xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/PPC64.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===- PPC64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "SymbolTable.h"
12 #include "Symbols.h"
13 #include "SyntheticSections.h"
14 #include "Target.h"
15 #include "Thunks.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/Support/Endian.h"
18 
19 using namespace llvm;
20 using namespace llvm::object;
21 using namespace llvm::support::endian;
22 using namespace llvm::ELF;
23 using namespace lld;
24 using namespace lld::elf;
25 
26 constexpr uint64_t ppc64TocOffset = 0x8000;
27 constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
28 
29 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
30 // instructions that can be used as part of the initial exec TLS sequence.
31 enum XFormOpcd {
32   LBZX = 87,
33   LHZX = 279,
34   LWZX = 23,
35   LDX = 21,
36   STBX = 215,
37   STHX = 407,
38   STWX = 151,
39   STDX = 149,
40   ADD = 266,
41 };
42 
43 enum DFormOpcd {
44   LBZ = 34,
45   LBZU = 35,
46   LHZ = 40,
47   LHZU = 41,
48   LHAU = 43,
49   LWZ = 32,
50   LWZU = 33,
51   LFSU = 49,
52   LD = 58,
53   LFDU = 51,
54   STB = 38,
55   STBU = 39,
56   STH = 44,
57   STHU = 45,
58   STW = 36,
59   STWU = 37,
60   STFSU = 53,
61   STFDU = 55,
62   STD = 62,
63   ADDI = 14
64 };
65 
66 constexpr uint32_t NOP = 0x60000000;
67 
68 enum class PPCLegacyInsn : uint32_t {
69   NOINSN = 0,
70   // Loads.
71   LBZ = 0x88000000,
72   LHZ = 0xa0000000,
73   LWZ = 0x80000000,
74   LHA = 0xa8000000,
75   LWA = 0xe8000002,
76   LD = 0xe8000000,
77   LFS = 0xC0000000,
78   LXSSP = 0xe4000003,
79   LFD = 0xc8000000,
80   LXSD = 0xe4000002,
81   LXV = 0xf4000001,
82   LXVP = 0x18000000,
83 
84   // Stores.
85   STB = 0x98000000,
86   STH = 0xb0000000,
87   STW = 0x90000000,
88   STD = 0xf8000000,
89   STFS = 0xd0000000,
90   STXSSP = 0xf4000003,
91   STFD = 0xd8000000,
92   STXSD = 0xf4000002,
93   STXV = 0xf4000005,
94   STXVP = 0x18000001
95 };
96 enum class PPCPrefixedInsn : uint64_t {
97   NOINSN = 0,
98   PREFIX_MLS = 0x0610000000000000,
99   PREFIX_8LS = 0x0410000000000000,
100 
101   // Loads.
102   PLBZ = PREFIX_MLS,
103   PLHZ = PREFIX_MLS,
104   PLWZ = PREFIX_MLS,
105   PLHA = PREFIX_MLS,
106   PLWA = PREFIX_8LS | 0xa4000000,
107   PLD = PREFIX_8LS | 0xe4000000,
108   PLFS = PREFIX_MLS,
109   PLXSSP = PREFIX_8LS | 0xac000000,
110   PLFD = PREFIX_MLS,
111   PLXSD = PREFIX_8LS | 0xa8000000,
112   PLXV = PREFIX_8LS | 0xc8000000,
113   PLXVP = PREFIX_8LS | 0xe8000000,
114 
115   // Stores.
116   PSTB = PREFIX_MLS,
117   PSTH = PREFIX_MLS,
118   PSTW = PREFIX_MLS,
119   PSTD = PREFIX_8LS | 0xf4000000,
120   PSTFS = PREFIX_MLS,
121   PSTXSSP = PREFIX_8LS | 0xbc000000,
122   PSTFD = PREFIX_MLS,
123   PSTXSD = PREFIX_8LS | 0xb8000000,
124   PSTXV = PREFIX_8LS | 0xd8000000,
125   PSTXVP = PREFIX_8LS | 0xf8000000
126 };
127 static bool checkPPCLegacyInsn(uint32_t encoding) {
128   PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
129   if (insn == PPCLegacyInsn::NOINSN)
130     return false;
131 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
132   if (insn == PPCLegacyInsn::Legacy)                                           \
133     return true;
134 #include "PPCInsns.def"
135 #undef PCREL_OPT
136   return false;
137 }
138 
139 // Masks to apply to legacy instructions when converting them to prefixed,
140 // pc-relative versions. For the most part, the primary opcode is shared
141 // between the legacy instruction and the suffix of its prefixed version.
142 // However, there are some instances where that isn't the case (DS-Form and
143 // DQ-form instructions).
144 enum class LegacyToPrefixMask : uint64_t {
145   NOMASK = 0x0,
146   OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
147   ONLY_RST = 0x3e00000,     // [RS]T (6-10).
148   ST_STX28_TO5 =
149       0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
150 };
151 
152 namespace {
153 class PPC64 final : public TargetInfo {
154 public:
155   PPC64();
156   int getTlsGdRelaxSkip(RelType type) const override;
157   uint32_t calcEFlags() const override;
158   RelExpr getRelExpr(RelType type, const Symbol &s,
159                      const uint8_t *loc) const override;
160   RelType getDynRel(RelType type) const override;
161   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
162   void writePltHeader(uint8_t *buf) const override;
163   void writePlt(uint8_t *buf, const Symbol &sym,
164                 uint64_t pltEntryAddr) const override;
165   void writeIplt(uint8_t *buf, const Symbol &sym,
166                  uint64_t pltEntryAddr) const override;
167   void relocate(uint8_t *loc, const Relocation &rel,
168                 uint64_t val) const override;
169   void writeGotHeader(uint8_t *buf) const override;
170   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
171                   uint64_t branchAddr, const Symbol &s,
172                   int64_t a) const override;
173   uint32_t getThunkSectionSpacing() const override;
174   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
175   RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
176   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
177                           const uint8_t *loc) const override;
178   void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const;
179   void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
180 
181   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
182                                         uint8_t stOther) const override;
183 
184 private:
185   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
186   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
187   void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
188   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
189 };
190 } // namespace
191 
192 uint64_t elf::getPPC64TocBase() {
193   // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
194   // TOC starts where the first of these sections starts. We always create a
195   // .got when we see a relocation that uses it, so for us the start is always
196   // the .got.
197   uint64_t tocVA = in.got->getVA();
198 
199   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
200   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
201   // code (crt1.o) assumes that you can get from the TOC base to the
202   // start of the .toc section with only a single (signed) 16-bit relocation.
203   return tocVA + ppc64TocOffset;
204 }
205 
206 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
207   // The offset is encoded into the 3 most significant bits of the st_other
208   // field, with some special values described in section 3.4.1 of the ABI:
209   // 0   --> Zero offset between the GEP and LEP, and the function does NOT use
210   //         the TOC pointer (r2). r2 will hold the same value on returning from
211   //         the function as it did on entering the function.
212   // 1   --> Zero offset between the GEP and LEP, and r2 should be treated as a
213   //         caller-saved register for all callers.
214   // 2-6 --> The  binary logarithm of the offset eg:
215   //         2 --> 2^2 = 4 bytes -->  1 instruction.
216   //         6 --> 2^6 = 64 bytes --> 16 instructions.
217   // 7   --> Reserved.
218   uint8_t gepToLep = (stOther >> 5) & 7;
219   if (gepToLep < 2)
220     return 0;
221 
222   // The value encoded in the st_other bits is the
223   // log-base-2(offset).
224   if (gepToLep < 7)
225     return 1 << gepToLep;
226 
227   error("reserved value of 7 in the 3 most-significant-bits of st_other");
228   return 0;
229 }
230 
231 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
232   insn = config->isLE ? insn << 32 | insn >> 32 : insn;
233   write64(loc, insn);
234 }
235 
236 static bool addOptional(StringRef name, uint64_t value,
237                         std::vector<Defined *> &defined) {
238   Symbol *sym = symtab.find(name);
239   if (!sym || sym->isDefined())
240     return false;
241   sym->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
242                        STT_FUNC, value,
243                        /*size=*/0, /*section=*/nullptr});
244   defined.push_back(cast<Defined>(sym));
245   return true;
246 }
247 
248 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
249 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
250 // The labels are defined only if they exist in the symbol table.
251 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
252                           int from, uint32_t firstInsn,
253                           ArrayRef<uint32_t> tail) {
254   std::vector<Defined *> defined;
255   char name[16];
256   int first;
257   uint32_t *ptr = buf.data();
258   for (int r = from; r < 32; ++r) {
259     format("%s%d", prefix, r).snprint(name, sizeof(name));
260     if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
261       first = r - from;
262     write32(ptr++, firstInsn + 0x200008 * (r - from));
263   }
264   for (uint32_t insn : tail)
265     write32(ptr++, insn);
266   assert(ptr == &*buf.end());
267 
268   if (defined.empty())
269     return;
270   // The full section content has the extent of [begin, end). We drop unused
271   // instructions and write [first,end).
272   auto *sec = make<InputSection>(
273       nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
274       ArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
275                4 * (buf.size() - first)),
276       ".text");
277   ctx.inputSections.push_back(sec);
278   for (Defined *sym : defined) {
279     sym->section = sec;
280     sym->value -= 4 * first;
281   }
282 }
283 
284 // Implements some save and restore functions as described by ELF V2 ABI to be
285 // compatible with GCC. With GCC -Os, when the number of call-saved registers
286 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
287 // expects the linker to define them. See
288 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
289 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
290 // weird because libgcc.a would be the natural place. The linker generation
291 // approach has the advantage that the linker can generate multiple copies to
292 // avoid long branch thunks. However, we don't consider the advantage
293 // significant enough to complicate our trunk implementation, so we take the
294 // simple approach and synthesize .text sections providing the implementation.
295 void elf::addPPC64SaveRestore() {
296   static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
297   constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
298 
299   // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
300   // Tail: ld 0, 16(1); mtlr 0; blr
301   writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
302                 {0xe8010010, mtlr_0, blr});
303   // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
304   // Tail: blr
305   writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
306   // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
307   // Tail: std 0, 16(1); blr
308   writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
309   // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
310   // Tail: blr
311   writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
312 }
313 
314 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
315 template <typename ELFT>
316 static std::pair<Defined *, int64_t>
317 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
318   // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
319   // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
320   // relocation index in most cases.
321   //
322   // In rare cases a TOC entry may store a constant that doesn't need an
323   // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
324   // points to a relocation with larger r_offset. Do a linear probe then.
325   // Constants are extremely uncommon in .toc and the extra number of array
326   // accesses can be seen as a small constant.
327   ArrayRef<typename ELFT::Rela> relas =
328       tocSec->template relsOrRelas<ELFT>().relas;
329   if (relas.empty())
330     return {};
331   uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
332   for (;;) {
333     if (relas[index].r_offset == offset) {
334       Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
335       return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
336     }
337     if (relas[index].r_offset < offset || index == 0)
338       break;
339     --index;
340   }
341   return {};
342 }
343 
344 // When accessing a symbol defined in another translation unit, compilers
345 // reserve a .toc entry, allocate a local label and generate toc-indirect
346 // instructions:
347 //
348 //   addis 3, 2, .LC0@toc@ha  # R_PPC64_TOC16_HA
349 //   ld    3, .LC0@toc@l(3)   # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
350 //   ld/lwa 3, 0(3)           # load the value from the address
351 //
352 //   .section .toc,"aw",@progbits
353 //   .LC0: .tc var[TC],var
354 //
355 // If var is defined, non-preemptable and addressable with a 32-bit signed
356 // offset from the toc base, the address of var can be computed by adding an
357 // offset to the toc base, saving a load.
358 //
359 //   addis 3,2,var@toc@ha     # this may be relaxed to a nop,
360 //   addi  3,3,var@toc@l      # then this becomes addi 3,2,var@toc
361 //   ld/lwa 3, 0(3)           # load the value from the address
362 //
363 // Returns true if the relaxation is performed.
364 static bool tryRelaxPPC64TocIndirection(const Relocation &rel,
365                                         uint8_t *bufLoc) {
366   assert(config->tocOptimize);
367   if (rel.addend < 0)
368     return false;
369 
370   // If the symbol is not the .toc section, this isn't a toc-indirection.
371   Defined *defSym = dyn_cast<Defined>(rel.sym);
372   if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
373     return false;
374 
375   Defined *d;
376   int64_t addend;
377   auto *tocISB = cast<InputSectionBase>(defSym->section);
378   std::tie(d, addend) =
379       config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
380                    : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
381 
382   // Only non-preemptable defined symbols can be relaxed.
383   if (!d || d->isPreemptible)
384     return false;
385 
386   // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
387   // ifunc and changed its type to STT_FUNC.
388   assert(!d->isGnuIFunc());
389 
390   // Two instructions can materialize a 32-bit signed offset from the toc base.
391   uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
392   if (!isInt<32>(tocRelative))
393     return false;
394 
395   // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
396   static_cast<const PPC64 &>(*target).relaxGot(bufLoc, rel,
397                                                tocRelative + ppc64TocOffset);
398   return true;
399 }
400 
401 // Relocation masks following the #lo(value), #hi(value), #ha(value),
402 // #higher(value), #highera(value), #highest(value), and #highesta(value)
403 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
404 // document.
405 static uint16_t lo(uint64_t v) { return v; }
406 static uint16_t hi(uint64_t v) { return v >> 16; }
407 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
408 static uint16_t higher(uint64_t v) { return v >> 32; }
409 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
410 static uint16_t highest(uint64_t v) { return v >> 48; }
411 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
412 
413 // Extracts the 'PO' field of an instruction encoding.
414 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
415 
416 static bool isDQFormInstruction(uint32_t encoding) {
417   switch (getPrimaryOpCode(encoding)) {
418   default:
419     return false;
420   case 6: // Power10 paired loads/stores (lxvp, stxvp).
421   case 56:
422     // The only instruction with a primary opcode of 56 is `lq`.
423     return true;
424   case 61:
425     // There are both DS and DQ instruction forms with this primary opcode.
426     // Namely `lxv` and `stxv` are the DQ-forms that use it.
427     // The DS 'XO' bits being set to 01 is restricted to DQ form.
428     return (encoding & 3) == 0x1;
429   }
430 }
431 
432 static bool isDSFormInstruction(PPCLegacyInsn insn) {
433   switch (insn) {
434   default:
435     return false;
436   case PPCLegacyInsn::LWA:
437   case PPCLegacyInsn::LD:
438   case PPCLegacyInsn::LXSD:
439   case PPCLegacyInsn::LXSSP:
440   case PPCLegacyInsn::STD:
441   case PPCLegacyInsn::STXSD:
442   case PPCLegacyInsn::STXSSP:
443     return true;
444   }
445 }
446 
447 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
448   uint32_t opc = encoding & 0xfc000000;
449 
450   // If the primary opcode is shared between multiple instructions, we need to
451   // fix it up to match the actual instruction we are after.
452   if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
453        opc == 0xf8000000) &&
454       !isDQFormInstruction(encoding))
455     opc = encoding & 0xfc000003;
456   else if (opc == 0xf4000000)
457     opc = encoding & 0xfc000007;
458   else if (opc == 0x18000000)
459     opc = encoding & 0xfc00000f;
460 
461   // If the value is not one of the enumerators in PPCLegacyInsn, we want to
462   // return PPCLegacyInsn::NOINSN.
463   if (!checkPPCLegacyInsn(opc))
464     return PPCLegacyInsn::NOINSN;
465   return static_cast<PPCLegacyInsn>(opc);
466 }
467 
468 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
469   switch (insn) {
470 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
471   case PPCLegacyInsn::Legacy:                                                  \
472     return PPCPrefixedInsn::PCRel
473 #include "PPCInsns.def"
474 #undef PCREL_OPT
475   }
476   return PPCPrefixedInsn::NOINSN;
477 }
478 
479 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
480   switch (insn) {
481 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
482   case PPCLegacyInsn::Legacy:                                                  \
483     return LegacyToPrefixMask::InsnMask
484 #include "PPCInsns.def"
485 #undef PCREL_OPT
486   }
487   return LegacyToPrefixMask::NOMASK;
488 }
489 static uint64_t getPCRelativeForm(uint32_t encoding) {
490   PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
491   PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
492   if (pcrelInsn == PPCPrefixedInsn::NOINSN)
493     return UINT64_C(-1);
494   LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
495   uint64_t pcrelEncoding =
496       (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
497 
498   // If the mask requires moving bit 28 to bit 5, do that now.
499   if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
500     pcrelEncoding |= (encoding & 0x8) << 23;
501   return pcrelEncoding;
502 }
503 
504 static bool isInstructionUpdateForm(uint32_t encoding) {
505   switch (getPrimaryOpCode(encoding)) {
506   default:
507     return false;
508   case LBZU:
509   case LHAU:
510   case LHZU:
511   case LWZU:
512   case LFSU:
513   case LFDU:
514   case STBU:
515   case STHU:
516   case STWU:
517   case STFSU:
518   case STFDU:
519     return true;
520     // LWA has the same opcode as LD, and the DS bits is what differentiates
521     // between LD/LDU/LWA
522   case LD:
523   case STD:
524     return (encoding & 3) == 1;
525   }
526 }
527 
528 // Compute the total displacement between the prefixed instruction that gets
529 // to the start of the data and the load/store instruction that has the offset
530 // into the data structure.
531 // For example:
532 // paddi 3, 0, 1000, 1
533 // lwz 3, 20(3)
534 // Should add up to 1020 for total displacement.
535 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
536   int64_t disp34 = llvm::SignExtend64(
537       ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
538   int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
539   // For DS and DQ form instructions, we need to mask out the XO bits.
540   if (isDQFormInstruction(accessInsn))
541     disp16 &= ~0xf;
542   else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
543     disp16 &= ~0x3;
544   return disp34 + disp16;
545 }
546 
547 // There are a number of places when we either want to read or write an
548 // instruction when handling a half16 relocation type. On big-endian the buffer
549 // pointer is pointing into the middle of the word we want to extract, and on
550 // little-endian it is pointing to the start of the word. These 2 helpers are to
551 // simplify reading and writing in that context.
552 static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
553   write32(config->isLE ? loc : loc - 2, insn);
554 }
555 
556 static uint32_t readFromHalf16(const uint8_t *loc) {
557   return read32(config->isLE ? loc : loc - 2);
558 }
559 
560 static uint64_t readPrefixedInstruction(const uint8_t *loc) {
561   uint64_t fullInstr = read64(loc);
562   return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
563 }
564 
565 PPC64::PPC64() {
566   copyRel = R_PPC64_COPY;
567   gotRel = R_PPC64_GLOB_DAT;
568   pltRel = R_PPC64_JMP_SLOT;
569   relativeRel = R_PPC64_RELATIVE;
570   iRelativeRel = R_PPC64_IRELATIVE;
571   symbolicRel = R_PPC64_ADDR64;
572   pltHeaderSize = 60;
573   pltEntrySize = 4;
574   ipltEntrySize = 16; // PPC64PltCallStub::size
575   gotHeaderEntriesNum = 1;
576   gotPltHeaderEntriesNum = 2;
577   needsThunks = true;
578 
579   tlsModuleIndexRel = R_PPC64_DTPMOD64;
580   tlsOffsetRel = R_PPC64_DTPREL64;
581 
582   tlsGotRel = R_PPC64_TPREL64;
583 
584   needsMoreStackNonSplit = false;
585 
586   // We need 64K pages (at least under glibc/Linux, the loader won't
587   // set different permissions on a finer granularity than that).
588   defaultMaxPageSize = 65536;
589 
590   // The PPC64 ELF ABI v1 spec, says:
591   //
592   //   It is normally desirable to put segments with different characteristics
593   //   in separate 256 Mbyte portions of the address space, to give the
594   //   operating system full paging flexibility in the 64-bit address space.
595   //
596   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
597   // use 0x10000000 as the starting address.
598   defaultImageBase = 0x10000000;
599 
600   write32(trapInstr.data(), 0x7fe00008);
601 }
602 
603 int PPC64::getTlsGdRelaxSkip(RelType type) const {
604   // A __tls_get_addr call instruction is marked with 2 relocations:
605   //
606   //   R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
607   //   R_PPC64_REL24: __tls_get_addr
608   //
609   // After the relaxation we no longer call __tls_get_addr and should skip both
610   // relocations to not create a false dependence on __tls_get_addr being
611   // defined.
612   if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
613     return 2;
614   return 1;
615 }
616 
617 static uint32_t getEFlags(InputFile *file) {
618   if (file->ekind == ELF64BEKind)
619     return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
620   return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
621 }
622 
623 // This file implements v2 ABI. This function makes sure that all
624 // object files have v2 or an unspecified version as an ABI version.
625 uint32_t PPC64::calcEFlags() const {
626   for (InputFile *f : ctx.objectFiles) {
627     uint32_t flag = getEFlags(f);
628     if (flag == 1)
629       error(toString(f) + ": ABI version 1 is not supported");
630     else if (flag > 2)
631       error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
632   }
633   return 2;
634 }
635 
636 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
637   switch (rel.type) {
638   case R_PPC64_TOC16_HA:
639     // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
640     relocate(loc, rel, val);
641     break;
642   case R_PPC64_TOC16_LO_DS: {
643     // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
644     // "addi reg, 2, var@toc".
645     uint32_t insn = readFromHalf16(loc);
646     if (getPrimaryOpCode(insn) != LD)
647       error("expected a 'ld' for got-indirect to toc-relative relaxing");
648     writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
649     relocateNoSym(loc, R_PPC64_TOC16_LO, val);
650     break;
651   }
652   case R_PPC64_GOT_PCREL34: {
653     // Clear the first 8 bits of the prefix and the first 6 bits of the
654     // instruction (the primary opcode).
655     uint64_t insn = readPrefixedInstruction(loc);
656     if ((insn & 0xfc000000) != 0xe4000000)
657       error("expected a 'pld' for got-indirect to pc-relative relaxing");
658     insn &= ~0xff000000fc000000;
659 
660     // Replace the cleared bits with the values for PADDI (0x600000038000000);
661     insn |= 0x600000038000000;
662     writePrefixedInstruction(loc, insn);
663     relocate(loc, rel, val);
664     break;
665   }
666   case R_PPC64_PCREL_OPT: {
667     // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
668     // be relaxed. The eligibility for the relaxation needs to be determined
669     // on that relocation since this one does not relocate a symbol.
670     uint64_t insn = readPrefixedInstruction(loc);
671     uint32_t accessInsn = read32(loc + rel.addend);
672     uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
673 
674     // This error is not necessary for correctness but is emitted for now
675     // to ensure we don't miss these opportunities in real code. It can be
676     // removed at a later date.
677     if (pcRelInsn == UINT64_C(-1)) {
678       errorOrWarn(
679           "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
680           Twine::utohexstr(accessInsn));
681       break;
682     }
683 
684     int64_t totalDisp = getTotalDisp(insn, accessInsn);
685     if (!isInt<34>(totalDisp))
686       break; // Displacement doesn't fit.
687     // Convert the PADDI to the prefixed version of accessInsn and convert
688     // accessInsn to a nop.
689     writePrefixedInstruction(loc, pcRelInsn |
690                                       ((totalDisp & 0x3ffff0000) << 16) |
691                                       (totalDisp & 0xffff));
692     write32(loc + rel.addend, NOP); // nop accessInsn.
693     break;
694   }
695   default:
696     llvm_unreachable("unexpected relocation type");
697   }
698 }
699 
700 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
701                            uint64_t val) const {
702   // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
703   // The general dynamic code sequence for a global `x` will look like:
704   // Instruction                    Relocation                Symbol
705   // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
706   // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
707   // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
708   //                                R_PPC64_REL24               __tls_get_addr
709   // nop                            None                       None
710 
711   // Relaxing to local exec entails converting:
712   // addis r3, r2, x@got@tlsgd@ha    into      nop
713   // addi  r3, r3, x@got@tlsgd@l     into      addis r3, r13, x@tprel@ha
714   // bl __tls_get_addr(x@tlsgd)      into      nop
715   // nop                             into      addi r3, r3, x@tprel@l
716 
717   switch (rel.type) {
718   case R_PPC64_GOT_TLSGD16_HA:
719     writeFromHalf16(loc, NOP);
720     break;
721   case R_PPC64_GOT_TLSGD16:
722   case R_PPC64_GOT_TLSGD16_LO:
723     writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
724     relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
725     break;
726   case R_PPC64_GOT_TLSGD_PCREL34:
727     // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
728     //            paddi r3, r13, x@tprel, 0
729     writePrefixedInstruction(loc, 0x06000000386d0000);
730     relocateNoSym(loc, R_PPC64_TPREL34, val);
731     break;
732   case R_PPC64_TLSGD: {
733     // PC Relative Relaxation:
734     // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
735     //            nop
736     // TOC Relaxation:
737     // Relax from bl __tls_get_addr(x@tlsgd)
738     //            nop
739     // to
740     //            nop
741     //            addi r3, r3, x@tprel@l
742     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
743     if (locAsInt % 4 == 0) {
744       write32(loc, NOP);            // nop
745       write32(loc + 4, 0x38630000); // addi r3, r3
746       // Since we are relocating a half16 type relocation and Loc + 4 points to
747       // the start of an instruction we need to advance the buffer by an extra
748       // 2 bytes on BE.
749       relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
750                     R_PPC64_TPREL16_LO, val);
751     } else if (locAsInt % 4 == 1) {
752       write32(loc - 1, NOP);
753     } else {
754       errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
755     }
756     break;
757   }
758   default:
759     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
760   }
761 }
762 
763 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
764                            uint64_t val) const {
765   // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
766   // The local dynamic code sequence for a global `x` will look like:
767   // Instruction                    Relocation                Symbol
768   // addis r3, r2, x@got@tlsld@ha   R_PPC64_GOT_TLSLD16_HA      x
769   // addi  r3, r3, x@got@tlsld@l    R_PPC64_GOT_TLSLD16_LO      x
770   // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSLD               x
771   //                                R_PPC64_REL24               __tls_get_addr
772   // nop                            None                       None
773 
774   // Relaxing to local exec entails converting:
775   // addis r3, r2, x@got@tlsld@ha   into      nop
776   // addi  r3, r3, x@got@tlsld@l    into      addis r3, r13, 0
777   // bl __tls_get_addr(x@tlsgd)     into      nop
778   // nop                            into      addi r3, r3, 4096
779 
780   switch (rel.type) {
781   case R_PPC64_GOT_TLSLD16_HA:
782     writeFromHalf16(loc, NOP);
783     break;
784   case R_PPC64_GOT_TLSLD16_LO:
785     writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
786     break;
787   case R_PPC64_GOT_TLSLD_PCREL34:
788     // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
789     //            paddi r3, r13, 0x1000, 0
790     writePrefixedInstruction(loc, 0x06000000386d1000);
791     break;
792   case R_PPC64_TLSLD: {
793     // PC Relative Relaxation:
794     // Relax from bl __tls_get_addr@notoc(x@tlsld)
795     // to
796     //            nop
797     // TOC Relaxation:
798     // Relax from bl __tls_get_addr(x@tlsld)
799     //            nop
800     // to
801     //            nop
802     //            addi r3, r3, 4096
803     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
804     if (locAsInt % 4 == 0) {
805       write32(loc, NOP);
806       write32(loc + 4, 0x38631000); // addi r3, r3, 4096
807     } else if (locAsInt % 4 == 1) {
808       write32(loc - 1, NOP);
809     } else {
810       errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
811     }
812     break;
813   }
814   case R_PPC64_DTPREL16:
815   case R_PPC64_DTPREL16_HA:
816   case R_PPC64_DTPREL16_HI:
817   case R_PPC64_DTPREL16_DS:
818   case R_PPC64_DTPREL16_LO:
819   case R_PPC64_DTPREL16_LO_DS:
820   case R_PPC64_DTPREL34:
821     relocate(loc, rel, val);
822     break;
823   default:
824     llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
825   }
826 }
827 
828 unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
829   switch (secondaryOp) {
830   case LBZX:
831     return LBZ;
832   case LHZX:
833     return LHZ;
834   case LWZX:
835     return LWZ;
836   case LDX:
837     return LD;
838   case STBX:
839     return STB;
840   case STHX:
841     return STH;
842   case STWX:
843     return STW;
844   case STDX:
845     return STD;
846   case ADD:
847     return ADDI;
848   default:
849     return 0;
850   }
851 }
852 
853 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
854                            uint64_t val) const {
855   // The initial exec code sequence for a global `x` will look like:
856   // Instruction                    Relocation                Symbol
857   // addis r9, r2, x@got@tprel@ha   R_PPC64_GOT_TPREL16_HA      x
858   // ld    r9, x@got@tprel@l(r9)    R_PPC64_GOT_TPREL16_LO_DS   x
859   // add r9, r9, x@tls              R_PPC64_TLS                 x
860 
861   // Relaxing to local exec entails converting:
862   // addis r9, r2, x@got@tprel@ha       into        nop
863   // ld r9, x@got@tprel@l(r9)           into        addis r9, r13, x@tprel@ha
864   // add r9, r9, x@tls                  into        addi r9, r9, x@tprel@l
865 
866   // x@tls R_PPC64_TLS is a relocation which does not compute anything,
867   // it is replaced with r13 (thread pointer).
868 
869   // The add instruction in the initial exec sequence has multiple variations
870   // that need to be handled. If we are building an address it will use an add
871   // instruction, if we are accessing memory it will use any of the X-form
872   // indexed load or store instructions.
873 
874   unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
875   switch (rel.type) {
876   case R_PPC64_GOT_TPREL16_HA:
877     write32(loc - offset, NOP);
878     break;
879   case R_PPC64_GOT_TPREL16_LO_DS:
880   case R_PPC64_GOT_TPREL16_DS: {
881     uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
882     write32(loc - offset, 0x3C0D0000 | regNo);          // addis RegNo, r13
883     relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
884     break;
885   }
886   case R_PPC64_GOT_TPREL_PCREL34: {
887     const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
888     // paddi RT(from pld), r13, symbol@tprel, 0
889     writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
890     relocateNoSym(loc, R_PPC64_TPREL34, val);
891     break;
892   }
893   case R_PPC64_TLS: {
894     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
895     if (locAsInt % 4 == 0) {
896       uint32_t primaryOp = getPrimaryOpCode(read32(loc));
897       if (primaryOp != 31)
898         error("unrecognized instruction for IE to LE R_PPC64_TLS");
899       uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
900       uint32_t dFormOp = getPPCDFormOp(secondaryOp);
901       if (dFormOp == 0)
902         error("unrecognized instruction for IE to LE R_PPC64_TLS");
903       write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
904       relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
905     } else if (locAsInt % 4 == 1) {
906       // If the offset is not 4 byte aligned then we have a PCRel type reloc.
907       // This version of the relocation is offset by one byte from the
908       // instruction it references.
909       uint32_t tlsInstr = read32(loc - 1);
910       uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
911       if (primaryOp != 31)
912         errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
913       uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
914       // The add is a special case and should be turned into a nop. The paddi
915       // that comes before it will already have computed the address of the
916       // symbol.
917       if (secondaryOp == 266) {
918         // Check if the add uses the same result register as the input register.
919         uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
920         uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
921         if (ra == rt) {
922           write32(loc - 1, NOP);
923         } else {
924           // mr rt, ra
925           write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
926         }
927       } else {
928         uint32_t dFormOp = getPPCDFormOp(secondaryOp);
929         if (dFormOp == 0)
930           errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
931         write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000)));
932       }
933     } else {
934       errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
935                   "offset from 4 byte aligned");
936     }
937     break;
938   }
939   default:
940     llvm_unreachable("unknown relocation for IE to LE");
941     break;
942   }
943 }
944 
945 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
946                           const uint8_t *loc) const {
947   switch (type) {
948   case R_PPC64_NONE:
949     return R_NONE;
950   case R_PPC64_ADDR16:
951   case R_PPC64_ADDR16_DS:
952   case R_PPC64_ADDR16_HA:
953   case R_PPC64_ADDR16_HI:
954   case R_PPC64_ADDR16_HIGH:
955   case R_PPC64_ADDR16_HIGHER:
956   case R_PPC64_ADDR16_HIGHERA:
957   case R_PPC64_ADDR16_HIGHEST:
958   case R_PPC64_ADDR16_HIGHESTA:
959   case R_PPC64_ADDR16_LO:
960   case R_PPC64_ADDR16_LO_DS:
961   case R_PPC64_ADDR32:
962   case R_PPC64_ADDR64:
963     return R_ABS;
964   case R_PPC64_GOT16:
965   case R_PPC64_GOT16_DS:
966   case R_PPC64_GOT16_HA:
967   case R_PPC64_GOT16_HI:
968   case R_PPC64_GOT16_LO:
969   case R_PPC64_GOT16_LO_DS:
970     return R_GOT_OFF;
971   case R_PPC64_TOC16:
972   case R_PPC64_TOC16_DS:
973   case R_PPC64_TOC16_HI:
974   case R_PPC64_TOC16_LO:
975     return R_GOTREL;
976   case R_PPC64_GOT_PCREL34:
977   case R_PPC64_GOT_TPREL_PCREL34:
978   case R_PPC64_PCREL_OPT:
979     return R_GOT_PC;
980   case R_PPC64_TOC16_HA:
981   case R_PPC64_TOC16_LO_DS:
982     return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
983   case R_PPC64_TOC:
984     return R_PPC64_TOCBASE;
985   case R_PPC64_REL14:
986   case R_PPC64_REL24:
987     return R_PPC64_CALL_PLT;
988   case R_PPC64_REL24_NOTOC:
989     return R_PLT_PC;
990   case R_PPC64_REL16_LO:
991   case R_PPC64_REL16_HA:
992   case R_PPC64_REL16_HI:
993   case R_PPC64_REL32:
994   case R_PPC64_REL64:
995   case R_PPC64_PCREL34:
996     return R_PC;
997   case R_PPC64_GOT_TLSGD16:
998   case R_PPC64_GOT_TLSGD16_HA:
999   case R_PPC64_GOT_TLSGD16_HI:
1000   case R_PPC64_GOT_TLSGD16_LO:
1001     return R_TLSGD_GOT;
1002   case R_PPC64_GOT_TLSGD_PCREL34:
1003     return R_TLSGD_PC;
1004   case R_PPC64_GOT_TLSLD16:
1005   case R_PPC64_GOT_TLSLD16_HA:
1006   case R_PPC64_GOT_TLSLD16_HI:
1007   case R_PPC64_GOT_TLSLD16_LO:
1008     return R_TLSLD_GOT;
1009   case R_PPC64_GOT_TLSLD_PCREL34:
1010     return R_TLSLD_PC;
1011   case R_PPC64_GOT_TPREL16_HA:
1012   case R_PPC64_GOT_TPREL16_LO_DS:
1013   case R_PPC64_GOT_TPREL16_DS:
1014   case R_PPC64_GOT_TPREL16_HI:
1015     return R_GOT_OFF;
1016   case R_PPC64_GOT_DTPREL16_HA:
1017   case R_PPC64_GOT_DTPREL16_LO_DS:
1018   case R_PPC64_GOT_DTPREL16_DS:
1019   case R_PPC64_GOT_DTPREL16_HI:
1020     return R_TLSLD_GOT_OFF;
1021   case R_PPC64_TPREL16:
1022   case R_PPC64_TPREL16_HA:
1023   case R_PPC64_TPREL16_LO:
1024   case R_PPC64_TPREL16_HI:
1025   case R_PPC64_TPREL16_DS:
1026   case R_PPC64_TPREL16_LO_DS:
1027   case R_PPC64_TPREL16_HIGHER:
1028   case R_PPC64_TPREL16_HIGHERA:
1029   case R_PPC64_TPREL16_HIGHEST:
1030   case R_PPC64_TPREL16_HIGHESTA:
1031   case R_PPC64_TPREL34:
1032     return R_TPREL;
1033   case R_PPC64_DTPREL16:
1034   case R_PPC64_DTPREL16_DS:
1035   case R_PPC64_DTPREL16_HA:
1036   case R_PPC64_DTPREL16_HI:
1037   case R_PPC64_DTPREL16_HIGHER:
1038   case R_PPC64_DTPREL16_HIGHERA:
1039   case R_PPC64_DTPREL16_HIGHEST:
1040   case R_PPC64_DTPREL16_HIGHESTA:
1041   case R_PPC64_DTPREL16_LO:
1042   case R_PPC64_DTPREL16_LO_DS:
1043   case R_PPC64_DTPREL64:
1044   case R_PPC64_DTPREL34:
1045     return R_DTPREL;
1046   case R_PPC64_TLSGD:
1047     return R_TLSDESC_CALL;
1048   case R_PPC64_TLSLD:
1049     return R_TLSLD_HINT;
1050   case R_PPC64_TLS:
1051     return R_TLSIE_HINT;
1052   default:
1053     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
1054           ") against symbol " + toString(s));
1055     return R_NONE;
1056   }
1057 }
1058 
1059 RelType PPC64::getDynRel(RelType type) const {
1060   if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1061     return R_PPC64_ADDR64;
1062   return R_PPC64_NONE;
1063 }
1064 
1065 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const {
1066   switch (type) {
1067   case R_PPC64_NONE:
1068   case R_PPC64_GLOB_DAT:
1069   case R_PPC64_JMP_SLOT:
1070     return 0;
1071   case R_PPC64_REL32:
1072     return SignExtend64<32>(read32(buf));
1073   case R_PPC64_ADDR64:
1074   case R_PPC64_REL64:
1075   case R_PPC64_RELATIVE:
1076   case R_PPC64_IRELATIVE:
1077   case R_PPC64_DTPMOD64:
1078   case R_PPC64_DTPREL64:
1079   case R_PPC64_TPREL64:
1080     return read64(buf);
1081   default:
1082     internalLinkerError(getErrorLocation(buf),
1083                         "cannot read addend for relocation " + toString(type));
1084     return 0;
1085   }
1086 }
1087 
1088 void PPC64::writeGotHeader(uint8_t *buf) const {
1089   write64(buf, getPPC64TocBase());
1090 }
1091 
1092 void PPC64::writePltHeader(uint8_t *buf) const {
1093   // The generic resolver stub goes first.
1094   write32(buf +  0, 0x7c0802a6); // mflr r0
1095   write32(buf +  4, 0x429f0005); // bcl  20,4*cr7+so,8 <_glink+0x8>
1096   write32(buf +  8, 0x7d6802a6); // mflr r11
1097   write32(buf + 12, 0x7c0803a6); // mtlr r0
1098   write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
1099   write32(buf + 20, 0x380cffcc); // subi r0,r12,52
1100   write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
1101   write32(buf + 28, 0xe98b002c); // ld   r12,44(r11)
1102   write32(buf + 32, 0x7d6c5a14); // add  r11,r12,r11
1103   write32(buf + 36, 0xe98b0000); // ld   r12,0(r11)
1104   write32(buf + 40, 0xe96b0008); // ld   r11,8(r11)
1105   write32(buf + 44, 0x7d8903a6); // mtctr   r12
1106   write32(buf + 48, 0x4e800420); // bctr
1107 
1108   // The 'bcl' instruction will set the link register to the address of the
1109   // following instruction ('mflr r11'). Here we store the offset from that
1110   // instruction  to the first entry in the GotPlt section.
1111   int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
1112   write64(buf + 52, gotPltOffset);
1113 }
1114 
1115 void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1116                      uint64_t /*pltEntryAddr*/) const {
1117   int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize;
1118   // bl __glink_PLTresolve
1119   write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
1120 }
1121 
1122 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1123                       uint64_t /*pltEntryAddr*/) const {
1124   writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
1125 }
1126 
1127 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1128   // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1129   uint64_t tocBiasedVal = val - ppc64TocOffset;
1130   // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1131   uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1132 
1133   switch (type) {
1134   // TOC biased relocation.
1135   case R_PPC64_GOT16:
1136   case R_PPC64_GOT_TLSGD16:
1137   case R_PPC64_GOT_TLSLD16:
1138   case R_PPC64_TOC16:
1139     return {R_PPC64_ADDR16, tocBiasedVal};
1140   case R_PPC64_GOT16_DS:
1141   case R_PPC64_TOC16_DS:
1142   case R_PPC64_GOT_TPREL16_DS:
1143   case R_PPC64_GOT_DTPREL16_DS:
1144     return {R_PPC64_ADDR16_DS, tocBiasedVal};
1145   case R_PPC64_GOT16_HA:
1146   case R_PPC64_GOT_TLSGD16_HA:
1147   case R_PPC64_GOT_TLSLD16_HA:
1148   case R_PPC64_GOT_TPREL16_HA:
1149   case R_PPC64_GOT_DTPREL16_HA:
1150   case R_PPC64_TOC16_HA:
1151     return {R_PPC64_ADDR16_HA, tocBiasedVal};
1152   case R_PPC64_GOT16_HI:
1153   case R_PPC64_GOT_TLSGD16_HI:
1154   case R_PPC64_GOT_TLSLD16_HI:
1155   case R_PPC64_GOT_TPREL16_HI:
1156   case R_PPC64_GOT_DTPREL16_HI:
1157   case R_PPC64_TOC16_HI:
1158     return {R_PPC64_ADDR16_HI, tocBiasedVal};
1159   case R_PPC64_GOT16_LO:
1160   case R_PPC64_GOT_TLSGD16_LO:
1161   case R_PPC64_GOT_TLSLD16_LO:
1162   case R_PPC64_TOC16_LO:
1163     return {R_PPC64_ADDR16_LO, tocBiasedVal};
1164   case R_PPC64_GOT16_LO_DS:
1165   case R_PPC64_TOC16_LO_DS:
1166   case R_PPC64_GOT_TPREL16_LO_DS:
1167   case R_PPC64_GOT_DTPREL16_LO_DS:
1168     return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1169 
1170   // Dynamic Thread pointer biased relocation types.
1171   case R_PPC64_DTPREL16:
1172     return {R_PPC64_ADDR16, dtpBiasedVal};
1173   case R_PPC64_DTPREL16_DS:
1174     return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1175   case R_PPC64_DTPREL16_HA:
1176     return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1177   case R_PPC64_DTPREL16_HI:
1178     return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1179   case R_PPC64_DTPREL16_HIGHER:
1180     return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1181   case R_PPC64_DTPREL16_HIGHERA:
1182     return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1183   case R_PPC64_DTPREL16_HIGHEST:
1184     return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1185   case R_PPC64_DTPREL16_HIGHESTA:
1186     return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1187   case R_PPC64_DTPREL16_LO:
1188     return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1189   case R_PPC64_DTPREL16_LO_DS:
1190     return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1191   case R_PPC64_DTPREL64:
1192     return {R_PPC64_ADDR64, dtpBiasedVal};
1193 
1194   default:
1195     return {type, val};
1196   }
1197 }
1198 
1199 static bool isTocOptType(RelType type) {
1200   switch (type) {
1201   case R_PPC64_GOT16_HA:
1202   case R_PPC64_GOT16_LO_DS:
1203   case R_PPC64_TOC16_HA:
1204   case R_PPC64_TOC16_LO_DS:
1205   case R_PPC64_TOC16_LO:
1206     return true;
1207   default:
1208     return false;
1209   }
1210 }
1211 
1212 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1213   RelType type = rel.type;
1214   bool shouldTocOptimize =  isTocOptType(type);
1215   // For dynamic thread pointer relative, toc-relative, and got-indirect
1216   // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1217   std::tie(type, val) = toAddr16Rel(type, val);
1218 
1219   switch (type) {
1220   case R_PPC64_ADDR14: {
1221     checkAlignment(loc, val, 4, rel);
1222     // Preserve the AA/LK bits in the branch instruction
1223     uint8_t aalk = loc[3];
1224     write16(loc + 2, (aalk & 3) | (val & 0xfffc));
1225     break;
1226   }
1227   case R_PPC64_ADDR16:
1228     checkIntUInt(loc, val, 16, rel);
1229     write16(loc, val);
1230     break;
1231   case R_PPC64_ADDR32:
1232     checkIntUInt(loc, val, 32, rel);
1233     write32(loc, val);
1234     break;
1235   case R_PPC64_ADDR16_DS:
1236   case R_PPC64_TPREL16_DS: {
1237     checkInt(loc, val, 16, rel);
1238     // DQ-form instructions use bits 28-31 as part of the instruction encoding
1239     // DS-form instructions only use bits 30-31.
1240     uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
1241     checkAlignment(loc, lo(val), mask + 1, rel);
1242     write16(loc, (read16(loc) & mask) | lo(val));
1243   } break;
1244   case R_PPC64_ADDR16_HA:
1245   case R_PPC64_REL16_HA:
1246   case R_PPC64_TPREL16_HA:
1247     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
1248       writeFromHalf16(loc, NOP);
1249     else {
1250       checkInt(loc, val + 0x8000, 32, rel);
1251       write16(loc, ha(val));
1252     }
1253     break;
1254   case R_PPC64_ADDR16_HI:
1255   case R_PPC64_REL16_HI:
1256   case R_PPC64_TPREL16_HI:
1257     checkInt(loc, val, 32, rel);
1258     write16(loc, hi(val));
1259     break;
1260   case R_PPC64_ADDR16_HIGH:
1261     write16(loc, hi(val));
1262     break;
1263   case R_PPC64_ADDR16_HIGHER:
1264   case R_PPC64_TPREL16_HIGHER:
1265     write16(loc, higher(val));
1266     break;
1267   case R_PPC64_ADDR16_HIGHERA:
1268   case R_PPC64_TPREL16_HIGHERA:
1269     write16(loc, highera(val));
1270     break;
1271   case R_PPC64_ADDR16_HIGHEST:
1272   case R_PPC64_TPREL16_HIGHEST:
1273     write16(loc, highest(val));
1274     break;
1275   case R_PPC64_ADDR16_HIGHESTA:
1276   case R_PPC64_TPREL16_HIGHESTA:
1277     write16(loc, highesta(val));
1278     break;
1279   case R_PPC64_ADDR16_LO:
1280   case R_PPC64_REL16_LO:
1281   case R_PPC64_TPREL16_LO:
1282     // When the high-adjusted part of a toc relocation evaluates to 0, it is
1283     // changed into a nop. The lo part then needs to be updated to use the
1284     // toc-pointer register r2, as the base register.
1285     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1286       uint32_t insn = readFromHalf16(loc);
1287       if (isInstructionUpdateForm(insn))
1288         error(getErrorLocation(loc) +
1289               "can't toc-optimize an update instruction: 0x" +
1290               utohexstr(insn));
1291       writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1292     } else {
1293       write16(loc, lo(val));
1294     }
1295     break;
1296   case R_PPC64_ADDR16_LO_DS:
1297   case R_PPC64_TPREL16_LO_DS: {
1298     // DQ-form instructions use bits 28-31 as part of the instruction encoding
1299     // DS-form instructions only use bits 30-31.
1300     uint32_t insn = readFromHalf16(loc);
1301     uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1302     checkAlignment(loc, lo(val), mask + 1, rel);
1303     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1304       // When the high-adjusted part of a toc relocation evaluates to 0, it is
1305       // changed into a nop. The lo part then needs to be updated to use the toc
1306       // pointer register r2, as the base register.
1307       if (isInstructionUpdateForm(insn))
1308         error(getErrorLocation(loc) +
1309               "Can't toc-optimize an update instruction: 0x" +
1310               Twine::utohexstr(insn));
1311       insn &= 0xffe00000 | mask;
1312       writeFromHalf16(loc, insn | 0x00020000 | lo(val));
1313     } else {
1314       write16(loc, (read16(loc) & mask) | lo(val));
1315     }
1316   } break;
1317   case R_PPC64_TPREL16:
1318     checkInt(loc, val, 16, rel);
1319     write16(loc, val);
1320     break;
1321   case R_PPC64_REL32:
1322     checkInt(loc, val, 32, rel);
1323     write32(loc, val);
1324     break;
1325   case R_PPC64_ADDR64:
1326   case R_PPC64_REL64:
1327   case R_PPC64_TOC:
1328     write64(loc, val);
1329     break;
1330   case R_PPC64_REL14: {
1331     uint32_t mask = 0x0000FFFC;
1332     checkInt(loc, val, 16, rel);
1333     checkAlignment(loc, val, 4, rel);
1334     write32(loc, (read32(loc) & ~mask) | (val & mask));
1335     break;
1336   }
1337   case R_PPC64_REL24:
1338   case R_PPC64_REL24_NOTOC: {
1339     uint32_t mask = 0x03FFFFFC;
1340     checkInt(loc, val, 26, rel);
1341     checkAlignment(loc, val, 4, rel);
1342     write32(loc, (read32(loc) & ~mask) | (val & mask));
1343     break;
1344   }
1345   case R_PPC64_DTPREL64:
1346     write64(loc, val - dynamicThreadPointerOffset);
1347     break;
1348   case R_PPC64_DTPREL34:
1349     // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1350     // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1351     // need to subtract that value then fallthrough to the general case.
1352     val -= dynamicThreadPointerOffset;
1353     [[fallthrough]];
1354   case R_PPC64_PCREL34:
1355   case R_PPC64_GOT_PCREL34:
1356   case R_PPC64_GOT_TLSGD_PCREL34:
1357   case R_PPC64_GOT_TLSLD_PCREL34:
1358   case R_PPC64_GOT_TPREL_PCREL34:
1359   case R_PPC64_TPREL34: {
1360     const uint64_t si0Mask = 0x00000003ffff0000;
1361     const uint64_t si1Mask = 0x000000000000ffff;
1362     const uint64_t fullMask = 0x0003ffff0000ffff;
1363     checkInt(loc, val, 34, rel);
1364 
1365     uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
1366     writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
1367                              (val & si1Mask));
1368     break;
1369   }
1370   // If we encounter a PCREL_OPT relocation that we won't optimize.
1371   case R_PPC64_PCREL_OPT:
1372     break;
1373   default:
1374     llvm_unreachable("unknown relocation");
1375   }
1376 }
1377 
1378 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1379                        uint64_t branchAddr, const Symbol &s, int64_t a) const {
1380   if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1381       type != R_PPC64_REL24_NOTOC)
1382     return false;
1383 
1384   // If a function is in the Plt it needs to be called with a call-stub.
1385   if (s.isInPlt())
1386     return true;
1387 
1388   // This check looks at the st_other bits of the callee with relocation
1389   // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1390   // clobbers the TOC and we need an R2 save stub.
1391   if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1392     return true;
1393 
1394   if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1395     return true;
1396 
1397   // An undefined weak symbol not in a PLT does not need a thunk. If it is
1398   // hidden, its binding has been converted to local, so we just check
1399   // isUndefined() here. A undefined non-weak symbol has been errored.
1400   if (s.isUndefined())
1401     return false;
1402 
1403   // If the offset exceeds the range of the branch type then it will need
1404   // a range-extending thunk.
1405   // See the comment in getRelocTargetVA() about R_PPC64_CALL.
1406   return !inBranchRange(type, branchAddr,
1407                         s.getVA(a) +
1408                             getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
1409 }
1410 
1411 uint32_t PPC64::getThunkSectionSpacing() const {
1412   // See comment in Arch/ARM.cpp for a more detailed explanation of
1413   // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1414   // R_PPC64_REL24, which is used by unconditional branch instructions.
1415   // 0x2000000 = (1 << 24-1) * 4
1416   return 0x2000000;
1417 }
1418 
1419 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1420   int64_t offset = dst - src;
1421   if (type == R_PPC64_REL14)
1422     return isInt<16>(offset);
1423   if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1424     return isInt<26>(offset);
1425   llvm_unreachable("unsupported relocation type used in branch");
1426 }
1427 
1428 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1429   if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1430     return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1431   if (expr == R_RELAX_TLS_LD_TO_LE)
1432     return R_RELAX_TLS_LD_TO_LE_ABS;
1433   return expr;
1434 }
1435 
1436 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1437                                const uint8_t *loc) const {
1438   if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1439       config->pcRelOptimize) {
1440     // It only makes sense to optimize pld since paddi means that the address
1441     // of the object in the GOT is required rather than the object itself.
1442     if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
1443       return R_PPC64_RELAX_GOT_PC;
1444   }
1445   return R_GOT_PC;
1446 }
1447 
1448 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1449 // The general dynamic code sequence for a global `x` uses 4 instructions.
1450 // Instruction                    Relocation                Symbol
1451 // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
1452 // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
1453 // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
1454 //                                R_PPC64_REL24               __tls_get_addr
1455 // nop                            None                       None
1456 //
1457 // Relaxing to initial-exec entails:
1458 // 1) Convert the addis/addi pair that builds the address of the tls_index
1459 //    struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1460 // 2) Convert the call to __tls_get_addr to a nop.
1461 // 3) Convert the nop following the call to an add of the loaded offset to the
1462 //    thread pointer.
1463 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1464 // used as the relaxation hint for both steps 2 and 3.
1465 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1466                            uint64_t val) const {
1467   switch (rel.type) {
1468   case R_PPC64_GOT_TLSGD16_HA:
1469     // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1470     //                      addis rT, r2, sym@got@tprel@ha.
1471     relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1472     return;
1473   case R_PPC64_GOT_TLSGD16:
1474   case R_PPC64_GOT_TLSGD16_LO: {
1475     // Relax from addi  r3, rA, sym@got@tlsgd@l to
1476     //            ld r3, sym@got@tprel@l(rA)
1477     uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
1478     writeFromHalf16(loc, 0xe8600000 | ra);
1479     relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1480     return;
1481   }
1482   case R_PPC64_GOT_TLSGD_PCREL34: {
1483     // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1484     //            pld r3, sym@got@tprel@pcrel
1485     writePrefixedInstruction(loc, 0x04100000e4600000);
1486     relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1487     return;
1488   }
1489   case R_PPC64_TLSGD: {
1490     // PC Relative Relaxation:
1491     // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1492     //            nop
1493     // TOC Relaxation:
1494     // Relax from bl __tls_get_addr(x@tlsgd)
1495     //            nop
1496     // to
1497     //            nop
1498     //            add r3, r3, r13
1499     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1500     if (locAsInt % 4 == 0) {
1501       write32(loc, NOP);            // bl __tls_get_addr(sym@tlsgd) --> nop
1502       write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
1503     } else if (locAsInt % 4 == 1) {
1504       // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1505       write32(loc - 1, 0x7c636a14);
1506     } else {
1507       errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1508     }
1509     return;
1510   }
1511   default:
1512     llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1513   }
1514 }
1515 
1516 void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1517   uint64_t secAddr = sec.getOutputSection()->addr;
1518   if (auto *s = dyn_cast<InputSection>(&sec))
1519     secAddr += s->outSecOff;
1520   uint64_t lastPPCRelaxedRelocOff = -1;
1521   for (const Relocation &rel : sec.relocs()) {
1522     uint8_t *loc = buf + rel.offset;
1523     const uint64_t val =
1524         sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
1525                              secAddr + rel.offset, *rel.sym, rel.expr);
1526     switch (rel.expr) {
1527     case R_PPC64_RELAX_GOT_PC: {
1528       // The R_PPC64_PCREL_OPT relocation must appear immediately after
1529       // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1530       // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1531       // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1532       // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1533       // and only relax the other if the saved offset matches.
1534       if (rel.type == R_PPC64_GOT_PCREL34)
1535         lastPPCRelaxedRelocOff = rel.offset;
1536       if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff)
1537         break;
1538       relaxGot(loc, rel, val);
1539       break;
1540     }
1541     case R_PPC64_RELAX_TOC:
1542       // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1543       // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1544       // entry, there may be R_PPC64_TOC16_HA not paired with
1545       // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1546       // opportunities but is safe.
1547       if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1548           !tryRelaxPPC64TocIndirection(rel, loc))
1549         relocate(loc, rel, val);
1550       break;
1551     case R_PPC64_CALL:
1552       // If this is a call to __tls_get_addr, it may be part of a TLS
1553       // sequence that has been relaxed and turned into a nop. In this
1554       // case, we don't want to handle it as a call.
1555       if (read32(loc) == 0x60000000) // nop
1556         break;
1557 
1558       // Patch a nop (0x60000000) to a ld.
1559       if (rel.sym->needsTocRestore) {
1560         // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1561         // recursive calls even if the function is preemptible. This is not
1562         // wrong in the common case where the function is not preempted at
1563         // runtime. Just ignore.
1564         if ((rel.offset + 8 > sec.content().size() ||
1565              read32(loc + 4) != 0x60000000) &&
1566             rel.sym->file != sec.file) {
1567           // Use substr(6) to remove the "__plt_" prefix.
1568           errorOrWarn(getErrorLocation(loc) + "call to " +
1569                       lld::toString(*rel.sym).substr(6) +
1570                       " lacks nop, can't restore toc");
1571           break;
1572         }
1573         write32(loc + 4, 0xe8410018); // ld %r2, 24(%r1)
1574       }
1575       relocate(loc, rel, val);
1576       break;
1577     case R_RELAX_TLS_GD_TO_IE:
1578     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1579       relaxTlsGdToIe(loc, rel, val);
1580       break;
1581     case R_RELAX_TLS_GD_TO_LE:
1582       relaxTlsGdToLe(loc, rel, val);
1583       break;
1584     case R_RELAX_TLS_LD_TO_LE_ABS:
1585       relaxTlsLdToLe(loc, rel, val);
1586       break;
1587     case R_RELAX_TLS_IE_TO_LE:
1588       relaxTlsIeToLe(loc, rel, val);
1589       break;
1590     default:
1591       relocate(loc, rel, val);
1592       break;
1593     }
1594   }
1595 }
1596 
1597 // The prologue for a split-stack function is expected to look roughly
1598 // like this:
1599 //    .Lglobal_entry_point:
1600 //      # TOC pointer initialization.
1601 //      ...
1602 //    .Llocal_entry_point:
1603 //      # load the __private_ss member of the threads tcbhead.
1604 //      ld r0,-0x7000-64(r13)
1605 //      # subtract the functions stack size from the stack pointer.
1606 //      addis r12, r1, ha(-stack-frame size)
1607 //      addi  r12, r12, l(-stack-frame size)
1608 //      # compare needed to actual and branch to allocate_more_stack if more
1609 //      # space is needed, otherwise fallthrough to 'normal' function body.
1610 //      cmpld cr7,r12,r0
1611 //      blt- cr7, .Lallocate_more_stack
1612 //
1613 // -) The allocate_more_stack block might be placed after the split-stack
1614 //    prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1615 //    instead.
1616 // -) If either the addis or addi is not needed due to the stack size being
1617 //    smaller then 32K or a multiple of 64K they will be replaced with a nop,
1618 //    but there will always be 2 instructions the linker can overwrite for the
1619 //    adjusted stack size.
1620 //
1621 // The linkers job here is to increase the stack size used in the addis/addi
1622 // pair by split-stack-size-adjust.
1623 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1624 // addi  r12, r12, l(-stack-frame size - split-stack-adjust-size)
1625 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1626                                              uint8_t stOther) const {
1627   // If the caller has a global entry point adjust the buffer past it. The start
1628   // of the split-stack prologue will be at the local entry point.
1629   loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
1630 
1631   // At the very least we expect to see a load of some split-stack data from the
1632   // tcb, and 2 instructions that calculate the ending stack address this
1633   // function will require. If there is not enough room for at least 3
1634   // instructions it can't be a split-stack prologue.
1635   if (loc + 12 >= end)
1636     return false;
1637 
1638   // First instruction must be `ld r0, -0x7000-64(r13)`
1639   if (read32(loc) != 0xe80d8fc0)
1640     return false;
1641 
1642   int16_t hiImm = 0;
1643   int16_t loImm = 0;
1644   // First instruction can be either an addis if the frame size is larger then
1645   // 32K, or an addi if the size is less then 32K.
1646   int32_t firstInstr = read32(loc + 4);
1647   if (getPrimaryOpCode(firstInstr) == 15) {
1648     hiImm = firstInstr & 0xFFFF;
1649   } else if (getPrimaryOpCode(firstInstr) == 14) {
1650     loImm = firstInstr & 0xFFFF;
1651   } else {
1652     return false;
1653   }
1654 
1655   // Second instruction is either an addi or a nop. If the first instruction was
1656   // an addi then LoImm is set and the second instruction must be a nop.
1657   uint32_t secondInstr = read32(loc + 8);
1658   if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1659     loImm = secondInstr & 0xFFFF;
1660   } else if (secondInstr != NOP) {
1661     return false;
1662   }
1663 
1664   // The register operands of the first instruction should be the stack-pointer
1665   // (r1) as the input (RA) and r12 as the output (RT). If the second
1666   // instruction is not a nop, then it should use r12 as both input and output.
1667   auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1668                              uint8_t expectedRA) {
1669     return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1670            ((instr & 0x1F0000) >> 16 == expectedRA);
1671   };
1672   if (!checkRegOperands(firstInstr, 12, 1))
1673     return false;
1674   if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1675     return false;
1676 
1677   int32_t stackFrameSize = (hiImm * 65536) + loImm;
1678   // Check that the adjusted size doesn't overflow what we can represent with 2
1679   // instructions.
1680   if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
1681     error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
1682     return false;
1683   }
1684 
1685   int32_t adjustedStackFrameSize =
1686       stackFrameSize - config->splitStackAdjustSize;
1687 
1688   loImm = adjustedStackFrameSize & 0xFFFF;
1689   hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1690   if (hiImm) {
1691     write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
1692     // If the low immediate is zero the second instruction will be a nop.
1693     secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1694     write32(loc + 8, secondInstr);
1695   } else {
1696     // addi r12, r1, imm
1697     write32(loc + 4, (0x39810000) | (uint16_t)loImm);
1698     write32(loc + 8, NOP);
1699   }
1700 
1701   return true;
1702 }
1703 
1704 TargetInfo *elf::getPPC64TargetInfo() {
1705   static PPC64 target;
1706   return &target;
1707 }
1708