 32, rel); 1257 write16(loc, hi(val)); 1258 break; 1259 case R_PPC64_ADDR16_HIGH: 1260 write16(loc, hi(val)); 1261 break; 1262 case R_PPC64_ADDR16_HIGHER: 1263 case R_PPC64_TPREL16_HIGHER: 1264 write16(loc, higher(val)); 1265 break; 1266 case R_PPC64_ADDR16_HIGHERA: 1267 case R_PPC64_TPREL16_HIGHERA: 1268 write16(loc, highera(val)); 1269 break; 1270 case R_PPC64_ADDR16_HIGHEST: 1271 case R_PPC64_TPREL16_HIGHEST: 1272 write16(loc, highest(val)); 1273 break; 1274 case R_PPC64_ADDR16_HIGHESTA: 1275 case R_PPC64_TPREL16_HIGHESTA: 1276 write16(loc, highesta(val)); 1277 break; 1278 case R_PPC64_ADDR16_LO: 1279 case R_PPC64_REL16_LO: 1280 case R_PPC64_TPREL16_LO: 1281 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1282 // changed into a nop. The lo part then needs to be updated to use the 1283 // toc-pointer register r2, as the base register. 1284 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1285 uint32_t insn = readFromHalf16(loc); 1286 if (isInstructionUpdateForm(insn)) 1287 error(getErrorLocation(loc) + 1288 "can't toc-optimize an update instruction: 0x" + 1289 utohexstr(insn)); 1290 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val)); 1291 } else { 1292 write16(loc, lo(val)); 1293 } 1294 break; 1295 case R_PPC64_ADDR16_LO_DS: 1296 case R_PPC64_TPREL16_LO_DS: { 1297 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1298 // DS-form instructions only use bits 30-31. 1299 uint32_t insn = readFromHalf16(loc); 1300 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3; 1301 checkAlignment(loc, lo(val), mask + 1, rel); 1302 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1303 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1304 // changed into a nop. The lo part then needs to be updated to use the toc 1305 // pointer register r2, as the base register. 1306 if (isInstructionUpdateForm(insn)) 1307 error(getErrorLocation(loc) + 1308 "Can't toc-optimize an update instruction: 0x" + 1309 Twine::utohexstr(insn)); 1310 insn &= 0xffe00000 | mask; 1311 writeFromHalf16(loc, insn | 0x00020000 | lo(val)); 1312 } else { 1313 write16(loc, (read16(loc) & mask) | lo(val)); 1314 } 1315 } break; 1316 case R_PPC64_TPREL16: 1317 checkInt(loc, val, 16, rel); 1318 write16(loc, val); 1319 break; 1320 case R_PPC64_REL32: 1321 checkInt(loc, val, 32, rel); 1322 write32(loc, val); 1323 break; 1324 case R_PPC64_ADDR64: 1325 case R_PPC64_REL64: 1326 case R_PPC64_TOC: 1327 write64(loc, val); 1328 break; 1329 case R_PPC64_REL14: { 1330 uint32_t mask = 0x0000FFFC; 1331 checkInt(loc, val, 16, rel); 1332 checkAlignment(loc, val, 4, rel); 1333 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1334 break; 1335 } 1336 case R_PPC64_REL24: 1337 case R_PPC64_REL24_NOTOC: { 1338 uint32_t mask = 0x03FFFFFC; 1339 checkInt(loc, val, 26, rel); 1340 checkAlignment(loc, val, 4, rel); 1341 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1342 break; 1343 } 1344 case R_PPC64_DTPREL64: 1345 write64(loc, val - dynamicThreadPointerOffset); 1346 break; 1347 case R_PPC64_DTPREL34: 1348 // The Dynamic Thread Vector actually points 0x8000 bytes past the start 1349 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first 1350 // need to subtract that value then fallthrough to the general case. 1351 val -= dynamicThreadPointerOffset; 1352 LLVM_FALLTHROUGH; 1353 case R_PPC64_PCREL34: 1354 case R_PPC64_GOT_PCREL34: 1355 case R_PPC64_GOT_TLSGD_PCREL34: 1356 case R_PPC64_GOT_TLSLD_PCREL34: 1357 case R_PPC64_GOT_TPREL_PCREL34: 1358 case R_PPC64_TPREL34: { 1359 const uint64_t si0Mask = 0x00000003ffff0000; 1360 const uint64_t si1Mask = 0x000000000000ffff; 1361 const uint64_t fullMask = 0x0003ffff0000ffff; 1362 checkInt(loc, val, 34, rel); 1363 1364 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask; 1365 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) | 1366 (val & si1Mask)); 1367 break; 1368 } 1369 // If we encounter a PCREL_OPT relocation that we won't optimize. 1370 case R_PPC64_PCREL_OPT: 1371 break; 1372 default: 1373 llvm_unreachable("unknown relocation"); 1374 } 1375 } 1376 1377 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file, 1378 uint64_t branchAddr, const Symbol &s, int64_t a) const { 1379 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 && 1380 type != R_PPC64_REL24_NOTOC) 1381 return false; 1382 1383 // If a function is in the Plt it needs to be called with a call-stub. 1384 if (s.isInPlt()) 1385 return true; 1386 1387 // This check looks at the st_other bits of the callee with relocation 1388 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee 1389 // clobbers the TOC and we need an R2 save stub. 1390 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1) 1391 return true; 1392 1393 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1) 1394 return true; 1395 1396 // If a symbol is a weak undefined and we are compiling an executable 1397 // it doesn't need a range-extending thunk since it can't be called. 1398 if (s.isUndefWeak() && !config->shared) 1399 return false; 1400 1401 // If the offset exceeds the range of the branch type then it will need 1402 // a range-extending thunk. 1403 // See the comment in getRelocTargetVA() about R_PPC64_CALL. 1404 return !inBranchRange(type, branchAddr, 1405 s.getVA(a) + 1406 getPPC64GlobalEntryToLocalEntryOffset(s.stOther)); 1407 } 1408 1409 uint32_t PPC64::getThunkSectionSpacing() const { 1410 // See comment in Arch/ARM.cpp for a more detailed explanation of 1411 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on 1412 // R_PPC64_REL24, which is used by unconditional branch instructions. 1413 // 0x2000000 = (1 << 24-1) * 4 1414 return 0x2000000; 1415 } 1416 1417 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { 1418 int64_t offset = dst - src; 1419 if (type == R_PPC64_REL14) 1420 return isInt<16>(offset); 1421 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) 1422 return isInt<26>(offset); 1423 llvm_unreachable("unsupported relocation type used in branch"); 1424 } 1425 1426 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const { 1427 if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE) 1428 return R_RELAX_TLS_GD_TO_IE_GOT_OFF; 1429 if (expr == R_RELAX_TLS_LD_TO_LE) 1430 return R_RELAX_TLS_LD_TO_LE_ABS; 1431 return expr; 1432 } 1433 1434 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend, 1435 const uint8_t *loc) const { 1436 if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) && 1437 config->pcRelOptimize) { 1438 // It only makes sense to optimize pld since paddi means that the address 1439 // of the object in the GOT is required rather than the object itself. 1440 if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000) 1441 return R_PPC64_RELAX_GOT_PC; 1442 } 1443 return R_GOT_PC; 1444 } 1445 1446 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. 1447 // The general dynamic code sequence for a global `x` uses 4 instructions. 1448 // Instruction Relocation Symbol 1449 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 1450 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 1451 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 1452 // R_PPC64_REL24 __tls_get_addr 1453 // nop None None 1454 // 1455 // Relaxing to initial-exec entails: 1456 // 1) Convert the addis/addi pair that builds the address of the tls_index 1457 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. 1458 // 2) Convert the call to __tls_get_addr to a nop. 1459 // 3) Convert the nop following the call to an add of the loaded offset to the 1460 // thread pointer. 1461 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is 1462 // used as the relaxation hint for both steps 2 and 3. 1463 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 1464 uint64_t val) const { 1465 switch (rel.type) { 1466 case R_PPC64_GOT_TLSGD16_HA: 1467 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to 1468 // addis rT, r2, sym@got@tprel@ha. 1469 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val); 1470 return; 1471 case R_PPC64_GOT_TLSGD16: 1472 case R_PPC64_GOT_TLSGD16_LO: { 1473 // Relax from addi r3, rA, sym@got@tlsgd@l to 1474 // ld r3, sym@got@tprel@l(rA) 1475 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16)); 1476 writeFromHalf16(loc, 0xe8600000 | ra); 1477 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val); 1478 return; 1479 } 1480 case R_PPC64_GOT_TLSGD_PCREL34: { 1481 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to 1482 // pld r3, sym@got@tprel@pcrel 1483 writePrefixedInstruction(loc, 0x04100000e4600000); 1484 relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val); 1485 return; 1486 } 1487 case R_PPC64_TLSGD: { 1488 // PC Relative Relaxation: 1489 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 1490 // nop 1491 // TOC Relaxation: 1492 // Relax from bl __tls_get_addr(x@tlsgd) 1493 // nop 1494 // to 1495 // nop 1496 // add r3, r3, r13 1497 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 1498 if (locAsInt % 4 == 0) { 1499 write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop 1500 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13 1501 } else if (locAsInt % 4 == 1) { 1502 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13 1503 write32(loc - 1, 0x7c636a14); 1504 } else { 1505 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 1506 } 1507 return; 1508 } 1509 default: 1510 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); 1511 } 1512 } 1513 1514 // The prologue for a split-stack function is expected to look roughly 1515 // like this: 1516 // .Lglobal_entry_point: 1517 // # TOC pointer initialization. 1518 // ... 1519 // .Llocal_entry_point: 1520 // # load the __private_ss member of the threads tcbhead. 1521 // ld r0,-0x7000-64(r13) 1522 // # subtract the functions stack size from the stack pointer. 1523 // addis r12, r1, ha(-stack-frame size) 1524 // addi r12, r12, l(-stack-frame size) 1525 // # compare needed to actual and branch to allocate_more_stack if more 1526 // # space is needed, otherwise fallthrough to 'normal' function body. 1527 // cmpld cr7,r12,r0 1528 // blt- cr7, .Lallocate_more_stack 1529 // 1530 // -) The allocate_more_stack block might be placed after the split-stack 1531 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` 1532 // instead. 1533 // -) If either the addis or addi is not needed due to the stack size being 1534 // smaller then 32K or a multiple of 64K they will be replaced with a nop, 1535 // but there will always be 2 instructions the linker can overwrite for the 1536 // adjusted stack size. 1537 // 1538 // The linkers job here is to increase the stack size used in the addis/addi 1539 // pair by split-stack-size-adjust. 1540 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) 1541 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) 1542 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 1543 uint8_t stOther) const { 1544 // If the caller has a global entry point adjust the buffer past it. The start 1545 // of the split-stack prologue will be at the local entry point. 1546 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther); 1547 1548 // At the very least we expect to see a load of some split-stack data from the 1549 // tcb, and 2 instructions that calculate the ending stack address this 1550 // function will require. If there is not enough room for at least 3 1551 // instructions it can't be a split-stack prologue. 1552 if (loc + 12 >= end) 1553 return false; 1554 1555 // First instruction must be `ld r0, -0x7000-64(r13)` 1556 if (read32(loc) != 0xe80d8fc0) 1557 return false; 1558 1559 int16_t hiImm = 0; 1560 int16_t loImm = 0; 1561 // First instruction can be either an addis if the frame size is larger then 1562 // 32K, or an addi if the size is less then 32K. 1563 int32_t firstInstr = read32(loc + 4); 1564 if (getPrimaryOpCode(firstInstr) == 15) { 1565 hiImm = firstInstr & 0xFFFF; 1566 } else if (getPrimaryOpCode(firstInstr) == 14) { 1567 loImm = firstInstr & 0xFFFF; 1568 } else { 1569 return false; 1570 } 1571 1572 // Second instruction is either an addi or a nop. If the first instruction was 1573 // an addi then LoImm is set and the second instruction must be a nop. 1574 uint32_t secondInstr = read32(loc + 8); 1575 if (!loImm && getPrimaryOpCode(secondInstr) == 14) { 1576 loImm = secondInstr & 0xFFFF; 1577 } else if (secondInstr != NOP) { 1578 return false; 1579 } 1580 1581 // The register operands of the first instruction should be the stack-pointer 1582 // (r1) as the input (RA) and r12 as the output (RT). If the second 1583 // instruction is not a nop, then it should use r12 as both input and output. 1584 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT, 1585 uint8_t expectedRA) { 1586 return ((instr & 0x3E00000) >> 21 == expectedRT) && 1587 ((instr & 0x1F0000) >> 16 == expectedRA); 1588 }; 1589 if (!checkRegOperands(firstInstr, 12, 1)) 1590 return false; 1591 if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12)) 1592 return false; 1593 1594 int32_t stackFrameSize = (hiImm * 65536) + loImm; 1595 // Check that the adjusted size doesn't overflow what we can represent with 2 1596 // instructions. 1597 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) { 1598 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows"); 1599 return false; 1600 } 1601 1602 int32_t adjustedStackFrameSize = 1603 stackFrameSize - config->splitStackAdjustSize; 1604 1605 loImm = adjustedStackFrameSize & 0xFFFF; 1606 hiImm = (adjustedStackFrameSize + 0x8000) >> 16; 1607 if (hiImm) { 1608 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm); 1609 // If the low immediate is zero the second instruction will be a nop. 1610 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP; 1611 write32(loc + 8, secondInstr); 1612 } else { 1613 // addi r12, r1, imm 1614 write32(loc + 4, (0x39810000) | (uint16_t)loImm); 1615 write32(loc + 8, NOP); 1616 } 1617 1618 return true; 1619 } 1620 1621 TargetInfo *elf::getPPC64TargetInfo() { 1622 static PPC64 target; 1623 return ⌖ 1624 } 1625