1 //===- ARM.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Symbols.h" 11 #include "SyntheticSections.h" 12 #include "Target.h" 13 #include "Thunks.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "llvm/Object/ELF.h" 16 #include "llvm/Support/Endian.h" 17 18 using namespace llvm; 19 using namespace llvm::support::endian; 20 using namespace llvm::ELF; 21 using namespace lld; 22 using namespace lld::elf; 23 24 namespace { 25 class ARM final : public TargetInfo { 26 public: 27 ARM(); 28 uint32_t calcEFlags() const override; 29 RelExpr getRelExpr(RelType type, const Symbol &s, 30 const uint8_t *loc) const override; 31 RelType getDynRel(RelType type) const override; 32 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; 33 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 34 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; 35 void writePltHeader(uint8_t *buf) const override; 36 void writePlt(uint8_t *buf, const Symbol &sym, 37 uint64_t pltEntryAddr) const override; 38 void addPltSymbols(InputSection &isec, uint64_t off) const override; 39 void addPltHeaderSymbols(InputSection &isd) const override; 40 bool needsThunk(RelExpr expr, RelType type, const InputFile *file, 41 uint64_t branchAddr, const Symbol &s, 42 int64_t a) const override; 43 uint32_t getThunkSectionSpacing() const override; 44 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; 45 void relocate(uint8_t *loc, const Relocation &rel, 46 uint64_t val) const override; 47 }; 48 } // namespace 49 50 ARM::ARM() { 51 copyRel = R_ARM_COPY; 52 relativeRel = R_ARM_RELATIVE; 53 iRelativeRel = R_ARM_IRELATIVE; 54 gotRel = R_ARM_GLOB_DAT; 55 noneRel = R_ARM_NONE; 56 pltRel = R_ARM_JUMP_SLOT; 57 symbolicRel = R_ARM_ABS32; 58 tlsGotRel = R_ARM_TLS_TPOFF32; 59 tlsModuleIndexRel = R_ARM_TLS_DTPMOD32; 60 tlsOffsetRel = R_ARM_TLS_DTPOFF32; 61 gotBaseSymInGotPlt = false; 62 pltHeaderSize = 32; 63 pltEntrySize = 16; 64 ipltEntrySize = 16; 65 trapInstr = {0xd4, 0xd4, 0xd4, 0xd4}; 66 needsThunks = true; 67 defaultMaxPageSize = 65536; 68 } 69 70 uint32_t ARM::calcEFlags() const { 71 // The ABIFloatType is used by loaders to detect the floating point calling 72 // convention. 73 uint32_t abiFloatType = 0; 74 if (config->armVFPArgs == ARMVFPArgKind::Base || 75 config->armVFPArgs == ARMVFPArgKind::Default) 76 abiFloatType = EF_ARM_ABI_FLOAT_SOFT; 77 else if (config->armVFPArgs == ARMVFPArgKind::VFP) 78 abiFloatType = EF_ARM_ABI_FLOAT_HARD; 79 80 // We don't currently use any features incompatible with EF_ARM_EABI_VER5, 81 // but we don't have any firm guarantees of conformance. Linux AArch64 82 // kernels (as of 2016) require an EABI version to be set. 83 return EF_ARM_EABI_VER5 | abiFloatType; 84 } 85 86 RelExpr ARM::getRelExpr(RelType type, const Symbol &s, 87 const uint8_t *loc) const { 88 switch (type) { 89 case R_ARM_THM_JUMP11: 90 return R_PC; 91 case R_ARM_CALL: 92 case R_ARM_JUMP24: 93 case R_ARM_PC24: 94 case R_ARM_PLT32: 95 case R_ARM_PREL31: 96 case R_ARM_THM_JUMP19: 97 case R_ARM_THM_JUMP24: 98 case R_ARM_THM_CALL: 99 return R_PLT_PC; 100 case R_ARM_GOTOFF32: 101 // (S + A) - GOT_ORG 102 return R_GOTREL; 103 case R_ARM_GOT_BREL: 104 // GOT(S) + A - GOT_ORG 105 return R_GOT_OFF; 106 case R_ARM_GOT_PREL: 107 case R_ARM_TLS_IE32: 108 // GOT(S) + A - P 109 return R_GOT_PC; 110 case R_ARM_SBREL32: 111 return R_ARM_SBREL; 112 case R_ARM_TARGET1: 113 return config->target1Rel ? R_PC : R_ABS; 114 case R_ARM_TARGET2: 115 if (config->target2 == Target2Policy::Rel) 116 return R_PC; 117 if (config->target2 == Target2Policy::Abs) 118 return R_ABS; 119 return R_GOT_PC; 120 case R_ARM_TLS_GD32: 121 return R_TLSGD_PC; 122 case R_ARM_TLS_LDM32: 123 return R_TLSLD_PC; 124 case R_ARM_TLS_LDO32: 125 return R_DTPREL; 126 case R_ARM_BASE_PREL: 127 // B(S) + A - P 128 // FIXME: currently B(S) assumed to be .got, this may not hold for all 129 // platforms. 130 return R_GOTONLY_PC; 131 case R_ARM_MOVW_PREL_NC: 132 case R_ARM_MOVT_PREL: 133 case R_ARM_REL32: 134 case R_ARM_THM_MOVW_PREL_NC: 135 case R_ARM_THM_MOVT_PREL: 136 return R_PC; 137 case R_ARM_ALU_PC_G0: 138 case R_ARM_LDR_PC_G0: 139 case R_ARM_THM_ALU_PREL_11_0: 140 case R_ARM_THM_PC8: 141 case R_ARM_THM_PC12: 142 return R_ARM_PCA; 143 case R_ARM_MOVW_BREL_NC: 144 case R_ARM_MOVW_BREL: 145 case R_ARM_MOVT_BREL: 146 case R_ARM_THM_MOVW_BREL_NC: 147 case R_ARM_THM_MOVW_BREL: 148 case R_ARM_THM_MOVT_BREL: 149 return R_ARM_SBREL; 150 case R_ARM_NONE: 151 return R_NONE; 152 case R_ARM_TLS_LE32: 153 return R_TPREL; 154 case R_ARM_V4BX: 155 // V4BX is just a marker to indicate there's a "bx rN" instruction at the 156 // given address. It can be used to implement a special linker mode which 157 // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and 158 // not ARMv4 output, we can just ignore it. 159 return R_NONE; 160 default: 161 return R_ABS; 162 } 163 } 164 165 RelType ARM::getDynRel(RelType type) const { 166 if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel)) 167 return R_ARM_ABS32; 168 return R_ARM_NONE; 169 } 170 171 void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const { 172 write32le(buf, in.plt->getVA()); 173 } 174 175 void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const { 176 // An ARM entry is the address of the ifunc resolver function. 177 write32le(buf, s.getVA()); 178 } 179 180 // Long form PLT Header that does not have any restrictions on the displacement 181 // of the .plt from the .plt.got. 182 static void writePltHeaderLong(uint8_t *buf) { 183 const uint8_t pltData[] = { 184 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]! 185 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2 186 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr 187 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8] 188 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8 189 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary 190 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary 191 0xd4, 0xd4, 0xd4, 0xd4}; 192 memcpy(buf, pltData, sizeof(pltData)); 193 uint64_t gotPlt = in.gotPlt->getVA(); 194 uint64_t l1 = in.plt->getVA() + 8; 195 write32le(buf + 16, gotPlt - l1 - 8); 196 } 197 198 // The default PLT header requires the .plt.got to be within 128 Mb of the 199 // .plt in the positive direction. 200 void ARM::writePltHeader(uint8_t *buf) const { 201 // Use a similar sequence to that in writePlt(), the difference is the calling 202 // conventions mean we use lr instead of ip. The PLT entry is responsible for 203 // saving lr on the stack, the dynamic loader is responsible for reloading 204 // it. 205 const uint32_t pltData[] = { 206 0xe52de004, // L1: str lr, [sp,#-4]! 207 0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4) 208 0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4) 209 0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4) 210 }; 211 212 uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4; 213 if (!llvm::isUInt<27>(offset)) { 214 // We cannot encode the Offset, use the long form. 215 writePltHeaderLong(buf); 216 return; 217 } 218 write32le(buf + 0, pltData[0]); 219 write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff)); 220 write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff)); 221 write32le(buf + 12, pltData[3] | (offset & 0xfff)); 222 memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary 223 memcpy(buf + 20, trapInstr.data(), 4); 224 memcpy(buf + 24, trapInstr.data(), 4); 225 memcpy(buf + 28, trapInstr.data(), 4); 226 } 227 228 void ARM::addPltHeaderSymbols(InputSection &isec) const { 229 addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec); 230 addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec); 231 } 232 233 // Long form PLT entries that do not have any restrictions on the displacement 234 // of the .plt from the .plt.got. 235 static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr, 236 uint64_t pltEntryAddr) { 237 const uint8_t pltData[] = { 238 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2 239 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc 240 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip] 241 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8 242 }; 243 memcpy(buf, pltData, sizeof(pltData)); 244 uint64_t l1 = pltEntryAddr + 4; 245 write32le(buf + 12, gotPltEntryAddr - l1 - 8); 246 } 247 248 // The default PLT entries require the .plt.got to be within 128 Mb of the 249 // .plt in the positive direction. 250 void ARM::writePlt(uint8_t *buf, const Symbol &sym, 251 uint64_t pltEntryAddr) const { 252 // The PLT entry is similar to the example given in Appendix A of ELF for 253 // the Arm Architecture. Instead of using the Group Relocations to find the 254 // optimal rotation for the 8-bit immediate used in the add instructions we 255 // hard code the most compact rotations for simplicity. This saves a load 256 // instruction over the long plt sequences. 257 const uint32_t pltData[] = { 258 0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.plt.got) - L1 - 8 259 0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.plt.got) - L1 - 8 260 0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8 261 }; 262 263 uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8; 264 if (!llvm::isUInt<27>(offset)) { 265 // We cannot encode the Offset, use the long form. 266 writePltLong(buf, sym.getGotPltVA(), pltEntryAddr); 267 return; 268 } 269 write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff)); 270 write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff)); 271 write32le(buf + 8, pltData[2] | (offset & 0xfff)); 272 memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary 273 } 274 275 void ARM::addPltSymbols(InputSection &isec, uint64_t off) const { 276 addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec); 277 addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec); 278 } 279 280 bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file, 281 uint64_t branchAddr, const Symbol &s, 282 int64_t a) const { 283 // If S is an undefined weak symbol and does not have a PLT entry then it 284 // will be resolved as a branch to the next instruction. 285 if (s.isUndefWeak() && !s.isInPlt()) 286 return false; 287 // A state change from ARM to Thumb and vice versa must go through an 288 // interworking thunk if the relocation type is not R_ARM_CALL or 289 // R_ARM_THM_CALL. 290 switch (type) { 291 case R_ARM_PC24: 292 case R_ARM_PLT32: 293 case R_ARM_JUMP24: 294 // Source is ARM, all PLT entries are ARM so no interworking required. 295 // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb). 296 if (s.isFunc() && expr == R_PC && (s.getVA() & 1)) 297 return true; 298 LLVM_FALLTHROUGH; 299 case R_ARM_CALL: { 300 uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA(); 301 return !inBranchRange(type, branchAddr, dst + a); 302 } 303 case R_ARM_THM_JUMP19: 304 case R_ARM_THM_JUMP24: 305 // Source is Thumb, all PLT entries are ARM so interworking is required. 306 // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM). 307 if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0)) 308 return true; 309 LLVM_FALLTHROUGH; 310 case R_ARM_THM_CALL: { 311 uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA(); 312 return !inBranchRange(type, branchAddr, dst + a); 313 } 314 } 315 return false; 316 } 317 318 uint32_t ARM::getThunkSectionSpacing() const { 319 // The placing of pre-created ThunkSections is controlled by the value 320 // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to 321 // place the ThunkSection such that all branches from the InputSections 322 // prior to the ThunkSection can reach a Thunk placed at the end of the 323 // ThunkSection. Graphically: 324 // | up to thunkSectionSpacing .text input sections | 325 // | ThunkSection | 326 // | up to thunkSectionSpacing .text input sections | 327 // | ThunkSection | 328 329 // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This 330 // is to match the most common expected case of a Thumb 2 encoded BL, BLX or 331 // B.W: 332 // ARM B, BL, BLX range +/- 32MiB 333 // Thumb B.W, BL, BLX range +/- 16MiB 334 // Thumb B<cc>.W range +/- 1MiB 335 // If a branch cannot reach a pre-created ThunkSection a new one will be 336 // created so we can handle the rare cases of a Thumb 2 conditional branch. 337 // We intentionally use a lower size for thunkSectionSpacing than the maximum 338 // branch range so the end of the ThunkSection is more likely to be within 339 // range of the branch instruction that is furthest away. The value we shorten 340 // thunkSectionSpacing by is set conservatively to allow us to create 16,384 341 // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to 342 // one of the Thunks going out of range. 343 344 // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch 345 // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except 346 // ARMv6T2) the range is +/- 4MiB. 347 348 return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000 349 : 0x400000 - 0x7500; 350 } 351 352 bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { 353 if ((dst & 0x1) == 0) 354 // Destination is ARM, if ARM caller then Src is already 4-byte aligned. 355 // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure 356 // destination will be 4 byte aligned. 357 src &= ~0x3; 358 else 359 // Bit 0 == 1 denotes Thumb state, it is not part of the range. 360 dst &= ~0x1; 361 362 int64_t offset = dst - src; 363 switch (type) { 364 case R_ARM_PC24: 365 case R_ARM_PLT32: 366 case R_ARM_JUMP24: 367 case R_ARM_CALL: 368 return llvm::isInt<26>(offset); 369 case R_ARM_THM_JUMP19: 370 return llvm::isInt<21>(offset); 371 case R_ARM_THM_JUMP24: 372 case R_ARM_THM_CALL: 373 return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset) 374 : llvm::isInt<23>(offset); 375 default: 376 return true; 377 } 378 } 379 380 // Helper to produce message text when LLD detects that a CALL relocation to 381 // a non STT_FUNC symbol that may result in incorrect interworking between ARM 382 // or Thumb. 383 static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) { 384 assert(!s.isFunc()); 385 if (s.isSection()) { 386 // Section symbols must be defined and in a section. Users cannot change 387 // the type. Use the section name as getName() returns an empty string. 388 warn(getErrorLocation(loc) + "branch and link relocation: " + 389 toString(relt) + " to STT_SECTION symbol " + 390 cast<Defined>(s).section->name + " ; interworking not performed"); 391 } else { 392 // Warn with hint on how to alter the symbol type. 393 warn(getErrorLocation(loc) + "branch and link relocation: " + 394 toString(relt) + " to non STT_FUNC symbol: " + s.getName() + 395 " interworking not performed; consider using directive '.type " + 396 s.getName() + 397 ", %function' to give symbol type STT_FUNC if" 398 " interworking between ARM and Thumb is required"); 399 } 400 } 401 402 // Utility functions taken from ARMAddressingModes.h, only changes are LLD 403 // coding style. 404 405 // Rotate a 32-bit unsigned value right by a specified amt of bits. 406 static uint32_t rotr32(uint32_t val, uint32_t amt) { 407 assert(amt < 32 && "Invalid rotate amount"); 408 return (val >> amt) | (val << ((32 - amt) & 31)); 409 } 410 411 // Rotate a 32-bit unsigned value left by a specified amt of bits. 412 static uint32_t rotl32(uint32_t val, uint32_t amt) { 413 assert(amt < 32 && "Invalid rotate amount"); 414 return (val << amt) | (val >> ((32 - amt) & 31)); 415 } 416 417 // Try to encode a 32-bit unsigned immediate imm with an immediate shifter 418 // operand, this form is an 8-bit immediate rotated right by an even number of 419 // bits. We compute the rotate amount to use. If this immediate value cannot be 420 // handled with a single shifter-op, determine a good rotate amount that will 421 // take a maximal chunk of bits out of the immediate. 422 static uint32_t getSOImmValRotate(uint32_t imm) { 423 // 8-bit (or less) immediates are trivially shifter_operands with a rotate 424 // of zero. 425 if ((imm & ~255U) == 0) 426 return 0; 427 428 // Use CTZ to compute the rotate amount. 429 unsigned tz = llvm::countTrailingZeros(imm); 430 431 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, 432 // not 9. 433 unsigned rotAmt = tz & ~1; 434 435 // If we can handle this spread, return it. 436 if ((rotr32(imm, rotAmt) & ~255U) == 0) 437 return (32 - rotAmt) & 31; // HW rotates right, not left. 438 439 // For values like 0xF000000F, we should ignore the low 6 bits, then 440 // retry the hunt. 441 if (imm & 63U) { 442 unsigned tz2 = countTrailingZeros(imm & ~63U); 443 unsigned rotAmt2 = tz2 & ~1; 444 if ((rotr32(imm, rotAmt2) & ~255U) == 0) 445 return (32 - rotAmt2) & 31; // HW rotates right, not left. 446 } 447 448 // Otherwise, we have no way to cover this span of bits with a single 449 // shifter_op immediate. Return a chunk of bits that will be useful to 450 // handle. 451 return (32 - rotAmt) & 31; // HW rotates right, not left. 452 } 453 454 void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 455 switch (rel.type) { 456 case R_ARM_ABS32: 457 case R_ARM_BASE_PREL: 458 case R_ARM_GOTOFF32: 459 case R_ARM_GOT_BREL: 460 case R_ARM_GOT_PREL: 461 case R_ARM_REL32: 462 case R_ARM_RELATIVE: 463 case R_ARM_SBREL32: 464 case R_ARM_TARGET1: 465 case R_ARM_TARGET2: 466 case R_ARM_TLS_GD32: 467 case R_ARM_TLS_IE32: 468 case R_ARM_TLS_LDM32: 469 case R_ARM_TLS_LDO32: 470 case R_ARM_TLS_LE32: 471 case R_ARM_TLS_TPOFF32: 472 case R_ARM_TLS_DTPOFF32: 473 write32le(loc, val); 474 break; 475 case R_ARM_PREL31: 476 checkInt(loc, val, 31, rel); 477 write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000)); 478 break; 479 case R_ARM_CALL: { 480 // R_ARM_CALL is used for BL and BLX instructions, for symbols of type 481 // STT_FUNC we choose whether to write a BL or BLX depending on the 482 // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is 483 // not of type STT_FUNC then we must preserve the original instruction. 484 // PLT entries are always ARM state so we know we don't need to interwork. 485 assert(rel.sym); // R_ARM_CALL is always reached via relocate(). 486 bool bit0Thumb = val & 1; 487 bool isBlx = (read32le(loc) & 0xfe000000) == 0xfa000000; 488 // lld 10.0 and before always used bit0Thumb when deciding to write a BLX 489 // even when type not STT_FUNC. 490 if (!rel.sym->isFunc() && isBlx != bit0Thumb) 491 stateChangeWarning(loc, rel.type, *rel.sym); 492 if (rel.sym->isFunc() ? bit0Thumb : isBlx) { 493 // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' 494 checkInt(loc, val, 26, rel); 495 write32le(loc, 0xfa000000 | // opcode 496 ((val & 2) << 23) | // H 497 ((val >> 2) & 0x00ffffff)); // imm24 498 break; 499 } 500 // BLX (always unconditional) instruction to an ARM Target, select an 501 // unconditional BL. 502 write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff)); 503 // fall through as BL encoding is shared with B 504 } 505 LLVM_FALLTHROUGH; 506 case R_ARM_JUMP24: 507 case R_ARM_PC24: 508 case R_ARM_PLT32: 509 checkInt(loc, val, 26, rel); 510 write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff)); 511 break; 512 case R_ARM_THM_JUMP11: 513 checkInt(loc, val, 12, rel); 514 write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff)); 515 break; 516 case R_ARM_THM_JUMP19: 517 // Encoding T3: Val = S:J2:J1:imm6:imm11:0 518 checkInt(loc, val, 21, rel); 519 write16le(loc, 520 (read16le(loc) & 0xfbc0) | // opcode cond 521 ((val >> 10) & 0x0400) | // S 522 ((val >> 12) & 0x003f)); // imm6 523 write16le(loc + 2, 524 0x8000 | // opcode 525 ((val >> 8) & 0x0800) | // J2 526 ((val >> 5) & 0x2000) | // J1 527 ((val >> 1) & 0x07ff)); // imm11 528 break; 529 case R_ARM_THM_CALL: { 530 // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type 531 // STT_FUNC we choose whether to write a BL or BLX depending on the 532 // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is 533 // not of type STT_FUNC then we must preserve the original instruction. 534 // PLT entries are always ARM state so we know we need to interwork. 535 assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate(). 536 bool bit0Thumb = val & 1; 537 bool isBlx = (read16le(loc + 2) & 0x1000) == 0; 538 // lld 10.0 and before always used bit0Thumb when deciding to write a BLX 539 // even when type not STT_FUNC. PLT entries generated by LLD are always ARM. 540 if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb) 541 stateChangeWarning(loc, rel.type, *rel.sym); 542 if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) { 543 // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As 544 // the BLX instruction may only be two byte aligned. This must be done 545 // before overflow check. 546 val = alignTo(val, 4); 547 write16le(loc + 2, read16le(loc + 2) & ~0x1000); 548 } else { 549 write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | 1 << 12); 550 } 551 if (!config->armJ1J2BranchEncoding) { 552 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have 553 // different encoding rules and range due to J1 and J2 always being 1. 554 checkInt(loc, val, 23, rel); 555 write16le(loc, 556 0xf000 | // opcode 557 ((val >> 12) & 0x07ff)); // imm11 558 write16le(loc + 2, 559 (read16le(loc + 2) & 0xd000) | // opcode 560 0x2800 | // J1 == J2 == 1 561 ((val >> 1) & 0x07ff)); // imm11 562 break; 563 } 564 } 565 // Fall through as rest of encoding is the same as B.W 566 LLVM_FALLTHROUGH; 567 case R_ARM_THM_JUMP24: 568 // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 569 checkInt(loc, val, 25, rel); 570 write16le(loc, 571 0xf000 | // opcode 572 ((val >> 14) & 0x0400) | // S 573 ((val >> 12) & 0x03ff)); // imm10 574 write16le(loc + 2, 575 (read16le(loc + 2) & 0xd000) | // opcode 576 (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1 577 (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2 578 ((val >> 1) & 0x07ff)); // imm11 579 break; 580 case R_ARM_MOVW_ABS_NC: 581 case R_ARM_MOVW_PREL_NC: 582 case R_ARM_MOVW_BREL_NC: 583 write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) | 584 (val & 0x0fff)); 585 break; 586 case R_ARM_MOVT_ABS: 587 case R_ARM_MOVT_PREL: 588 case R_ARM_MOVT_BREL: 589 write32le(loc, (read32le(loc) & ~0x000f0fff) | 590 (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff)); 591 break; 592 case R_ARM_THM_MOVT_ABS: 593 case R_ARM_THM_MOVT_PREL: 594 case R_ARM_THM_MOVT_BREL: 595 // Encoding T1: A = imm4:i:imm3:imm8 596 write16le(loc, 597 0xf2c0 | // opcode 598 ((val >> 17) & 0x0400) | // i 599 ((val >> 28) & 0x000f)); // imm4 600 write16le(loc + 2, 601 (read16le(loc + 2) & 0x8f00) | // opcode 602 ((val >> 12) & 0x7000) | // imm3 603 ((val >> 16) & 0x00ff)); // imm8 604 break; 605 case R_ARM_THM_MOVW_ABS_NC: 606 case R_ARM_THM_MOVW_PREL_NC: 607 case R_ARM_THM_MOVW_BREL_NC: 608 // Encoding T3: A = imm4:i:imm3:imm8 609 write16le(loc, 610 0xf240 | // opcode 611 ((val >> 1) & 0x0400) | // i 612 ((val >> 12) & 0x000f)); // imm4 613 write16le(loc + 2, 614 (read16le(loc + 2) & 0x8f00) | // opcode 615 ((val << 4) & 0x7000) | // imm3 616 (val & 0x00ff)); // imm8 617 break; 618 case R_ARM_ALU_PC_G0: { 619 // ADR (literal) add = bit23, sub = bit22 620 // literal is a 12-bit modified immediate, made up of a 4-bit even rotate 621 // right and an 8-bit immediate. The code-sequence here is derived from 622 // ARMAddressingModes.h in llvm/Target/ARM/MCTargetDesc. In our case we 623 // want to give an error if we cannot encode the constant. 624 uint32_t opcode = 0x00800000; 625 if (val >> 63) { 626 opcode = 0x00400000; 627 val = ~val + 1; 628 } 629 if ((val & ~255U) != 0) { 630 uint32_t rotAmt = getSOImmValRotate(val); 631 // Error if we cannot encode this with a single shift 632 if (rotr32(~255U, rotAmt) & val) 633 error(getErrorLocation(loc) + "unencodeable immediate " + 634 Twine(val).str() + " for relocation " + toString(rel.type)); 635 val = rotl32(val, rotAmt) | ((rotAmt >> 1) << 8); 636 } 637 write32le(loc, (read32le(loc) & 0xff0ff000) | opcode | val); 638 break; 639 } 640 case R_ARM_LDR_PC_G0: { 641 // R_ARM_LDR_PC_G0 is S + A - P, we have ((S + A) | T) - P, if S is a 642 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear 643 // bottom bit to recover S + A - P. 644 if (rel.sym->isFunc()) 645 val &= ~0x1; 646 // LDR (literal) u = bit23 647 int64_t imm = val; 648 uint32_t u = 0x00800000; 649 if (imm < 0) { 650 imm = -imm; 651 u = 0; 652 } 653 checkUInt(loc, imm, 12, rel); 654 write32le(loc, (read32le(loc) & 0xff7ff000) | u | imm); 655 break; 656 } 657 case R_ARM_THM_ALU_PREL_11_0: { 658 // ADR encoding T2 (sub), T3 (add) i:imm3:imm8 659 int64_t imm = val; 660 uint16_t sub = 0; 661 if (imm < 0) { 662 imm = -imm; 663 sub = 0x00a0; 664 } 665 checkUInt(loc, imm, 12, rel); 666 write16le(loc, (read16le(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1); 667 write16le(loc + 2, 668 (read16le(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff)); 669 break; 670 } 671 case R_ARM_THM_PC8: 672 // ADR and LDR literal encoding T1 positive offset only imm8:00 673 // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a 674 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear 675 // bottom bit to recover S + A - Pa. 676 if (rel.sym->isFunc()) 677 val &= ~0x1; 678 checkUInt(loc, val, 10, rel); 679 checkAlignment(loc, val, 4, rel); 680 write16le(loc, (read16le(loc) & 0xff00) | (val & 0x3fc) >> 2); 681 break; 682 case R_ARM_THM_PC12: { 683 // LDR (literal) encoding T2, add = (U == '1') imm12 684 // imm12 is unsigned 685 // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a 686 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear 687 // bottom bit to recover S + A - Pa. 688 if (rel.sym->isFunc()) 689 val &= ~0x1; 690 int64_t imm12 = val; 691 uint16_t u = 0x0080; 692 if (imm12 < 0) { 693 imm12 = -imm12; 694 u = 0; 695 } 696 checkUInt(loc, imm12, 12, rel); 697 write16le(loc, read16le(loc) | u); 698 write16le(loc + 2, (read16le(loc + 2) & 0xf000) | imm12); 699 break; 700 } 701 default: 702 error(getErrorLocation(loc) + "unrecognized relocation " + 703 toString(rel.type)); 704 } 705 } 706 707 int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const { 708 switch (type) { 709 default: 710 internalLinkerError(getErrorLocation(buf), 711 "cannot read addend for relocation " + toString(type)); 712 return 0; 713 case R_ARM_ABS32: 714 case R_ARM_BASE_PREL: 715 case R_ARM_GLOB_DAT: 716 case R_ARM_GOTOFF32: 717 case R_ARM_GOT_BREL: 718 case R_ARM_GOT_PREL: 719 case R_ARM_IRELATIVE: 720 case R_ARM_REL32: 721 case R_ARM_RELATIVE: 722 case R_ARM_SBREL32: 723 case R_ARM_TARGET1: 724 case R_ARM_TARGET2: 725 case R_ARM_TLS_DTPMOD32: 726 case R_ARM_TLS_DTPOFF32: 727 case R_ARM_TLS_GD32: 728 case R_ARM_TLS_IE32: 729 case R_ARM_TLS_LDM32: 730 case R_ARM_TLS_LE32: 731 case R_ARM_TLS_LDO32: 732 case R_ARM_TLS_TPOFF32: 733 return SignExtend64<32>(read32le(buf)); 734 case R_ARM_PREL31: 735 return SignExtend64<31>(read32le(buf)); 736 case R_ARM_CALL: 737 case R_ARM_JUMP24: 738 case R_ARM_PC24: 739 case R_ARM_PLT32: 740 return SignExtend64<26>(read32le(buf) << 2); 741 case R_ARM_THM_JUMP11: 742 return SignExtend64<12>(read16le(buf) << 1); 743 case R_ARM_THM_JUMP19: { 744 // Encoding T3: A = S:J2:J1:imm10:imm6:0 745 uint16_t hi = read16le(buf); 746 uint16_t lo = read16le(buf + 2); 747 return SignExtend64<20>(((hi & 0x0400) << 10) | // S 748 ((lo & 0x0800) << 8) | // J2 749 ((lo & 0x2000) << 5) | // J1 750 ((hi & 0x003f) << 12) | // imm6 751 ((lo & 0x07ff) << 1)); // imm11:0 752 } 753 case R_ARM_THM_CALL: 754 if (!config->armJ1J2BranchEncoding) { 755 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have 756 // different encoding rules and range due to J1 and J2 always being 1. 757 uint16_t hi = read16le(buf); 758 uint16_t lo = read16le(buf + 2); 759 return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11 760 ((lo & 0x7ff) << 1)); // imm11:0 761 break; 762 } 763 LLVM_FALLTHROUGH; 764 case R_ARM_THM_JUMP24: { 765 // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 766 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) 767 uint16_t hi = read16le(buf); 768 uint16_t lo = read16le(buf + 2); 769 return SignExtend64<24>(((hi & 0x0400) << 14) | // S 770 (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1 771 (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2 772 ((hi & 0x003ff) << 12) | // imm0 773 ((lo & 0x007ff) << 1)); // imm11:0 774 } 775 // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and 776 // MOVT is in the range -32768 <= A < 32768 777 case R_ARM_MOVW_ABS_NC: 778 case R_ARM_MOVT_ABS: 779 case R_ARM_MOVW_PREL_NC: 780 case R_ARM_MOVT_PREL: 781 case R_ARM_MOVW_BREL_NC: 782 case R_ARM_MOVT_BREL: { 783 uint64_t val = read32le(buf) & 0x000f0fff; 784 return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff)); 785 } 786 case R_ARM_THM_MOVW_ABS_NC: 787 case R_ARM_THM_MOVT_ABS: 788 case R_ARM_THM_MOVW_PREL_NC: 789 case R_ARM_THM_MOVT_PREL: 790 case R_ARM_THM_MOVW_BREL_NC: 791 case R_ARM_THM_MOVT_BREL: { 792 // Encoding T3: A = imm4:i:imm3:imm8 793 uint16_t hi = read16le(buf); 794 uint16_t lo = read16le(buf + 2); 795 return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4 796 ((hi & 0x0400) << 1) | // i 797 ((lo & 0x7000) >> 4) | // imm3 798 (lo & 0x00ff)); // imm8 799 } 800 case R_ARM_ALU_PC_G0: { 801 // 12-bit immediate is a modified immediate made up of a 4-bit even 802 // right rotation and 8-bit constant. After the rotation the value 803 // is zero-extended. When bit 23 is set the instruction is an add, when 804 // bit 22 is set it is a sub. 805 uint32_t instr = read32le(buf); 806 uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2); 807 return (instr & 0x00400000) ? -val : val; 808 } 809 case R_ARM_LDR_PC_G0: { 810 // ADR (literal) add = bit23, sub = bit22 811 // LDR (literal) u = bit23 unsigned imm12 812 bool u = read32le(buf) & 0x00800000; 813 uint32_t imm12 = read32le(buf) & 0xfff; 814 return u ? imm12 : -imm12; 815 } 816 case R_ARM_THM_ALU_PREL_11_0: { 817 // Thumb2 ADR, which is an alias for a sub or add instruction with an 818 // unsigned immediate. 819 // ADR encoding T2 (sub), T3 (add) i:imm3:imm8 820 uint16_t hi = read16le(buf); 821 uint16_t lo = read16le(buf + 2); 822 uint64_t imm = (hi & 0x0400) << 1 | // i 823 (lo & 0x7000) >> 4 | // imm3 824 (lo & 0x00ff); // imm8 825 // For sub, addend is negative, add is positive. 826 return (hi & 0x00f0) ? -imm : imm; 827 } 828 case R_ARM_THM_PC8: 829 // ADR and LDR (literal) encoding T1 830 // From ELF for the ARM Architecture the initial signed addend is formed 831 // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4) 832 // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff 833 return ((((read16le(buf) & 0xff) << 2) + 4) & 0x3ff) - 4; 834 case R_ARM_THM_PC12: { 835 // LDR (literal) encoding T2, add = (U == '1') imm12 836 bool u = read16le(buf) & 0x0080; 837 uint64_t imm12 = read16le(buf + 2) & 0x0fff; 838 return u ? imm12 : -imm12; 839 } 840 case R_ARM_NONE: 841 case R_ARM_JUMP_SLOT: 842 // These relocations are defined as not having an implicit addend. 843 return 0; 844 } 845 } 846 847 TargetInfo *elf::getARMTargetInfo() { 848 static ARM target; 849 return ⌖ 850 } 851