xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/ARM.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- ARM.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "Thunks.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/Object/ELF.h"
16 #include "llvm/Support/Endian.h"
17 
18 using namespace llvm;
19 using namespace llvm::support::endian;
20 using namespace llvm::ELF;
21 
22 namespace lld {
23 namespace elf {
24 
25 namespace {
26 class ARM final : public TargetInfo {
27 public:
28   ARM();
29   uint32_t calcEFlags() const override;
30   RelExpr getRelExpr(RelType type, const Symbol &s,
31                      const uint8_t *loc) const override;
32   RelType getDynRel(RelType type) const override;
33   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
34   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
35   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
36   void writePltHeader(uint8_t *buf) const override;
37   void writePlt(uint8_t *buf, const Symbol &sym,
38                 uint64_t pltEntryAddr) const override;
39   void addPltSymbols(InputSection &isec, uint64_t off) const override;
40   void addPltHeaderSymbols(InputSection &isd) const override;
41   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
42                   uint64_t branchAddr, const Symbol &s,
43                   int64_t a) const override;
44   uint32_t getThunkSectionSpacing() const override;
45   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
46   void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
47 };
48 } // namespace
49 
50 ARM::ARM() {
51   copyRel = R_ARM_COPY;
52   relativeRel = R_ARM_RELATIVE;
53   iRelativeRel = R_ARM_IRELATIVE;
54   gotRel = R_ARM_GLOB_DAT;
55   noneRel = R_ARM_NONE;
56   pltRel = R_ARM_JUMP_SLOT;
57   symbolicRel = R_ARM_ABS32;
58   tlsGotRel = R_ARM_TLS_TPOFF32;
59   tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
60   tlsOffsetRel = R_ARM_TLS_DTPOFF32;
61   gotBaseSymInGotPlt = false;
62   pltHeaderSize = 32;
63   pltEntrySize = 16;
64   ipltEntrySize = 16;
65   trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
66   needsThunks = true;
67 }
68 
69 uint32_t ARM::calcEFlags() const {
70   // The ABIFloatType is used by loaders to detect the floating point calling
71   // convention.
72   uint32_t abiFloatType = 0;
73   if (config->armVFPArgs == ARMVFPArgKind::Base ||
74       config->armVFPArgs == ARMVFPArgKind::Default)
75     abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
76   else if (config->armVFPArgs == ARMVFPArgKind::VFP)
77     abiFloatType = EF_ARM_ABI_FLOAT_HARD;
78 
79   // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
80   // but we don't have any firm guarantees of conformance. Linux AArch64
81   // kernels (as of 2016) require an EABI version to be set.
82   return EF_ARM_EABI_VER5 | abiFloatType;
83 }
84 
85 RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
86                         const uint8_t *loc) const {
87   switch (type) {
88   case R_ARM_THM_JUMP11:
89     return R_PC;
90   case R_ARM_CALL:
91   case R_ARM_JUMP24:
92   case R_ARM_PC24:
93   case R_ARM_PLT32:
94   case R_ARM_PREL31:
95   case R_ARM_THM_JUMP19:
96   case R_ARM_THM_JUMP24:
97   case R_ARM_THM_CALL:
98     return R_PLT_PC;
99   case R_ARM_GOTOFF32:
100     // (S + A) - GOT_ORG
101     return R_GOTREL;
102   case R_ARM_GOT_BREL:
103     // GOT(S) + A - GOT_ORG
104     return R_GOT_OFF;
105   case R_ARM_GOT_PREL:
106   case R_ARM_TLS_IE32:
107     // GOT(S) + A - P
108     return R_GOT_PC;
109   case R_ARM_SBREL32:
110     return R_ARM_SBREL;
111   case R_ARM_TARGET1:
112     return config->target1Rel ? R_PC : R_ABS;
113   case R_ARM_TARGET2:
114     if (config->target2 == Target2Policy::Rel)
115       return R_PC;
116     if (config->target2 == Target2Policy::Abs)
117       return R_ABS;
118     return R_GOT_PC;
119   case R_ARM_TLS_GD32:
120     return R_TLSGD_PC;
121   case R_ARM_TLS_LDM32:
122     return R_TLSLD_PC;
123   case R_ARM_BASE_PREL:
124     // B(S) + A - P
125     // FIXME: currently B(S) assumed to be .got, this may not hold for all
126     // platforms.
127     return R_GOTONLY_PC;
128   case R_ARM_MOVW_PREL_NC:
129   case R_ARM_MOVT_PREL:
130   case R_ARM_REL32:
131   case R_ARM_THM_MOVW_PREL_NC:
132   case R_ARM_THM_MOVT_PREL:
133     return R_PC;
134   case R_ARM_NONE:
135     return R_NONE;
136   case R_ARM_TLS_LE32:
137     return R_TLS;
138   case R_ARM_V4BX:
139     // V4BX is just a marker to indicate there's a "bx rN" instruction at the
140     // given address. It can be used to implement a special linker mode which
141     // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
142     // not ARMv4 output, we can just ignore it.
143     return R_NONE;
144   default:
145     return R_ABS;
146   }
147 }
148 
149 RelType ARM::getDynRel(RelType type) const {
150   if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
151     return R_ARM_ABS32;
152   return R_ARM_NONE;
153 }
154 
155 void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
156   write32le(buf, in.plt->getVA());
157 }
158 
159 void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
160   // An ARM entry is the address of the ifunc resolver function.
161   write32le(buf, s.getVA());
162 }
163 
164 // Long form PLT Header that does not have any restrictions on the displacement
165 // of the .plt from the .plt.got.
166 static void writePltHeaderLong(uint8_t *buf) {
167   const uint8_t pltData[] = {
168       0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
169       0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
170       0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
171       0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
172       0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
173       0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
174       0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
175       0xd4, 0xd4, 0xd4, 0xd4};
176   memcpy(buf, pltData, sizeof(pltData));
177   uint64_t gotPlt = in.gotPlt->getVA();
178   uint64_t l1 = in.plt->getVA() + 8;
179   write32le(buf + 16, gotPlt - l1 - 8);
180 }
181 
182 // The default PLT header requires the .plt.got to be within 128 Mb of the
183 // .plt in the positive direction.
184 void ARM::writePltHeader(uint8_t *buf) const {
185   // Use a similar sequence to that in writePlt(), the difference is the calling
186   // conventions mean we use lr instead of ip. The PLT entry is responsible for
187   // saving lr on the stack, the dynamic loader is responsible for reloading
188   // it.
189   const uint32_t pltData[] = {
190       0xe52de004, // L1: str lr, [sp,#-4]!
191       0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
192       0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
193       0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
194   };
195 
196   uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
197   if (!llvm::isUInt<27>(offset)) {
198     // We cannot encode the Offset, use the long form.
199     writePltHeaderLong(buf);
200     return;
201   }
202   write32le(buf + 0, pltData[0]);
203   write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
204   write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
205   write32le(buf + 12, pltData[3] | (offset & 0xfff));
206   memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
207   memcpy(buf + 20, trapInstr.data(), 4);
208   memcpy(buf + 24, trapInstr.data(), 4);
209   memcpy(buf + 28, trapInstr.data(), 4);
210 }
211 
212 void ARM::addPltHeaderSymbols(InputSection &isec) const {
213   addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
214   addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
215 }
216 
217 // Long form PLT entries that do not have any restrictions on the displacement
218 // of the .plt from the .plt.got.
219 static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
220                          uint64_t pltEntryAddr) {
221   const uint8_t pltData[] = {
222       0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
223       0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
224       0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
225       0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
226   };
227   memcpy(buf, pltData, sizeof(pltData));
228   uint64_t l1 = pltEntryAddr + 4;
229   write32le(buf + 12, gotPltEntryAddr - l1 - 8);
230 }
231 
232 // The default PLT entries require the .plt.got to be within 128 Mb of the
233 // .plt in the positive direction.
234 void ARM::writePlt(uint8_t *buf, const Symbol &sym,
235                    uint64_t pltEntryAddr) const {
236   // The PLT entry is similar to the example given in Appendix A of ELF for
237   // the Arm Architecture. Instead of using the Group Relocations to find the
238   // optimal rotation for the 8-bit immediate used in the add instructions we
239   // hard code the most compact rotations for simplicity. This saves a load
240   // instruction over the long plt sequences.
241   const uint32_t pltData[] = {
242       0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.plt.got) - L1 - 8
243       0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.plt.got) - L1 - 8
244       0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
245   };
246 
247   uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
248   if (!llvm::isUInt<27>(offset)) {
249     // We cannot encode the Offset, use the long form.
250     writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
251     return;
252   }
253   write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
254   write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
255   write32le(buf + 8, pltData[2] | (offset & 0xfff));
256   memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
257 }
258 
259 void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
260   addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
261   addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
262 }
263 
264 bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
265                      uint64_t branchAddr, const Symbol &s, int64_t /*a*/) const {
266   // If S is an undefined weak symbol and does not have a PLT entry then it
267   // will be resolved as a branch to the next instruction.
268   if (s.isUndefWeak() && !s.isInPlt())
269     return false;
270   // A state change from ARM to Thumb and vice versa must go through an
271   // interworking thunk if the relocation type is not R_ARM_CALL or
272   // R_ARM_THM_CALL.
273   switch (type) {
274   case R_ARM_PC24:
275   case R_ARM_PLT32:
276   case R_ARM_JUMP24:
277     // Source is ARM, all PLT entries are ARM so no interworking required.
278     // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
279     if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
280       return true;
281     LLVM_FALLTHROUGH;
282   case R_ARM_CALL: {
283     uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
284     return !inBranchRange(type, branchAddr, dst);
285   }
286   case R_ARM_THM_JUMP19:
287   case R_ARM_THM_JUMP24:
288     // Source is Thumb, all PLT entries are ARM so interworking is required.
289     // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
290     if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
291       return true;
292     LLVM_FALLTHROUGH;
293   case R_ARM_THM_CALL: {
294     uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
295     return !inBranchRange(type, branchAddr, dst);
296   }
297   }
298   return false;
299 }
300 
301 uint32_t ARM::getThunkSectionSpacing() const {
302   // The placing of pre-created ThunkSections is controlled by the value
303   // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
304   // place the ThunkSection such that all branches from the InputSections
305   // prior to the ThunkSection can reach a Thunk placed at the end of the
306   // ThunkSection. Graphically:
307   // | up to thunkSectionSpacing .text input sections |
308   // | ThunkSection                                   |
309   // | up to thunkSectionSpacing .text input sections |
310   // | ThunkSection                                   |
311 
312   // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
313   // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
314   // B.W:
315   // ARM B, BL, BLX range +/- 32MiB
316   // Thumb B.W, BL, BLX range +/- 16MiB
317   // Thumb B<cc>.W range +/- 1MiB
318   // If a branch cannot reach a pre-created ThunkSection a new one will be
319   // created so we can handle the rare cases of a Thumb 2 conditional branch.
320   // We intentionally use a lower size for thunkSectionSpacing than the maximum
321   // branch range so the end of the ThunkSection is more likely to be within
322   // range of the branch instruction that is furthest away. The value we shorten
323   // thunkSectionSpacing by is set conservatively to allow us to create 16,384
324   // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
325   // one of the Thunks going out of range.
326 
327   // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
328   // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
329   // ARMv6T2) the range is +/- 4MiB.
330 
331   return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
332                                          : 0x400000 - 0x7500;
333 }
334 
335 bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
336   uint64_t range;
337   uint64_t instrSize;
338 
339   switch (type) {
340   case R_ARM_PC24:
341   case R_ARM_PLT32:
342   case R_ARM_JUMP24:
343   case R_ARM_CALL:
344     range = 0x2000000;
345     instrSize = 4;
346     break;
347   case R_ARM_THM_JUMP19:
348     range = 0x100000;
349     instrSize = 2;
350     break;
351   case R_ARM_THM_JUMP24:
352   case R_ARM_THM_CALL:
353     range = config->armJ1J2BranchEncoding ? 0x1000000 : 0x400000;
354     instrSize = 2;
355     break;
356   default:
357     return true;
358   }
359   // PC at Src is 2 instructions ahead, immediate of branch is signed
360   if (src > dst)
361     range -= 2 * instrSize;
362   else
363     range += instrSize;
364 
365   if ((dst & 0x1) == 0)
366     // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
367     // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
368     // destination will be 4 byte aligned.
369     src &= ~0x3;
370   else
371     // Bit 0 == 1 denotes Thumb state, it is not part of the range
372     dst &= ~0x1;
373 
374   uint64_t distance = (src > dst) ? src - dst : dst - src;
375   return distance <= range;
376 }
377 
378 void ARM::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
379   switch (type) {
380   case R_ARM_ABS32:
381   case R_ARM_BASE_PREL:
382   case R_ARM_GOTOFF32:
383   case R_ARM_GOT_BREL:
384   case R_ARM_GOT_PREL:
385   case R_ARM_REL32:
386   case R_ARM_RELATIVE:
387   case R_ARM_SBREL32:
388   case R_ARM_TARGET1:
389   case R_ARM_TARGET2:
390   case R_ARM_TLS_GD32:
391   case R_ARM_TLS_IE32:
392   case R_ARM_TLS_LDM32:
393   case R_ARM_TLS_LDO32:
394   case R_ARM_TLS_LE32:
395   case R_ARM_TLS_TPOFF32:
396   case R_ARM_TLS_DTPOFF32:
397     write32le(loc, val);
398     break;
399   case R_ARM_PREL31:
400     checkInt(loc, val, 31, type);
401     write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
402     break;
403   case R_ARM_CALL:
404     // R_ARM_CALL is used for BL and BLX instructions, depending on the
405     // value of bit 0 of Val, we must select a BL or BLX instruction
406     if (val & 1) {
407       // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
408       // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
409       checkInt(loc, val, 26, type);
410       write32le(loc, 0xfa000000 |                    // opcode
411                          ((val & 2) << 23) |         // H
412                          ((val >> 2) & 0x00ffffff)); // imm24
413       break;
414     }
415     if ((read32le(loc) & 0xfe000000) == 0xfa000000)
416       // BLX (always unconditional) instruction to an ARM Target, select an
417       // unconditional BL.
418       write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
419     // fall through as BL encoding is shared with B
420     LLVM_FALLTHROUGH;
421   case R_ARM_JUMP24:
422   case R_ARM_PC24:
423   case R_ARM_PLT32:
424     checkInt(loc, val, 26, type);
425     write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
426     break;
427   case R_ARM_THM_JUMP11:
428     checkInt(loc, val, 12, type);
429     write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
430     break;
431   case R_ARM_THM_JUMP19:
432     // Encoding T3: Val = S:J2:J1:imm6:imm11:0
433     checkInt(loc, val, 21, type);
434     write16le(loc,
435               (read16le(loc) & 0xfbc0) |   // opcode cond
436                   ((val >> 10) & 0x0400) | // S
437                   ((val >> 12) & 0x003f)); // imm6
438     write16le(loc + 2,
439               0x8000 |                    // opcode
440                   ((val >> 8) & 0x0800) | // J2
441                   ((val >> 5) & 0x2000) | // J1
442                   ((val >> 1) & 0x07ff)); // imm11
443     break;
444   case R_ARM_THM_CALL:
445     // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
446     // value of bit 0 of Val, we must select a BL or BLX instruction
447     if ((val & 1) == 0) {
448       // Ensure BLX destination is 4-byte aligned. As BLX instruction may
449       // only be two byte aligned. This must be done before overflow check
450       val = alignTo(val, 4);
451     }
452     // Bit 12 is 0 for BLX, 1 for BL
453     write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | (val & 1) << 12);
454     if (!config->armJ1J2BranchEncoding) {
455       // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
456       // different encoding rules and range due to J1 and J2 always being 1.
457       checkInt(loc, val, 23, type);
458       write16le(loc,
459                 0xf000 |                     // opcode
460                     ((val >> 12) & 0x07ff)); // imm11
461       write16le(loc + 2,
462                 (read16le(loc + 2) & 0xd000) | // opcode
463                     0x2800 |                   // J1 == J2 == 1
464                     ((val >> 1) & 0x07ff));    // imm11
465       break;
466     }
467     // Fall through as rest of encoding is the same as B.W
468     LLVM_FALLTHROUGH;
469   case R_ARM_THM_JUMP24:
470     // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
471     checkInt(loc, val, 25, type);
472     write16le(loc,
473               0xf000 |                     // opcode
474                   ((val >> 14) & 0x0400) | // S
475                   ((val >> 12) & 0x03ff)); // imm10
476     write16le(loc + 2,
477               (read16le(loc + 2) & 0xd000) |                  // opcode
478                   (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
479                   (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
480                   ((val >> 1) & 0x07ff));                     // imm11
481     break;
482   case R_ARM_MOVW_ABS_NC:
483   case R_ARM_MOVW_PREL_NC:
484     write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
485                        (val & 0x0fff));
486     break;
487   case R_ARM_MOVT_ABS:
488   case R_ARM_MOVT_PREL:
489     write32le(loc, (read32le(loc) & ~0x000f0fff) |
490                        (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
491     break;
492   case R_ARM_THM_MOVT_ABS:
493   case R_ARM_THM_MOVT_PREL:
494     // Encoding T1: A = imm4:i:imm3:imm8
495     write16le(loc,
496               0xf2c0 |                     // opcode
497                   ((val >> 17) & 0x0400) | // i
498                   ((val >> 28) & 0x000f)); // imm4
499     write16le(loc + 2,
500               (read16le(loc + 2) & 0x8f00) | // opcode
501                   ((val >> 12) & 0x7000) |   // imm3
502                   ((val >> 16) & 0x00ff));   // imm8
503     break;
504   case R_ARM_THM_MOVW_ABS_NC:
505   case R_ARM_THM_MOVW_PREL_NC:
506     // Encoding T3: A = imm4:i:imm3:imm8
507     write16le(loc,
508               0xf240 |                     // opcode
509                   ((val >> 1) & 0x0400) |  // i
510                   ((val >> 12) & 0x000f)); // imm4
511     write16le(loc + 2,
512               (read16le(loc + 2) & 0x8f00) | // opcode
513                   ((val << 4) & 0x7000) |    // imm3
514                   (val & 0x00ff));           // imm8
515     break;
516   default:
517     error(getErrorLocation(loc) + "unrecognized relocation " + toString(type));
518   }
519 }
520 
521 int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
522   switch (type) {
523   default:
524     return 0;
525   case R_ARM_ABS32:
526   case R_ARM_BASE_PREL:
527   case R_ARM_GOTOFF32:
528   case R_ARM_GOT_BREL:
529   case R_ARM_GOT_PREL:
530   case R_ARM_REL32:
531   case R_ARM_TARGET1:
532   case R_ARM_TARGET2:
533   case R_ARM_TLS_GD32:
534   case R_ARM_TLS_LDM32:
535   case R_ARM_TLS_LDO32:
536   case R_ARM_TLS_IE32:
537   case R_ARM_TLS_LE32:
538     return SignExtend64<32>(read32le(buf));
539   case R_ARM_PREL31:
540     return SignExtend64<31>(read32le(buf));
541   case R_ARM_CALL:
542   case R_ARM_JUMP24:
543   case R_ARM_PC24:
544   case R_ARM_PLT32:
545     return SignExtend64<26>(read32le(buf) << 2);
546   case R_ARM_THM_JUMP11:
547     return SignExtend64<12>(read16le(buf) << 1);
548   case R_ARM_THM_JUMP19: {
549     // Encoding T3: A = S:J2:J1:imm10:imm6:0
550     uint16_t hi = read16le(buf);
551     uint16_t lo = read16le(buf + 2);
552     return SignExtend64<20>(((hi & 0x0400) << 10) | // S
553                             ((lo & 0x0800) << 8) |  // J2
554                             ((lo & 0x2000) << 5) |  // J1
555                             ((hi & 0x003f) << 12) | // imm6
556                             ((lo & 0x07ff) << 1));  // imm11:0
557   }
558   case R_ARM_THM_CALL:
559     if (!config->armJ1J2BranchEncoding) {
560       // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
561       // different encoding rules and range due to J1 and J2 always being 1.
562       uint16_t hi = read16le(buf);
563       uint16_t lo = read16le(buf + 2);
564       return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
565                               ((lo & 0x7ff) << 1));  // imm11:0
566       break;
567     }
568     LLVM_FALLTHROUGH;
569   case R_ARM_THM_JUMP24: {
570     // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
571     // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
572     uint16_t hi = read16le(buf);
573     uint16_t lo = read16le(buf + 2);
574     return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
575                             (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
576                             (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
577                             ((hi & 0x003ff) << 12) |                   // imm0
578                             ((lo & 0x007ff) << 1)); // imm11:0
579   }
580   // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
581   // MOVT is in the range -32768 <= A < 32768
582   case R_ARM_MOVW_ABS_NC:
583   case R_ARM_MOVT_ABS:
584   case R_ARM_MOVW_PREL_NC:
585   case R_ARM_MOVT_PREL: {
586     uint64_t val = read32le(buf) & 0x000f0fff;
587     return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
588   }
589   case R_ARM_THM_MOVW_ABS_NC:
590   case R_ARM_THM_MOVT_ABS:
591   case R_ARM_THM_MOVW_PREL_NC:
592   case R_ARM_THM_MOVT_PREL: {
593     // Encoding T3: A = imm4:i:imm3:imm8
594     uint16_t hi = read16le(buf);
595     uint16_t lo = read16le(buf + 2);
596     return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
597                             ((hi & 0x0400) << 1) |  // i
598                             ((lo & 0x7000) >> 4) |  // imm3
599                             (lo & 0x00ff));         // imm8
600   }
601   }
602 }
603 
604 TargetInfo *getARMTargetInfo() {
605   static ARM target;
606   return &target;
607 }
608 
609 } // namespace elf
610 } // namespace lld
611