xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/LoongArch.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===- LoongArch.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 
15 using namespace llvm;
16 using namespace llvm::object;
17 using namespace llvm::support::endian;
18 using namespace llvm::ELF;
19 using namespace lld;
20 using namespace lld::elf;
21 
22 namespace {
23 class LoongArch final : public TargetInfo {
24 public:
25   LoongArch();
26   uint32_t calcEFlags() const override;
27   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
28   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
29   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
30   void writePltHeader(uint8_t *buf) const override;
31   void writePlt(uint8_t *buf, const Symbol &sym,
32                 uint64_t pltEntryAddr) const override;
33   RelType getDynRel(RelType type) const override;
34   RelExpr getRelExpr(RelType type, const Symbol &s,
35                      const uint8_t *loc) const override;
36   bool usesOnlyLowPageBits(RelType type) const override;
37   void relocate(uint8_t *loc, const Relocation &rel,
38                 uint64_t val) const override;
39 };
40 } // end anonymous namespace
41 
42 enum Op {
43   SUB_W = 0x00110000,
44   SUB_D = 0x00118000,
45   BREAK = 0x002a0000,
46   SRLI_W = 0x00448000,
47   SRLI_D = 0x00450000,
48   ADDI_W = 0x02800000,
49   ADDI_D = 0x02c00000,
50   ANDI = 0x03400000,
51   PCADDU12I = 0x1c000000,
52   LD_W = 0x28800000,
53   LD_D = 0x28c00000,
54   JIRL = 0x4c000000,
55 };
56 
57 enum Reg {
58   R_ZERO = 0,
59   R_RA = 1,
60   R_TP = 2,
61   R_T0 = 12,
62   R_T1 = 13,
63   R_T2 = 14,
64   R_T3 = 15,
65 };
66 
67 // Mask out the input's lowest 12 bits for use with `pcalau12i`, in sequences
68 // like `pcalau12i + addi.[wd]` or `pcalau12i + {ld,st}.*` where the `pcalau12i`
69 // produces a PC-relative intermediate value with the lowest 12 bits zeroed (the
70 // "page") for the next instruction to add in the "page offset". (`pcalau12i`
71 // stands for something like "PC ALigned Add Upper that starts from the 12th
72 // bit, Immediate".)
73 //
74 // Here a "page" is in fact just another way to refer to the 12-bit range
75 // allowed by the immediate field of the addi/ld/st instructions, and not
76 // related to the system or the kernel's actual page size. The sematics happens
77 // to match the AArch64 `adrp`, so the concept of "page" is borrowed here.
78 static uint64_t getLoongArchPage(uint64_t p) {
79   return p & ~static_cast<uint64_t>(0xfff);
80 }
81 
82 static uint32_t lo12(uint32_t val) { return val & 0xfff; }
83 
84 // Calculate the adjusted page delta between dest and PC.
85 uint64_t elf::getLoongArchPageDelta(uint64_t dest, uint64_t pc) {
86   // Consider the large code model access pattern, of which the smaller code
87   // models' access patterns are a subset:
88   //
89   //     pcalau12i       U, %foo_hi20(sym)        ; b in [-0x80000, 0x7ffff]
90   //     addi.d          T, zero, %foo_lo12(sym)  ; a in [-0x800, 0x7ff]
91   //     lu32i.d         T, %foo64_lo20(sym)      ; c in [-0x80000, 0x7ffff]
92   //     lu52i.d         T, T, %foo64_hi12(sym)   ; d in [-0x800, 0x7ff]
93   //     {ldx,stx,add}.* dest, U, T
94   //
95   // Let page(pc) = 0xRRR'QQQQQ'PPPPP'000 and dest = 0xZZZ'YYYYY'XXXXX'AAA,
96   // with RQ, P, ZY, X and A representing the respective bitfields as unsigned
97   // integers. We have:
98   //
99   //     page(dest) = 0xZZZ'YYYYY'XXXXX'000
100   //     - page(pc) = 0xRRR'QQQQQ'PPPPP'000
101   //     ----------------------------------
102   //                  0xddd'ccccc'bbbbb'000
103   //
104   // Now consider the above pattern's actual effects:
105   //
106   //     page(pc)                     0xRRR'QQQQQ'PPPPP'000
107   //     pcalau12i                  + 0xiii'iiiii'bbbbb'000
108   //     addi                       + 0xjjj'jjjjj'kkkkk'AAA
109   //     lu32i.d & lu52i.d          + 0xddd'ccccc'00000'000
110   //     --------------------------------------------------
111   //     dest = U + T
112   //          = ((RQ<<32) + (P<<12) + i + (b<<12)) + (j + k + A + (cd<<32))
113   //          = (((RQ+cd)<<32) + i + j) + (((P+b)<<12) + k) + A
114   //          = (ZY<<32)                + (X<<12)           + A
115   //
116   //     ZY<<32 = (RQ<<32)+(cd<<32)+i+j, X<<12 = (P<<12)+(b<<12)+k
117   //     cd<<32 = (ZY<<32)-(RQ<<32)-i-j, b<<12 = (X<<12)-(P<<12)-k
118   //
119   // where i and k are terms representing the effect of b's and A's sign
120   // extension respectively.
121   //
122   //     i = signed b < 0 ? -0x10000'0000 : 0
123   //     k = signed A < 0 ? -0x1000 : 0
124   //
125   // The j term is a bit complex: it represents the higher half of
126   // sign-extended bits from A that are effectively lost if i == 0 but k != 0,
127   // due to overwriting by lu32i.d & lu52i.d.
128   //
129   //     j = signed A < 0 && signed b >= 0 ? 0x10000'0000 : 0
130   //
131   // The actual effect of the instruction sequence before the final addition,
132   // i.e. our desired result value, is thus:
133   //
134   //     result = (cd<<32) + (b<<12)
135   //            = (ZY<<32)-(RQ<<32)-i-j + (X<<12)-(P<<12)-k
136   //            = ((ZY<<32)+(X<<12)) - ((RQ<<32)+(P<<12)) - i - j - k
137   //            = page(dest) - page(pc) - i - j - k
138   //
139   // when signed A >= 0 && signed b >= 0:
140   //
141   //     i = j = k = 0
142   //     result = page(dest) - page(pc)
143   //
144   // when signed A >= 0 && signed b < 0:
145   //
146   //     i = -0x10000'0000, j = k = 0
147   //     result = page(dest) - page(pc) + 0x10000'0000
148   //
149   // when signed A < 0 && signed b >= 0:
150   //
151   //     i = 0, j = 0x10000'0000, k = -0x1000
152   //     result = page(dest) - page(pc) - 0x10000'0000 + 0x1000
153   //
154   // when signed A < 0 && signed b < 0:
155   //
156   //     i = -0x10000'0000, j = 0, k = -0x1000
157   //     result = page(dest) - page(pc) + 0x1000
158   uint64_t result = getLoongArchPage(dest) - getLoongArchPage(pc);
159   bool negativeA = lo12(dest) > 0x7ff;
160   bool negativeB = (result & 0x8000'0000) != 0;
161 
162   if (negativeA)
163     result += 0x1000;
164   if (negativeA && !negativeB)
165     result -= 0x10000'0000;
166   else if (!negativeA && negativeB)
167     result += 0x10000'0000;
168 
169   return result;
170 }
171 
172 static uint32_t hi20(uint32_t val) { return (val + 0x800) >> 12; }
173 
174 static uint32_t insn(uint32_t op, uint32_t d, uint32_t j, uint32_t k) {
175   return op | d | (j << 5) | (k << 10);
176 }
177 
178 // Extract bits v[begin:end], where range is inclusive.
179 static uint32_t extractBits(uint64_t v, uint32_t begin, uint32_t end) {
180   return begin == 63 ? v >> end : (v & ((1ULL << (begin + 1)) - 1)) >> end;
181 }
182 
183 static uint32_t setD5k16(uint32_t insn, uint32_t imm) {
184   uint32_t immLo = extractBits(imm, 15, 0);
185   uint32_t immHi = extractBits(imm, 20, 16);
186   return (insn & 0xfc0003e0) | (immLo << 10) | immHi;
187 }
188 
189 static uint32_t setD10k16(uint32_t insn, uint32_t imm) {
190   uint32_t immLo = extractBits(imm, 15, 0);
191   uint32_t immHi = extractBits(imm, 25, 16);
192   return (insn & 0xfc000000) | (immLo << 10) | immHi;
193 }
194 
195 static uint32_t setJ20(uint32_t insn, uint32_t imm) {
196   return (insn & 0xfe00001f) | (extractBits(imm, 19, 0) << 5);
197 }
198 
199 static uint32_t setK12(uint32_t insn, uint32_t imm) {
200   return (insn & 0xffc003ff) | (extractBits(imm, 11, 0) << 10);
201 }
202 
203 static uint32_t setK16(uint32_t insn, uint32_t imm) {
204   return (insn & 0xfc0003ff) | (extractBits(imm, 15, 0) << 10);
205 }
206 
207 static bool isJirl(uint32_t insn) {
208   return (insn & 0xfc000000) == JIRL;
209 }
210 
211 LoongArch::LoongArch() {
212   // The LoongArch ISA itself does not have a limit on page sizes. According to
213   // the ISA manual, the PS (page size) field in MTLB entries and CSR.STLBPS is
214   // 6 bits wide, meaning the maximum page size is 2^63 which is equivalent to
215   // "unlimited".
216   // However, practically the maximum usable page size is constrained by the
217   // kernel implementation, and 64KiB is the biggest non-huge page size
218   // supported by Linux as of v6.4. The most widespread page size in use,
219   // though, is 16KiB.
220   defaultCommonPageSize = 16384;
221   defaultMaxPageSize = 65536;
222   write32le(trapInstr.data(), BREAK); // break 0
223 
224   copyRel = R_LARCH_COPY;
225   pltRel = R_LARCH_JUMP_SLOT;
226   relativeRel = R_LARCH_RELATIVE;
227   iRelativeRel = R_LARCH_IRELATIVE;
228 
229   if (config->is64) {
230     symbolicRel = R_LARCH_64;
231     tlsModuleIndexRel = R_LARCH_TLS_DTPMOD64;
232     tlsOffsetRel = R_LARCH_TLS_DTPREL64;
233     tlsGotRel = R_LARCH_TLS_TPREL64;
234   } else {
235     symbolicRel = R_LARCH_32;
236     tlsModuleIndexRel = R_LARCH_TLS_DTPMOD32;
237     tlsOffsetRel = R_LARCH_TLS_DTPREL32;
238     tlsGotRel = R_LARCH_TLS_TPREL32;
239   }
240 
241   gotRel = symbolicRel;
242 
243   // .got.plt[0] = _dl_runtime_resolve, .got.plt[1] = link_map
244   gotPltHeaderEntriesNum = 2;
245 
246   pltHeaderSize = 32;
247   pltEntrySize = 16;
248   ipltEntrySize = 16;
249 }
250 
251 static uint32_t getEFlags(const InputFile *f) {
252   if (config->is64)
253     return cast<ObjFile<ELF64LE>>(f)->getObj().getHeader().e_flags;
254   return cast<ObjFile<ELF32LE>>(f)->getObj().getHeader().e_flags;
255 }
256 
257 static bool inputFileHasCode(const InputFile *f) {
258   for (const auto *sec : f->getSections())
259     if (sec && sec->flags & SHF_EXECINSTR)
260       return true;
261 
262   return false;
263 }
264 
265 uint32_t LoongArch::calcEFlags() const {
266   // If there are only binary input files (from -b binary), use a
267   // value of 0 for the ELF header flags.
268   if (ctx.objectFiles.empty())
269     return 0;
270 
271   uint32_t target = 0;
272   const InputFile *targetFile;
273   for (const InputFile *f : ctx.objectFiles) {
274     // Do not enforce ABI compatibility if the input file does not contain code.
275     // This is useful for allowing linkage with data-only object files produced
276     // with tools like objcopy, that have zero e_flags.
277     if (!inputFileHasCode(f))
278       continue;
279 
280     // Take the first non-zero e_flags as the reference.
281     uint32_t flags = getEFlags(f);
282     if (target == 0 && flags != 0) {
283       target = flags;
284       targetFile = f;
285     }
286 
287     if ((flags & EF_LOONGARCH_ABI_MODIFIER_MASK) !=
288         (target & EF_LOONGARCH_ABI_MODIFIER_MASK))
289       error(toString(f) +
290             ": cannot link object files with different ABI from " +
291             toString(targetFile));
292 
293     // We cannot process psABI v1.x / object ABI v0 files (containing stack
294     // relocations), unlike ld.bfd.
295     //
296     // Instead of blindly accepting every v0 object and only failing at
297     // relocation processing time, just disallow interlink altogether. We
298     // don't expect significant usage of object ABI v0 in the wild (the old
299     // world may continue using object ABI v0 for a while, but as it's not
300     // binary-compatible with the upstream i.e. new-world ecosystem, it's not
301     // being considered here).
302     //
303     // There are briefly some new-world systems with object ABI v0 binaries too.
304     // It is because these systems were built before the new ABI was finalized.
305     // These are not supported either due to the extremely small number of them,
306     // and the few impacted users are advised to simply rebuild world or
307     // reinstall a recent system.
308     if ((flags & EF_LOONGARCH_OBJABI_MASK) != EF_LOONGARCH_OBJABI_V1)
309       error(toString(f) + ": unsupported object file ABI version");
310   }
311 
312   return target;
313 }
314 
315 int64_t LoongArch::getImplicitAddend(const uint8_t *buf, RelType type) const {
316   switch (type) {
317   default:
318     internalLinkerError(getErrorLocation(buf),
319                         "cannot read addend for relocation " + toString(type));
320     return 0;
321   case R_LARCH_32:
322   case R_LARCH_TLS_DTPMOD32:
323   case R_LARCH_TLS_DTPREL32:
324   case R_LARCH_TLS_TPREL32:
325     return SignExtend64<32>(read32le(buf));
326   case R_LARCH_64:
327   case R_LARCH_TLS_DTPMOD64:
328   case R_LARCH_TLS_DTPREL64:
329   case R_LARCH_TLS_TPREL64:
330     return read64le(buf);
331   case R_LARCH_RELATIVE:
332   case R_LARCH_IRELATIVE:
333     return config->is64 ? read64le(buf) : read32le(buf);
334   case R_LARCH_NONE:
335   case R_LARCH_JUMP_SLOT:
336     // These relocations are defined as not having an implicit addend.
337     return 0;
338   }
339 }
340 
341 void LoongArch::writeGotPlt(uint8_t *buf, const Symbol &s) const {
342   if (config->is64)
343     write64le(buf, in.plt->getVA());
344   else
345     write32le(buf, in.plt->getVA());
346 }
347 
348 void LoongArch::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
349   if (config->writeAddends) {
350     if (config->is64)
351       write64le(buf, s.getVA());
352     else
353       write32le(buf, s.getVA());
354   }
355 }
356 
357 void LoongArch::writePltHeader(uint8_t *buf) const {
358   // The LoongArch PLT is currently structured just like that of RISCV.
359   // Annoyingly, this means the PLT is still using `pcaddu12i` to perform
360   // PC-relative addressing (because `pcaddu12i` is the same as RISCV `auipc`),
361   // in contrast to the AArch64-like page-offset scheme with `pcalau12i` that
362   // is used everywhere else involving PC-relative operations in the LoongArch
363   // ELF psABI v2.00.
364   //
365   // The `pcrel_{hi20,lo12}` operators are illustrative only and not really
366   // supported by LoongArch assemblers.
367   //
368   //   pcaddu12i $t2, %pcrel_hi20(.got.plt)
369   //   sub.[wd]  $t1, $t1, $t3
370   //   ld.[wd]   $t3, $t2, %pcrel_lo12(.got.plt)  ; t3 = _dl_runtime_resolve
371   //   addi.[wd] $t1, $t1, -pltHeaderSize-12      ; t1 = &.plt[i] - &.plt[0]
372   //   addi.[wd] $t0, $t2, %pcrel_lo12(.got.plt)
373   //   srli.[wd] $t1, $t1, (is64?1:2)             ; t1 = &.got.plt[i] - &.got.plt[0]
374   //   ld.[wd]   $t0, $t0, Wordsize               ; t0 = link_map
375   //   jr        $t3
376   uint32_t offset = in.gotPlt->getVA() - in.plt->getVA();
377   uint32_t sub = config->is64 ? SUB_D : SUB_W;
378   uint32_t ld = config->is64 ? LD_D : LD_W;
379   uint32_t addi = config->is64 ? ADDI_D : ADDI_W;
380   uint32_t srli = config->is64 ? SRLI_D : SRLI_W;
381   write32le(buf + 0, insn(PCADDU12I, R_T2, hi20(offset), 0));
382   write32le(buf + 4, insn(sub, R_T1, R_T1, R_T3));
383   write32le(buf + 8, insn(ld, R_T3, R_T2, lo12(offset)));
384   write32le(buf + 12, insn(addi, R_T1, R_T1, lo12(-target->pltHeaderSize - 12)));
385   write32le(buf + 16, insn(addi, R_T0, R_T2, lo12(offset)));
386   write32le(buf + 20, insn(srli, R_T1, R_T1, config->is64 ? 1 : 2));
387   write32le(buf + 24, insn(ld, R_T0, R_T0, config->wordsize));
388   write32le(buf + 28, insn(JIRL, R_ZERO, R_T3, 0));
389 }
390 
391 void LoongArch::writePlt(uint8_t *buf, const Symbol &sym,
392                      uint64_t pltEntryAddr) const {
393   // See the comment in writePltHeader for reason why pcaddu12i is used instead
394   // of the pcalau12i that's more commonly seen in the ELF psABI v2.0 days.
395   //
396   //   pcaddu12i $t3, %pcrel_hi20(f@.got.plt)
397   //   ld.[wd]   $t3, $t3, %pcrel_lo12(f@.got.plt)
398   //   jirl      $t1, $t3, 0
399   //   nop
400   uint32_t offset = sym.getGotPltVA() - pltEntryAddr;
401   write32le(buf + 0, insn(PCADDU12I, R_T3, hi20(offset), 0));
402   write32le(buf + 4,
403             insn(config->is64 ? LD_D : LD_W, R_T3, R_T3, lo12(offset)));
404   write32le(buf + 8, insn(JIRL, R_T1, R_T3, 0));
405   write32le(buf + 12, insn(ANDI, R_ZERO, R_ZERO, 0));
406 }
407 
408 RelType LoongArch::getDynRel(RelType type) const {
409   return type == target->symbolicRel ? type
410                                      : static_cast<RelType>(R_LARCH_NONE);
411 }
412 
413 RelExpr LoongArch::getRelExpr(const RelType type, const Symbol &s,
414                               const uint8_t *loc) const {
415   switch (type) {
416   case R_LARCH_NONE:
417   case R_LARCH_MARK_LA:
418   case R_LARCH_MARK_PCREL:
419     return R_NONE;
420   case R_LARCH_32:
421   case R_LARCH_64:
422   case R_LARCH_ABS_HI20:
423   case R_LARCH_ABS_LO12:
424   case R_LARCH_ABS64_LO20:
425   case R_LARCH_ABS64_HI12:
426     return R_ABS;
427   case R_LARCH_PCALA_LO12:
428     // We could just R_ABS, but the JIRL instruction reuses the relocation type
429     // for a different purpose. The questionable usage is part of glibc 2.37
430     // libc_nonshared.a [1], which is linked into user programs, so we have to
431     // work around it for a while, even if a new relocation type may be
432     // introduced in the future [2].
433     //
434     // [1]: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=9f482b73f41a9a1bbfb173aad0733d1c824c788a
435     // [2]: https://github.com/loongson/la-abi-specs/pull/3
436     return isJirl(read32le(loc)) ? R_PLT : R_ABS;
437   case R_LARCH_TLS_DTPREL32:
438   case R_LARCH_TLS_DTPREL64:
439     return R_DTPREL;
440   case R_LARCH_TLS_TPREL32:
441   case R_LARCH_TLS_TPREL64:
442   case R_LARCH_TLS_LE_HI20:
443   case R_LARCH_TLS_LE_LO12:
444   case R_LARCH_TLS_LE64_LO20:
445   case R_LARCH_TLS_LE64_HI12:
446     return R_TPREL;
447   case R_LARCH_ADD8:
448   case R_LARCH_ADD16:
449   case R_LARCH_ADD32:
450   case R_LARCH_ADD64:
451   case R_LARCH_SUB8:
452   case R_LARCH_SUB16:
453   case R_LARCH_SUB32:
454   case R_LARCH_SUB64:
455     // The LoongArch add/sub relocs behave like the RISCV counterparts; reuse
456     // the RelExpr to avoid code duplication.
457     return R_RISCV_ADD;
458   case R_LARCH_32_PCREL:
459   case R_LARCH_64_PCREL:
460     return R_PC;
461   case R_LARCH_B16:
462   case R_LARCH_B21:
463   case R_LARCH_B26:
464     return R_PLT_PC;
465   case R_LARCH_GOT_PC_HI20:
466   case R_LARCH_GOT64_PC_LO20:
467   case R_LARCH_GOT64_PC_HI12:
468   case R_LARCH_TLS_IE_PC_HI20:
469   case R_LARCH_TLS_IE64_PC_LO20:
470   case R_LARCH_TLS_IE64_PC_HI12:
471     return R_LOONGARCH_GOT_PAGE_PC;
472   case R_LARCH_GOT_PC_LO12:
473   case R_LARCH_TLS_IE_PC_LO12:
474     return R_LOONGARCH_GOT;
475   case R_LARCH_TLS_LD_PC_HI20:
476   case R_LARCH_TLS_GD_PC_HI20:
477     return R_LOONGARCH_TLSGD_PAGE_PC;
478   case R_LARCH_PCALA_HI20:
479     // Why not R_LOONGARCH_PAGE_PC, majority of references don't go through PLT
480     // anyway so why waste time checking only to get everything relaxed back to
481     // it?
482     //
483     // This is again due to the R_LARCH_PCALA_LO12 on JIRL case, where we want
484     // both the HI20 and LO12 to potentially refer to the PLT. But in reality
485     // the HI20 reloc appears earlier, and the relocs don't contain enough
486     // information to let us properly resolve semantics per symbol.
487     // Unlike RISCV, our LO12 relocs *do not* point to their corresponding HI20
488     // relocs, hence it is nearly impossible to 100% accurately determine each
489     // HI20's "flavor" without taking big performance hits, in the presence of
490     // edge cases (e.g. HI20 without pairing LO12; paired LO12 placed so far
491     // apart that relationship is not certain anymore), and programmer mistakes
492     // (e.g. as outlined in https://github.com/loongson/la-abi-specs/pull/3).
493     //
494     // Ideally we would scan in an extra pass for all LO12s on JIRL, then mark
495     // every HI20 reloc referring to the same symbol differently; this is not
496     // feasible with the current function signature of getRelExpr that doesn't
497     // allow for such inter-pass state.
498     //
499     // So, unfortunately we have to again workaround this quirk the same way as
500     // BFD: assuming every R_LARCH_PCALA_HI20 is potentially PLT-needing, only
501     // relaxing back to R_LOONGARCH_PAGE_PC if it's known not so at a later
502     // stage.
503     return R_LOONGARCH_PLT_PAGE_PC;
504   case R_LARCH_PCALA64_LO20:
505   case R_LARCH_PCALA64_HI12:
506     return R_LOONGARCH_PAGE_PC;
507   case R_LARCH_GOT_HI20:
508   case R_LARCH_GOT_LO12:
509   case R_LARCH_GOT64_LO20:
510   case R_LARCH_GOT64_HI12:
511   case R_LARCH_TLS_IE_HI20:
512   case R_LARCH_TLS_IE_LO12:
513   case R_LARCH_TLS_IE64_LO20:
514   case R_LARCH_TLS_IE64_HI12:
515     return R_GOT;
516   case R_LARCH_TLS_LD_HI20:
517     return R_TLSLD_GOT;
518   case R_LARCH_TLS_GD_HI20:
519     return R_TLSGD_GOT;
520   case R_LARCH_RELAX:
521     // LoongArch linker relaxation is not implemented yet.
522     return R_NONE;
523 
524   // Other known relocs that are explicitly unimplemented:
525   //
526   // - psABI v1 relocs that need a stateful stack machine to work, and not
527   //   required when implementing psABI v2;
528   // - relocs that are not used anywhere (R_LARCH_{ADD,SUB}_24 [1], and the
529   //   two GNU vtable-related relocs).
530   //
531   // [1]: https://web.archive.org/web/20230709064026/https://github.com/loongson/LoongArch-Documentation/issues/51
532   default:
533     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
534           ") against symbol " + toString(s));
535     return R_NONE;
536   }
537 }
538 
539 bool LoongArch::usesOnlyLowPageBits(RelType type) const {
540   switch (type) {
541   default:
542     return false;
543   case R_LARCH_PCALA_LO12:
544   case R_LARCH_GOT_LO12:
545   case R_LARCH_GOT_PC_LO12:
546   case R_LARCH_TLS_IE_PC_LO12:
547     return true;
548   }
549 }
550 
551 void LoongArch::relocate(uint8_t *loc, const Relocation &rel,
552                          uint64_t val) const {
553   switch (rel.type) {
554   case R_LARCH_32_PCREL:
555     checkInt(loc, val, 32, rel);
556     [[fallthrough]];
557   case R_LARCH_32:
558   case R_LARCH_TLS_DTPREL32:
559     write32le(loc, val);
560     return;
561   case R_LARCH_64:
562   case R_LARCH_TLS_DTPREL64:
563   case R_LARCH_64_PCREL:
564     write64le(loc, val);
565     return;
566 
567   case R_LARCH_B16:
568     checkInt(loc, val, 18, rel);
569     checkAlignment(loc, val, 4, rel);
570     write32le(loc, setK16(read32le(loc), val >> 2));
571     return;
572 
573   case R_LARCH_B21:
574     checkInt(loc, val, 23, rel);
575     checkAlignment(loc, val, 4, rel);
576     write32le(loc, setD5k16(read32le(loc), val >> 2));
577     return;
578 
579   case R_LARCH_B26:
580     checkInt(loc, val, 28, rel);
581     checkAlignment(loc, val, 4, rel);
582     write32le(loc, setD10k16(read32le(loc), val >> 2));
583     return;
584 
585   // Relocs intended for `addi`, `ld` or `st`.
586   case R_LARCH_PCALA_LO12:
587     // We have to again inspect the insn word to handle the R_LARCH_PCALA_LO12
588     // on JIRL case: firstly JIRL wants its immediate's 2 lowest zeroes
589     // removed by us (in contrast to regular R_LARCH_PCALA_LO12), secondly
590     // its immediate slot width is different too (16, not 12).
591     // In this case, process like an R_LARCH_B16, but without overflow checking
592     // and only taking the value's lowest 12 bits.
593     if (isJirl(read32le(loc))) {
594       checkAlignment(loc, val, 4, rel);
595       val = SignExtend64<12>(val);
596       write32le(loc, setK16(read32le(loc), val >> 2));
597       return;
598     }
599     [[fallthrough]];
600   case R_LARCH_ABS_LO12:
601   case R_LARCH_GOT_PC_LO12:
602   case R_LARCH_GOT_LO12:
603   case R_LARCH_TLS_LE_LO12:
604   case R_LARCH_TLS_IE_PC_LO12:
605   case R_LARCH_TLS_IE_LO12:
606     write32le(loc, setK12(read32le(loc), extractBits(val, 11, 0)));
607     return;
608 
609   // Relocs intended for `lu12i.w` or `pcalau12i`.
610   case R_LARCH_ABS_HI20:
611   case R_LARCH_PCALA_HI20:
612   case R_LARCH_GOT_PC_HI20:
613   case R_LARCH_GOT_HI20:
614   case R_LARCH_TLS_LE_HI20:
615   case R_LARCH_TLS_IE_PC_HI20:
616   case R_LARCH_TLS_IE_HI20:
617   case R_LARCH_TLS_LD_PC_HI20:
618   case R_LARCH_TLS_LD_HI20:
619   case R_LARCH_TLS_GD_PC_HI20:
620   case R_LARCH_TLS_GD_HI20:
621     write32le(loc, setJ20(read32le(loc), extractBits(val, 31, 12)));
622     return;
623 
624   // Relocs intended for `lu32i.d`.
625   case R_LARCH_ABS64_LO20:
626   case R_LARCH_PCALA64_LO20:
627   case R_LARCH_GOT64_PC_LO20:
628   case R_LARCH_GOT64_LO20:
629   case R_LARCH_TLS_LE64_LO20:
630   case R_LARCH_TLS_IE64_PC_LO20:
631   case R_LARCH_TLS_IE64_LO20:
632     write32le(loc, setJ20(read32le(loc), extractBits(val, 51, 32)));
633     return;
634 
635   // Relocs intended for `lu52i.d`.
636   case R_LARCH_ABS64_HI12:
637   case R_LARCH_PCALA64_HI12:
638   case R_LARCH_GOT64_PC_HI12:
639   case R_LARCH_GOT64_HI12:
640   case R_LARCH_TLS_LE64_HI12:
641   case R_LARCH_TLS_IE64_PC_HI12:
642   case R_LARCH_TLS_IE64_HI12:
643     write32le(loc, setK12(read32le(loc), extractBits(val, 63, 52)));
644     return;
645 
646   case R_LARCH_ADD8:
647     *loc += val;
648     return;
649   case R_LARCH_ADD16:
650     write16le(loc, read16le(loc) + val);
651     return;
652   case R_LARCH_ADD32:
653     write32le(loc, read32le(loc) + val);
654     return;
655   case R_LARCH_ADD64:
656     write64le(loc, read64le(loc) + val);
657     return;
658   case R_LARCH_SUB8:
659     *loc -= val;
660     return;
661   case R_LARCH_SUB16:
662     write16le(loc, read16le(loc) - val);
663     return;
664   case R_LARCH_SUB32:
665     write32le(loc, read32le(loc) - val);
666     return;
667   case R_LARCH_SUB64:
668     write64le(loc, read64le(loc) - val);
669     return;
670 
671   case R_LARCH_MARK_LA:
672   case R_LARCH_MARK_PCREL:
673     // no-op
674     return;
675 
676   case R_LARCH_RELAX:
677     return; // Ignored (for now)
678 
679   default:
680     llvm_unreachable("unknown relocation");
681   }
682 }
683 
684 TargetInfo *elf::getLoongArchTargetInfo() {
685   static LoongArch target;
686   return &target;
687 }
688