xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/ARM.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- ARM.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "SymbolTable.h"
12 #include "Symbols.h"
13 #include "SyntheticSections.h"
14 #include "Target.h"
15 #include "lld/Common/ErrorHandler.h"
16 #include "lld/Common/Filesystem.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/Support/Endian.h"
19 
20 using namespace llvm;
21 using namespace llvm::support::endian;
22 using namespace llvm::support;
23 using namespace llvm::ELF;
24 using namespace lld;
25 using namespace lld::elf;
26 using namespace llvm::object;
27 
28 namespace {
29 class ARM final : public TargetInfo {
30 public:
31   ARM();
32   uint32_t calcEFlags() const override;
33   RelExpr getRelExpr(RelType type, const Symbol &s,
34                      const uint8_t *loc) const override;
35   RelType getDynRel(RelType type) const override;
36   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
37   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
38   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
39   void writePltHeader(uint8_t *buf) const override;
40   void writePlt(uint8_t *buf, const Symbol &sym,
41                 uint64_t pltEntryAddr) const override;
42   void addPltSymbols(InputSection &isec, uint64_t off) const override;
43   void addPltHeaderSymbols(InputSection &isd) const override;
44   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
45                   uint64_t branchAddr, const Symbol &s,
46                   int64_t a) const override;
47   uint32_t getThunkSectionSpacing() const override;
48   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
49   void relocate(uint8_t *loc, const Relocation &rel,
50                 uint64_t val) const override;
51 };
52 enum class CodeState { Data = 0, Thumb = 2, Arm = 4 };
53 } // namespace
54 
55 static DenseMap<InputSection *, SmallVector<const Defined *, 0>> sectionMap{};
56 
57 ARM::ARM() {
58   copyRel = R_ARM_COPY;
59   relativeRel = R_ARM_RELATIVE;
60   iRelativeRel = R_ARM_IRELATIVE;
61   gotRel = R_ARM_GLOB_DAT;
62   pltRel = R_ARM_JUMP_SLOT;
63   symbolicRel = R_ARM_ABS32;
64   tlsGotRel = R_ARM_TLS_TPOFF32;
65   tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
66   tlsOffsetRel = R_ARM_TLS_DTPOFF32;
67   pltHeaderSize = 32;
68   pltEntrySize = 16;
69   ipltEntrySize = 16;
70   trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
71   needsThunks = true;
72   defaultMaxPageSize = 65536;
73 }
74 
75 uint32_t ARM::calcEFlags() const {
76   // The ABIFloatType is used by loaders to detect the floating point calling
77   // convention.
78   uint32_t abiFloatType = 0;
79 
80   // Set the EF_ARM_BE8 flag in the ELF header, if ELF file is big-endian
81   // with BE-8 code.
82   uint32_t armBE8 = 0;
83 
84   if (config->armVFPArgs == ARMVFPArgKind::Base ||
85       config->armVFPArgs == ARMVFPArgKind::Default)
86     abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
87   else if (config->armVFPArgs == ARMVFPArgKind::VFP)
88     abiFloatType = EF_ARM_ABI_FLOAT_HARD;
89 
90   if (!config->isLE && config->armBe8)
91     armBE8 = EF_ARM_BE8;
92 
93   // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
94   // but we don't have any firm guarantees of conformance. Linux AArch64
95   // kernels (as of 2016) require an EABI version to be set.
96   return EF_ARM_EABI_VER5 | abiFloatType | armBE8;
97 }
98 
99 RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
100                         const uint8_t *loc) const {
101   switch (type) {
102   case R_ARM_ABS32:
103   case R_ARM_MOVW_ABS_NC:
104   case R_ARM_MOVT_ABS:
105   case R_ARM_THM_MOVW_ABS_NC:
106   case R_ARM_THM_MOVT_ABS:
107   case R_ARM_THM_ALU_ABS_G0_NC:
108   case R_ARM_THM_ALU_ABS_G1_NC:
109   case R_ARM_THM_ALU_ABS_G2_NC:
110   case R_ARM_THM_ALU_ABS_G3:
111     return R_ABS;
112   case R_ARM_THM_JUMP8:
113   case R_ARM_THM_JUMP11:
114     return R_PC;
115   case R_ARM_CALL:
116   case R_ARM_JUMP24:
117   case R_ARM_PC24:
118   case R_ARM_PLT32:
119   case R_ARM_PREL31:
120   case R_ARM_THM_JUMP19:
121   case R_ARM_THM_JUMP24:
122   case R_ARM_THM_CALL:
123     return R_PLT_PC;
124   case R_ARM_GOTOFF32:
125     // (S + A) - GOT_ORG
126     return R_GOTREL;
127   case R_ARM_GOT_BREL:
128     // GOT(S) + A - GOT_ORG
129     return R_GOT_OFF;
130   case R_ARM_GOT_PREL:
131   case R_ARM_TLS_IE32:
132     // GOT(S) + A - P
133     return R_GOT_PC;
134   case R_ARM_SBREL32:
135     return R_ARM_SBREL;
136   case R_ARM_TARGET1:
137     return config->target1Rel ? R_PC : R_ABS;
138   case R_ARM_TARGET2:
139     if (config->target2 == Target2Policy::Rel)
140       return R_PC;
141     if (config->target2 == Target2Policy::Abs)
142       return R_ABS;
143     return R_GOT_PC;
144   case R_ARM_TLS_GD32:
145     return R_TLSGD_PC;
146   case R_ARM_TLS_LDM32:
147     return R_TLSLD_PC;
148   case R_ARM_TLS_LDO32:
149     return R_DTPREL;
150   case R_ARM_BASE_PREL:
151     // B(S) + A - P
152     // FIXME: currently B(S) assumed to be .got, this may not hold for all
153     // platforms.
154     return R_GOTONLY_PC;
155   case R_ARM_MOVW_PREL_NC:
156   case R_ARM_MOVT_PREL:
157   case R_ARM_REL32:
158   case R_ARM_THM_MOVW_PREL_NC:
159   case R_ARM_THM_MOVT_PREL:
160     return R_PC;
161   case R_ARM_ALU_PC_G0:
162   case R_ARM_ALU_PC_G0_NC:
163   case R_ARM_ALU_PC_G1:
164   case R_ARM_ALU_PC_G1_NC:
165   case R_ARM_ALU_PC_G2:
166   case R_ARM_LDR_PC_G0:
167   case R_ARM_LDR_PC_G1:
168   case R_ARM_LDR_PC_G2:
169   case R_ARM_LDRS_PC_G0:
170   case R_ARM_LDRS_PC_G1:
171   case R_ARM_LDRS_PC_G2:
172   case R_ARM_THM_ALU_PREL_11_0:
173   case R_ARM_THM_PC8:
174   case R_ARM_THM_PC12:
175     return R_ARM_PCA;
176   case R_ARM_MOVW_BREL_NC:
177   case R_ARM_MOVW_BREL:
178   case R_ARM_MOVT_BREL:
179   case R_ARM_THM_MOVW_BREL_NC:
180   case R_ARM_THM_MOVW_BREL:
181   case R_ARM_THM_MOVT_BREL:
182     return R_ARM_SBREL;
183   case R_ARM_NONE:
184     return R_NONE;
185   case R_ARM_TLS_LE32:
186     return R_TPREL;
187   case R_ARM_V4BX:
188     // V4BX is just a marker to indicate there's a "bx rN" instruction at the
189     // given address. It can be used to implement a special linker mode which
190     // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
191     // not ARMv4 output, we can just ignore it.
192     return R_NONE;
193   default:
194     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
195           ") against symbol " + toString(s));
196     return R_NONE;
197   }
198 }
199 
200 RelType ARM::getDynRel(RelType type) const {
201   if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
202     return R_ARM_ABS32;
203   return R_ARM_NONE;
204 }
205 
206 void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
207   write32(buf, in.plt->getVA());
208 }
209 
210 void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
211   // An ARM entry is the address of the ifunc resolver function.
212   write32(buf, s.getVA());
213 }
214 
215 // Long form PLT Header that does not have any restrictions on the displacement
216 // of the .plt from the .got.plt.
217 static void writePltHeaderLong(uint8_t *buf) {
218   write32(buf + 0, 0xe52de004);   //     str lr, [sp,#-4]!
219   write32(buf + 4, 0xe59fe004);   //     ldr lr, L2
220   write32(buf + 8, 0xe08fe00e);   // L1: add lr, pc, lr
221   write32(buf + 12, 0xe5bef008);  //     ldr pc, [lr, #8]
222   write32(buf + 16, 0x00000000);  // L2: .word   &(.got.plt) - L1 - 8
223   write32(buf + 20, 0xd4d4d4d4);  //     Pad to 32-byte boundary
224   write32(buf + 24, 0xd4d4d4d4);  //     Pad to 32-byte boundary
225   write32(buf + 28, 0xd4d4d4d4);
226   uint64_t gotPlt = in.gotPlt->getVA();
227   uint64_t l1 = in.plt->getVA() + 8;
228   write32(buf + 16, gotPlt - l1 - 8);
229 }
230 
231 // The default PLT header requires the .got.plt to be within 128 Mb of the
232 // .plt in the positive direction.
233 void ARM::writePltHeader(uint8_t *buf) const {
234   // Use a similar sequence to that in writePlt(), the difference is the calling
235   // conventions mean we use lr instead of ip. The PLT entry is responsible for
236   // saving lr on the stack, the dynamic loader is responsible for reloading
237   // it.
238   const uint32_t pltData[] = {
239       0xe52de004, // L1: str lr, [sp,#-4]!
240       0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
241       0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
242       0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
243   };
244 
245   uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
246   if (!llvm::isUInt<27>(offset)) {
247     // We cannot encode the Offset, use the long form.
248     writePltHeaderLong(buf);
249     return;
250   }
251   write32(buf + 0, pltData[0]);
252   write32(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
253   write32(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
254   write32(buf + 12, pltData[3] | (offset & 0xfff));
255   memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
256   memcpy(buf + 20, trapInstr.data(), 4);
257   memcpy(buf + 24, trapInstr.data(), 4);
258   memcpy(buf + 28, trapInstr.data(), 4);
259 }
260 
261 void ARM::addPltHeaderSymbols(InputSection &isec) const {
262   addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
263   addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
264 }
265 
266 // Long form PLT entries that do not have any restrictions on the displacement
267 // of the .plt from the .got.plt.
268 static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
269                          uint64_t pltEntryAddr) {
270   write32(buf + 0, 0xe59fc004);   //     ldr ip, L2
271   write32(buf + 4, 0xe08cc00f);   // L1: add ip, ip, pc
272   write32(buf + 8, 0xe59cf000);   //     ldr pc, [ip]
273   write32(buf + 12, 0x00000000);  // L2: .word   Offset(&(.got.plt) - L1 - 8
274   uint64_t l1 = pltEntryAddr + 4;
275   write32(buf + 12, gotPltEntryAddr - l1 - 8);
276 }
277 
278 // The default PLT entries require the .got.plt to be within 128 Mb of the
279 // .plt in the positive direction.
280 void ARM::writePlt(uint8_t *buf, const Symbol &sym,
281                    uint64_t pltEntryAddr) const {
282   // The PLT entry is similar to the example given in Appendix A of ELF for
283   // the Arm Architecture. Instead of using the Group Relocations to find the
284   // optimal rotation for the 8-bit immediate used in the add instructions we
285   // hard code the most compact rotations for simplicity. This saves a load
286   // instruction over the long plt sequences.
287   const uint32_t pltData[] = {
288       0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.got.plt) - L1 - 8
289       0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.got.plt) - L1 - 8
290       0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
291   };
292 
293   uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
294   if (!llvm::isUInt<27>(offset)) {
295     // We cannot encode the Offset, use the long form.
296     writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
297     return;
298   }
299   write32(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
300   write32(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
301   write32(buf + 8, pltData[2] | (offset & 0xfff));
302   memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
303 }
304 
305 void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
306   addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
307   addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
308 }
309 
310 bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
311                      uint64_t branchAddr, const Symbol &s,
312                      int64_t a) const {
313   // If s is an undefined weak symbol and does not have a PLT entry then it will
314   // be resolved as a branch to the next instruction. If it is hidden, its
315   // binding has been converted to local, so we just check isUndefined() here. A
316   // undefined non-weak symbol will have been errored.
317   if (s.isUndefined() && !s.isInPlt())
318     return false;
319   // A state change from ARM to Thumb and vice versa must go through an
320   // interworking thunk if the relocation type is not R_ARM_CALL or
321   // R_ARM_THM_CALL.
322   switch (type) {
323   case R_ARM_PC24:
324   case R_ARM_PLT32:
325   case R_ARM_JUMP24:
326     // Source is ARM, all PLT entries are ARM so no interworking required.
327     // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
328     if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
329       return true;
330     [[fallthrough]];
331   case R_ARM_CALL: {
332     uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
333     return !inBranchRange(type, branchAddr, dst + a) ||
334         (!config->armHasBlx && (s.getVA() & 1));
335   }
336   case R_ARM_THM_JUMP19:
337   case R_ARM_THM_JUMP24:
338     // Source is Thumb, all PLT entries are ARM so interworking is required.
339     // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
340     if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
341       return true;
342     [[fallthrough]];
343   case R_ARM_THM_CALL: {
344     uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
345     return !inBranchRange(type, branchAddr, dst + a) ||
346         (!config->armHasBlx && (s.getVA() & 1) == 0);;
347   }
348   }
349   return false;
350 }
351 
352 uint32_t ARM::getThunkSectionSpacing() const {
353   // The placing of pre-created ThunkSections is controlled by the value
354   // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
355   // place the ThunkSection such that all branches from the InputSections
356   // prior to the ThunkSection can reach a Thunk placed at the end of the
357   // ThunkSection. Graphically:
358   // | up to thunkSectionSpacing .text input sections |
359   // | ThunkSection                                   |
360   // | up to thunkSectionSpacing .text input sections |
361   // | ThunkSection                                   |
362 
363   // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
364   // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
365   // B.W:
366   // ARM B, BL, BLX range +/- 32MiB
367   // Thumb B.W, BL, BLX range +/- 16MiB
368   // Thumb B<cc>.W range +/- 1MiB
369   // If a branch cannot reach a pre-created ThunkSection a new one will be
370   // created so we can handle the rare cases of a Thumb 2 conditional branch.
371   // We intentionally use a lower size for thunkSectionSpacing than the maximum
372   // branch range so the end of the ThunkSection is more likely to be within
373   // range of the branch instruction that is furthest away. The value we shorten
374   // thunkSectionSpacing by is set conservatively to allow us to create 16,384
375   // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
376   // one of the Thunks going out of range.
377 
378   // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
379   // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
380   // ARMv6T2) the range is +/- 4MiB.
381 
382   return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
383                                          : 0x400000 - 0x7500;
384 }
385 
386 bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
387   if ((dst & 0x1) == 0)
388     // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
389     // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
390     // destination will be 4 byte aligned.
391     src &= ~0x3;
392   else
393     // Bit 0 == 1 denotes Thumb state, it is not part of the range.
394     dst &= ~0x1;
395 
396   int64_t offset = dst - src;
397   switch (type) {
398   case R_ARM_PC24:
399   case R_ARM_PLT32:
400   case R_ARM_JUMP24:
401   case R_ARM_CALL:
402     return llvm::isInt<26>(offset);
403   case R_ARM_THM_JUMP19:
404     return llvm::isInt<21>(offset);
405   case R_ARM_THM_JUMP24:
406   case R_ARM_THM_CALL:
407     return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
408                                          : llvm::isInt<23>(offset);
409   default:
410     return true;
411   }
412 }
413 
414 // Helper to produce message text when LLD detects that a CALL relocation to
415 // a non STT_FUNC symbol that may result in incorrect interworking between ARM
416 // or Thumb.
417 static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
418   assert(!s.isFunc());
419   const ErrorPlace place = getErrorPlace(loc);
420   std::string hint;
421   if (!place.srcLoc.empty())
422     hint = "; " + place.srcLoc;
423   if (s.isSection()) {
424     // Section symbols must be defined and in a section. Users cannot change
425     // the type. Use the section name as getName() returns an empty string.
426     warn(place.loc + "branch and link relocation: " + toString(relt) +
427          " to STT_SECTION symbol " + cast<Defined>(s).section->name +
428          " ; interworking not performed" + hint);
429   } else {
430     // Warn with hint on how to alter the symbol type.
431     warn(getErrorLocation(loc) + "branch and link relocation: " +
432          toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
433          " interworking not performed; consider using directive '.type " +
434          s.getName() +
435          ", %function' to give symbol type STT_FUNC if interworking between "
436          "ARM and Thumb is required" +
437          hint);
438   }
439 }
440 
441 // Rotate a 32-bit unsigned value right by a specified amt of bits.
442 static uint32_t rotr32(uint32_t val, uint32_t amt) {
443   assert(amt < 32 && "Invalid rotate amount");
444   return (val >> amt) | (val << ((32 - amt) & 31));
445 }
446 
447 static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group,
448                                                          uint32_t val) {
449   uint32_t rem, lz;
450   do {
451     lz = llvm::countl_zero(val) & ~1;
452     rem = val;
453     if (lz == 32) // implies rem == 0
454       break;
455     val &= 0xffffff >> lz;
456   } while (group--);
457   return {rem, lz};
458 }
459 
460 static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
461                            int group, bool check) {
462   // ADD/SUB (immediate) add = bit23, sub = bit22
463   // immediate field carries is a 12-bit modified immediate, made up of a 4-bit
464   // even rotate right and an 8-bit immediate.
465   uint32_t opcode = 0x00800000;
466   if (val >> 63) {
467     opcode = 0x00400000;
468     val = -val;
469   }
470   uint32_t imm, lz;
471   std::tie(imm, lz) = getRemAndLZForGroup(group, val);
472   uint32_t rot = 0;
473   if (lz < 24) {
474     imm = rotr32(imm, 24 - lz);
475     rot = (lz + 8) << 7;
476   }
477   if (check && imm > 0xff)
478     error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() +
479           " for relocation " + toString(rel.type));
480   write32(loc, (read32(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff));
481 }
482 
483 static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
484                            int group) {
485   // R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
486   // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
487   // bottom bit to recover S + A - P.
488   if (rel.sym->isFunc())
489     val &= ~0x1;
490   // LDR (literal) u = bit23
491   uint32_t opcode = 0x00800000;
492   if (val >> 63) {
493     opcode = 0x0;
494     val = -val;
495   }
496   uint32_t imm = getRemAndLZForGroup(group, val).first;
497   checkUInt(loc, imm, 12, rel);
498   write32(loc, (read32(loc) & 0xff7ff000) | opcode | imm);
499 }
500 
501 static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
502                             int group) {
503   // R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
504   // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
505   // bottom bit to recover S + A - P.
506   if (rel.sym->isFunc())
507     val &= ~0x1;
508   // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23
509   uint32_t opcode = 0x00800000;
510   if (val >> 63) {
511     opcode = 0x0;
512     val = -val;
513   }
514   uint32_t imm = getRemAndLZForGroup(group, val).first;
515   checkUInt(loc, imm, 8, rel);
516   write32(loc, (read32(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) |
517                      (imm & 0xf));
518 }
519 
520 void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
521   switch (rel.type) {
522   case R_ARM_ABS32:
523   case R_ARM_BASE_PREL:
524   case R_ARM_GOTOFF32:
525   case R_ARM_GOT_BREL:
526   case R_ARM_GOT_PREL:
527   case R_ARM_REL32:
528   case R_ARM_RELATIVE:
529   case R_ARM_SBREL32:
530   case R_ARM_TARGET1:
531   case R_ARM_TARGET2:
532   case R_ARM_TLS_GD32:
533   case R_ARM_TLS_IE32:
534   case R_ARM_TLS_LDM32:
535   case R_ARM_TLS_LDO32:
536   case R_ARM_TLS_LE32:
537   case R_ARM_TLS_TPOFF32:
538   case R_ARM_TLS_DTPOFF32:
539     write32(loc, val);
540     break;
541   case R_ARM_PREL31:
542     checkInt(loc, val, 31, rel);
543     write32(loc, (read32(loc) & 0x80000000) | (val & ~0x80000000));
544     break;
545   case R_ARM_CALL: {
546     // R_ARM_CALL is used for BL and BLX instructions, for symbols of type
547     // STT_FUNC we choose whether to write a BL or BLX depending on the
548     // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
549     // not of type STT_FUNC then we must preserve the original instruction.
550     // PLT entries are always ARM state so we know we don't need to interwork.
551     assert(rel.sym); // R_ARM_CALL is always reached via relocate().
552     bool bit0Thumb = val & 1;
553     bool isBlx = (read32(loc) & 0xfe000000) == 0xfa000000;
554     // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
555     // even when type not STT_FUNC.
556     if (!rel.sym->isFunc() && isBlx != bit0Thumb)
557       stateChangeWarning(loc, rel.type, *rel.sym);
558     if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
559       // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
560       checkInt(loc, val, 26, rel);
561       write32(loc, 0xfa000000 |                    // opcode
562                          ((val & 2) << 23) |         // H
563                          ((val >> 2) & 0x00ffffff)); // imm24
564       break;
565     }
566     // BLX (always unconditional) instruction to an ARM Target, select an
567     // unconditional BL.
568     write32(loc, 0xeb000000 | (read32(loc) & 0x00ffffff));
569     // fall through as BL encoding is shared with B
570   }
571     [[fallthrough]];
572   case R_ARM_JUMP24:
573   case R_ARM_PC24:
574   case R_ARM_PLT32:
575     checkInt(loc, val, 26, rel);
576     write32(loc, (read32(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
577     break;
578   case R_ARM_THM_JUMP8:
579     // We do a 9 bit check because val is right-shifted by 1 bit.
580     checkInt(loc, val, 9, rel);
581     write16(loc, (read32(loc) & 0xff00) | ((val >> 1) & 0x00ff));
582     break;
583   case R_ARM_THM_JUMP11:
584     // We do a 12 bit check because val is right-shifted by 1 bit.
585     checkInt(loc, val, 12, rel);
586     write16(loc, (read32(loc) & 0xf800) | ((val >> 1) & 0x07ff));
587     break;
588   case R_ARM_THM_JUMP19:
589     // Encoding T3: Val = S:J2:J1:imm6:imm11:0
590     checkInt(loc, val, 21, rel);
591     write16(loc,
592               (read16(loc) & 0xfbc0) |   // opcode cond
593                   ((val >> 10) & 0x0400) | // S
594                   ((val >> 12) & 0x003f)); // imm6
595     write16(loc + 2,
596               0x8000 |                    // opcode
597                   ((val >> 8) & 0x0800) | // J2
598                   ((val >> 5) & 0x2000) | // J1
599                   ((val >> 1) & 0x07ff)); // imm11
600     break;
601   case R_ARM_THM_CALL: {
602     // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
603     // STT_FUNC we choose whether to write a BL or BLX depending on the
604     // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
605     // not of type STT_FUNC then we must preserve the original instruction.
606     // PLT entries are always ARM state so we know we need to interwork.
607     assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
608     bool bit0Thumb = val & 1;
609     bool isBlx = (read16(loc + 2) & 0x1000) == 0;
610     // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
611     // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
612     if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
613       stateChangeWarning(loc, rel.type, *rel.sym);
614     if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
615       // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
616       // the BLX instruction may only be two byte aligned. This must be done
617       // before overflow check.
618       val = alignTo(val, 4);
619       write16(loc + 2, read16(loc + 2) & ~0x1000);
620     } else {
621       write16(loc + 2, (read16(loc + 2) & ~0x1000) | 1 << 12);
622     }
623     if (!config->armJ1J2BranchEncoding) {
624       // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
625       // different encoding rules and range due to J1 and J2 always being 1.
626       checkInt(loc, val, 23, rel);
627       write16(loc,
628                 0xf000 |                     // opcode
629                     ((val >> 12) & 0x07ff)); // imm11
630       write16(loc + 2,
631                 (read16(loc + 2) & 0xd000) | // opcode
632                     0x2800 |                   // J1 == J2 == 1
633                     ((val >> 1) & 0x07ff));    // imm11
634       break;
635     }
636   }
637     // Fall through as rest of encoding is the same as B.W
638     [[fallthrough]];
639   case R_ARM_THM_JUMP24:
640     // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
641     checkInt(loc, val, 25, rel);
642     write16(loc,
643               0xf000 |                     // opcode
644                   ((val >> 14) & 0x0400) | // S
645                   ((val >> 12) & 0x03ff)); // imm10
646     write16(loc + 2,
647               (read16(loc + 2) & 0xd000) |                  // opcode
648                   (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
649                   (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
650                   ((val >> 1) & 0x07ff));                     // imm11
651     break;
652   case R_ARM_MOVW_ABS_NC:
653   case R_ARM_MOVW_PREL_NC:
654   case R_ARM_MOVW_BREL_NC:
655     write32(loc, (read32(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
656                        (val & 0x0fff));
657     break;
658   case R_ARM_MOVT_ABS:
659   case R_ARM_MOVT_PREL:
660   case R_ARM_MOVT_BREL:
661     write32(loc, (read32(loc) & ~0x000f0fff) |
662                        (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
663     break;
664   case R_ARM_THM_MOVT_ABS:
665   case R_ARM_THM_MOVT_PREL:
666   case R_ARM_THM_MOVT_BREL:
667     // Encoding T1: A = imm4:i:imm3:imm8
668 
669     write16(loc,
670             0xf2c0 |                     // opcode
671                 ((val >> 17) & 0x0400) | // i
672                 ((val >> 28) & 0x000f)); // imm4
673 
674     write16(loc + 2,
675               (read16(loc + 2) & 0x8f00) | // opcode
676                   ((val >> 12) & 0x7000) |   // imm3
677                   ((val >> 16) & 0x00ff));   // imm8
678     break;
679   case R_ARM_THM_MOVW_ABS_NC:
680   case R_ARM_THM_MOVW_PREL_NC:
681   case R_ARM_THM_MOVW_BREL_NC:
682     // Encoding T3: A = imm4:i:imm3:imm8
683     write16(loc,
684               0xf240 |                     // opcode
685                   ((val >> 1) & 0x0400) |  // i
686                   ((val >> 12) & 0x000f)); // imm4
687     write16(loc + 2,
688               (read16(loc + 2) & 0x8f00) | // opcode
689                   ((val << 4) & 0x7000) |    // imm3
690                   (val & 0x00ff));           // imm8
691     break;
692   case R_ARM_THM_ALU_ABS_G3:
693     write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 24) & 0x00ff));
694     break;
695   case R_ARM_THM_ALU_ABS_G2_NC:
696     write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 16) & 0x00ff));
697     break;
698   case R_ARM_THM_ALU_ABS_G1_NC:
699     write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 8) & 0x00ff));
700     break;
701   case R_ARM_THM_ALU_ABS_G0_NC:
702     write16(loc, (read16(loc) &~ 0x00ff) | (val & 0x00ff));
703     break;
704   case R_ARM_ALU_PC_G0:
705     encodeAluGroup(loc, rel, val, 0, true);
706     break;
707   case R_ARM_ALU_PC_G0_NC:
708     encodeAluGroup(loc, rel, val, 0, false);
709     break;
710   case R_ARM_ALU_PC_G1:
711     encodeAluGroup(loc, rel, val, 1, true);
712     break;
713   case R_ARM_ALU_PC_G1_NC:
714     encodeAluGroup(loc, rel, val, 1, false);
715     break;
716   case R_ARM_ALU_PC_G2:
717     encodeAluGroup(loc, rel, val, 2, true);
718     break;
719   case R_ARM_LDR_PC_G0:
720     encodeLdrGroup(loc, rel, val, 0);
721     break;
722   case R_ARM_LDR_PC_G1:
723     encodeLdrGroup(loc, rel, val, 1);
724     break;
725   case R_ARM_LDR_PC_G2:
726     encodeLdrGroup(loc, rel, val, 2);
727     break;
728   case R_ARM_LDRS_PC_G0:
729     encodeLdrsGroup(loc, rel, val, 0);
730     break;
731   case R_ARM_LDRS_PC_G1:
732     encodeLdrsGroup(loc, rel, val, 1);
733     break;
734   case R_ARM_LDRS_PC_G2:
735     encodeLdrsGroup(loc, rel, val, 2);
736     break;
737   case R_ARM_THM_ALU_PREL_11_0: {
738     // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
739     int64_t imm = val;
740     uint16_t sub = 0;
741     if (imm < 0) {
742       imm = -imm;
743       sub = 0x00a0;
744     }
745     checkUInt(loc, imm, 12, rel);
746     write16(loc, (read16(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
747     write16(loc + 2,
748               (read16(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
749     break;
750   }
751   case R_ARM_THM_PC8:
752     // ADR and LDR literal encoding T1 positive offset only imm8:00
753     // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
754     // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
755     // bottom bit to recover S + A - Pa.
756     if (rel.sym->isFunc())
757       val &= ~0x1;
758     checkUInt(loc, val, 10, rel);
759     checkAlignment(loc, val, 4, rel);
760     write16(loc, (read16(loc) & 0xff00) | (val & 0x3fc) >> 2);
761     break;
762   case R_ARM_THM_PC12: {
763     // LDR (literal) encoding T2, add = (U == '1') imm12
764     // imm12 is unsigned
765     // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
766     // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
767     // bottom bit to recover S + A - Pa.
768     if (rel.sym->isFunc())
769       val &= ~0x1;
770     int64_t imm12 = val;
771     uint16_t u = 0x0080;
772     if (imm12 < 0) {
773       imm12 = -imm12;
774       u = 0;
775     }
776     checkUInt(loc, imm12, 12, rel);
777     write16(loc, read16(loc) | u);
778     write16(loc + 2, (read16(loc + 2) & 0xf000) | imm12);
779     break;
780   }
781   default:
782     llvm_unreachable("unknown relocation");
783   }
784 }
785 
786 int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
787   switch (type) {
788   default:
789     internalLinkerError(getErrorLocation(buf),
790                         "cannot read addend for relocation " + toString(type));
791     return 0;
792   case R_ARM_ABS32:
793   case R_ARM_BASE_PREL:
794   case R_ARM_GLOB_DAT:
795   case R_ARM_GOTOFF32:
796   case R_ARM_GOT_BREL:
797   case R_ARM_GOT_PREL:
798   case R_ARM_IRELATIVE:
799   case R_ARM_REL32:
800   case R_ARM_RELATIVE:
801   case R_ARM_SBREL32:
802   case R_ARM_TARGET1:
803   case R_ARM_TARGET2:
804   case R_ARM_TLS_DTPMOD32:
805   case R_ARM_TLS_DTPOFF32:
806   case R_ARM_TLS_GD32:
807   case R_ARM_TLS_IE32:
808   case R_ARM_TLS_LDM32:
809   case R_ARM_TLS_LE32:
810   case R_ARM_TLS_LDO32:
811   case R_ARM_TLS_TPOFF32:
812     return SignExtend64<32>(read32(buf));
813   case R_ARM_PREL31:
814     return SignExtend64<31>(read32(buf));
815   case R_ARM_CALL:
816   case R_ARM_JUMP24:
817   case R_ARM_PC24:
818   case R_ARM_PLT32:
819     return SignExtend64<26>(read32(buf) << 2);
820   case R_ARM_THM_JUMP8:
821     return SignExtend64<9>(read16(buf) << 1);
822   case R_ARM_THM_JUMP11:
823     return SignExtend64<12>(read16(buf) << 1);
824   case R_ARM_THM_JUMP19: {
825     // Encoding T3: A = S:J2:J1:imm10:imm6:0
826     uint16_t hi = read16(buf);
827     uint16_t lo = read16(buf + 2);
828     return SignExtend64<20>(((hi & 0x0400) << 10) | // S
829                             ((lo & 0x0800) << 8) |  // J2
830                             ((lo & 0x2000) << 5) |  // J1
831                             ((hi & 0x003f) << 12) | // imm6
832                             ((lo & 0x07ff) << 1));  // imm11:0
833   }
834   case R_ARM_THM_CALL:
835     if (!config->armJ1J2BranchEncoding) {
836       // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
837       // different encoding rules and range due to J1 and J2 always being 1.
838       uint16_t hi = read16(buf);
839       uint16_t lo = read16(buf + 2);
840       return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
841                               ((lo & 0x7ff) << 1));  // imm11:0
842       break;
843     }
844     [[fallthrough]];
845   case R_ARM_THM_JUMP24: {
846     // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
847     // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
848     uint16_t hi = read16(buf);
849     uint16_t lo = read16(buf + 2);
850     return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
851                             (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
852                             (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
853                             ((hi & 0x003ff) << 12) |                   // imm0
854                             ((lo & 0x007ff) << 1)); // imm11:0
855   }
856   // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
857   // MOVT is in the range -32768 <= A < 32768
858   case R_ARM_MOVW_ABS_NC:
859   case R_ARM_MOVT_ABS:
860   case R_ARM_MOVW_PREL_NC:
861   case R_ARM_MOVT_PREL:
862   case R_ARM_MOVW_BREL_NC:
863   case R_ARM_MOVT_BREL: {
864     uint64_t val = read32(buf) & 0x000f0fff;
865     return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
866   }
867   case R_ARM_THM_MOVW_ABS_NC:
868   case R_ARM_THM_MOVT_ABS:
869   case R_ARM_THM_MOVW_PREL_NC:
870   case R_ARM_THM_MOVT_PREL:
871   case R_ARM_THM_MOVW_BREL_NC:
872   case R_ARM_THM_MOVT_BREL: {
873     // Encoding T3: A = imm4:i:imm3:imm8
874     uint16_t hi = read16(buf);
875     uint16_t lo = read16(buf + 2);
876     return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
877                             ((hi & 0x0400) << 1) |  // i
878                             ((lo & 0x7000) >> 4) |  // imm3
879                             (lo & 0x00ff));         // imm8
880   }
881   case R_ARM_THM_ALU_ABS_G0_NC:
882   case R_ARM_THM_ALU_ABS_G1_NC:
883   case R_ARM_THM_ALU_ABS_G2_NC:
884   case R_ARM_THM_ALU_ABS_G3:
885     return read16(buf) & 0xff;
886   case R_ARM_ALU_PC_G0:
887   case R_ARM_ALU_PC_G0_NC:
888   case R_ARM_ALU_PC_G1:
889   case R_ARM_ALU_PC_G1_NC:
890   case R_ARM_ALU_PC_G2: {
891     // 12-bit immediate is a modified immediate made up of a 4-bit even
892     // right rotation and 8-bit constant. After the rotation the value
893     // is zero-extended. When bit 23 is set the instruction is an add, when
894     // bit 22 is set it is a sub.
895     uint32_t instr = read32(buf);
896     uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
897     return (instr & 0x00400000) ? -val : val;
898   }
899   case R_ARM_LDR_PC_G0:
900   case R_ARM_LDR_PC_G1:
901   case R_ARM_LDR_PC_G2: {
902     // ADR (literal) add = bit23, sub = bit22
903     // LDR (literal) u = bit23 unsigned imm12
904     bool u = read32(buf) & 0x00800000;
905     uint32_t imm12 = read32(buf) & 0xfff;
906     return u ? imm12 : -imm12;
907   }
908   case R_ARM_LDRS_PC_G0:
909   case R_ARM_LDRS_PC_G1:
910   case R_ARM_LDRS_PC_G2: {
911     // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8
912     uint32_t opcode = read32(buf);
913     bool u = opcode & 0x00800000;
914     uint32_t imm4l = opcode & 0xf;
915     uint32_t imm4h = (opcode & 0xf00) >> 4;
916     return u ? (imm4h | imm4l) : -(imm4h | imm4l);
917   }
918   case R_ARM_THM_ALU_PREL_11_0: {
919     // Thumb2 ADR, which is an alias for a sub or add instruction with an
920     // unsigned immediate.
921     // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
922     uint16_t hi = read16(buf);
923     uint16_t lo = read16(buf + 2);
924     uint64_t imm = (hi & 0x0400) << 1 | // i
925                    (lo & 0x7000) >> 4 | // imm3
926                    (lo & 0x00ff);       // imm8
927     // For sub, addend is negative, add is positive.
928     return (hi & 0x00f0) ? -imm : imm;
929   }
930   case R_ARM_THM_PC8:
931     // ADR and LDR (literal) encoding T1
932     // From ELF for the ARM Architecture the initial signed addend is formed
933     // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
934     // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
935     return ((((read16(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
936   case R_ARM_THM_PC12: {
937     // LDR (literal) encoding T2, add = (U == '1') imm12
938     bool u = read16(buf) & 0x0080;
939     uint64_t imm12 = read16(buf + 2) & 0x0fff;
940     return u ? imm12 : -imm12;
941   }
942   case R_ARM_NONE:
943   case R_ARM_V4BX:
944   case R_ARM_JUMP_SLOT:
945     // These relocations are defined as not having an implicit addend.
946     return 0;
947   }
948 }
949 
950 static bool isArmMapSymbol(const Symbol *b) {
951   return b->getName() == "$a" || b->getName().starts_with("$a.");
952 }
953 
954 static bool isThumbMapSymbol(const Symbol *s) {
955   return s->getName() == "$t" || s->getName().starts_with("$t.");
956 }
957 
958 static bool isDataMapSymbol(const Symbol *b) {
959   return b->getName() == "$d" || b->getName().starts_with("$d.");
960 }
961 
962 void elf::sortArmMappingSymbols() {
963   // For each input section make sure the mapping symbols are sorted in
964   // ascending order.
965   for (auto &kv : sectionMap) {
966     SmallVector<const Defined *, 0> &mapSyms = kv.second;
967     llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
968       return a->value < b->value;
969     });
970   }
971 }
972 
973 void elf::addArmInputSectionMappingSymbols() {
974   // Collect mapping symbols for every executable input sections.
975   // The linker generated mapping symbols for all the synthetic
976   // sections are adding into the sectionmap through the function
977   // addArmSyntheitcSectionMappingSymbol.
978   for (ELFFileBase *file : ctx.objectFiles) {
979     for (Symbol *sym : file->getLocalSymbols()) {
980       auto *def = dyn_cast<Defined>(sym);
981       if (!def)
982         continue;
983       if (!isArmMapSymbol(def) && !isDataMapSymbol(def) &&
984           !isThumbMapSymbol(def))
985         continue;
986       if (auto *sec = cast_if_present<InputSection>(def->section))
987         if (sec->flags & SHF_EXECINSTR)
988           sectionMap[sec].push_back(def);
989     }
990   }
991 }
992 
993 // Synthetic sections are not backed by an ELF file where we can access the
994 // symbol table, instead mapping symbols added to synthetic sections are stored
995 // in the synthetic symbol table. Due to the presence of strip (--strip-all),
996 // we can not rely on the synthetic symbol table retaining the mapping symbols.
997 // Instead we record the mapping symbols locally.
998 void elf::addArmSyntheticSectionMappingSymbol(Defined *sym) {
999   if (!isArmMapSymbol(sym) && !isDataMapSymbol(sym) && !isThumbMapSymbol(sym))
1000     return;
1001   if (auto *sec = cast_if_present<InputSection>(sym->section))
1002     if (sec->flags & SHF_EXECINSTR)
1003       sectionMap[sec].push_back(sym);
1004 }
1005 
1006 static void toLittleEndianInstructions(uint8_t *buf, uint64_t start,
1007                                        uint64_t end, uint64_t width) {
1008   CodeState curState = static_cast<CodeState>(width);
1009   if (curState == CodeState::Arm)
1010     for (uint64_t i = start; i < end; i += width)
1011       write32le(buf + i, read32(buf + i));
1012 
1013   if (curState == CodeState::Thumb)
1014     for (uint64_t i = start; i < end; i += width)
1015       write16le(buf + i, read16(buf + i));
1016 }
1017 
1018 // Arm BE8 big endian format requires instructions to be little endian, with
1019 // the initial contents big-endian. Convert the big-endian instructions to
1020 // little endian leaving literal data untouched. We use mapping symbols to
1021 // identify half open intervals of Arm code [$a, non $a) and Thumb code
1022 // [$t, non $t) and convert these to little endian a word or half word at a
1023 // time respectively.
1024 void elf::convertArmInstructionstoBE8(InputSection *sec, uint8_t *buf) {
1025   if (!sectionMap.contains(sec))
1026     return;
1027 
1028   SmallVector<const Defined *, 0> &mapSyms = sectionMap[sec];
1029 
1030   if (mapSyms.empty())
1031     return;
1032 
1033   CodeState curState = CodeState::Data;
1034   uint64_t start = 0, width = 0, size = sec->getSize();
1035   for (auto &msym : mapSyms) {
1036     CodeState newState = CodeState::Data;
1037     if (isThumbMapSymbol(msym))
1038       newState = CodeState::Thumb;
1039     else if (isArmMapSymbol(msym))
1040       newState = CodeState::Arm;
1041 
1042     if (newState == curState)
1043       continue;
1044 
1045     if (curState != CodeState::Data) {
1046       width = static_cast<uint64_t>(curState);
1047       toLittleEndianInstructions(buf, start, msym->value, width);
1048     }
1049     start = msym->value;
1050     curState = newState;
1051   }
1052 
1053   // Passed last mapping symbol, may need to reverse
1054   // up to end of section.
1055   if (curState != CodeState::Data) {
1056     width = static_cast<uint64_t>(curState);
1057     toLittleEndianInstructions(buf, start, size, width);
1058   }
1059 }
1060 
1061 // The Arm Cortex-M Security Extensions (CMSE) splits a system into two parts;
1062 // the non-secure and secure states with the secure state inaccessible from the
1063 // non-secure state, apart from an area of memory in secure state called the
1064 // secure gateway which is accessible from non-secure state. The secure gateway
1065 // contains one or more entry points which must start with a landing pad
1066 // instruction SG. Arm recommends that the secure gateway consists only of
1067 // secure gateway veneers, which are made up of a SG instruction followed by a
1068 // branch to the destination in secure state. Full details can be found in Arm
1069 // v8-M Security Extensions Requirements on Development Tools.
1070 //
1071 // The CMSE model of software development requires the non-secure and secure
1072 // states to be developed as two separate programs. The non-secure developer is
1073 // provided with an import library defining symbols describing the entry points
1074 // in the secure gateway. No additional linker support is required for the
1075 // non-secure state.
1076 //
1077 // Development of the secure state requires linker support to manage the secure
1078 // gateway veneers. The management consists of:
1079 // - Creation of new secure gateway veneers based on symbol conventions.
1080 // - Checking the address of existing secure gateway veneers.
1081 // - Warning when existing secure gateway veneers removed.
1082 //
1083 // The secure gateway veneers are created in an import library, which is just an
1084 // ELF object with a symbol table. The import library is controlled by two
1085 // command line options:
1086 // --in-implib (specify an input import library from a previous revision of the
1087 // program).
1088 // --out-implib (specify an output import library to be created by the linker).
1089 //
1090 // The input import library is used to manage consistency of the secure entry
1091 // points. The output import library is for new and updated secure entry points.
1092 //
1093 // The symbol convention that identifies secure entry functions is the prefix
1094 // __acle_se_ for a symbol called name the linker is expected to create a secure
1095 // gateway veneer if symbols __acle_se_name and name have the same address.
1096 // After creating a secure gateway veneer the symbol name labels the secure
1097 // gateway veneer and the __acle_se_name labels the function definition.
1098 //
1099 // The LLD implementation:
1100 // - Reads an existing import library with importCmseSymbols().
1101 // - Determines which new secure gateway veneers to create and redirects calls
1102 //   within the secure state to the __acle_se_ prefixed symbol with
1103 //   processArmCmseSymbols().
1104 // - Models the SG veneers as a synthetic section.
1105 
1106 // Initialize symbols. symbols is a parallel array to the corresponding ELF
1107 // symbol table.
1108 template <class ELFT> void ObjFile<ELFT>::importCmseSymbols() {
1109   ArrayRef<Elf_Sym> eSyms = getELFSyms<ELFT>();
1110   // Error for local symbols. The symbol at index 0 is LOCAL. So skip it.
1111   for (size_t i = 1, end = firstGlobal; i != end; ++i) {
1112     errorOrWarn("CMSE symbol '" + CHECK(eSyms[i].getName(stringTable), this) +
1113                 "' in import library '" + toString(this) + "' is not global");
1114   }
1115 
1116   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1117     const Elf_Sym &eSym = eSyms[i];
1118     Defined *sym = reinterpret_cast<Defined *>(make<SymbolUnion>());
1119 
1120     // Initialize symbol fields.
1121     memset(sym, 0, sizeof(Symbol));
1122     sym->setName(CHECK(eSyms[i].getName(stringTable), this));
1123     sym->value = eSym.st_value;
1124     sym->size = eSym.st_size;
1125     sym->type = eSym.getType();
1126     sym->binding = eSym.getBinding();
1127     sym->stOther = eSym.st_other;
1128 
1129     if (eSym.st_shndx != SHN_ABS) {
1130       error("CMSE symbol '" + sym->getName() + "' in import library '" +
1131             toString(this) + "' is not absolute");
1132       continue;
1133     }
1134 
1135     if (!(eSym.st_value & 1) || (eSym.getType() != STT_FUNC)) {
1136       error("CMSE symbol '" + sym->getName() + "' in import library '" +
1137             toString(this) + "' is not a Thumb function definition");
1138       continue;
1139     }
1140 
1141     if (symtab.cmseImportLib.count(sym->getName())) {
1142       error("CMSE symbol '" + sym->getName() +
1143             "' is multiply defined in import library '" + toString(this) + "'");
1144       continue;
1145     }
1146 
1147     if (eSym.st_size != ACLESESYM_SIZE) {
1148       warn("CMSE symbol '" + sym->getName() + "' in import library '" +
1149            toString(this) + "' does not have correct size of " +
1150            Twine(ACLESESYM_SIZE) + " bytes");
1151     }
1152 
1153     symtab.cmseImportLib[sym->getName()] = sym;
1154   }
1155 }
1156 
1157 // Check symbol attributes of the acleSeSym, sym pair.
1158 // Both symbols should be global/weak Thumb code symbol definitions.
1159 static std::string checkCmseSymAttributes(Symbol *acleSeSym, Symbol *sym) {
1160   auto check = [](Symbol *s, StringRef type) -> std::optional<std::string> {
1161     auto d = dyn_cast_or_null<Defined>(s);
1162     if (!(d && d->isFunc() && (d->value & 1)))
1163       return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
1164               s->getName() + "' is not a Thumb function definition")
1165           .str();
1166     if (!d->section)
1167       return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
1168               s->getName() + "' cannot be an absolute symbol")
1169           .str();
1170     return std::nullopt;
1171   };
1172   for (auto [sym, type] :
1173        {std::make_pair(acleSeSym, "special"), std::make_pair(sym, "entry")})
1174     if (auto err = check(sym, type))
1175       return *err;
1176   return "";
1177 }
1178 
1179 // Look for [__acle_se_<sym>, <sym>] pairs, as specified in the Cortex-M
1180 // Security Extensions specification.
1181 // 1) <sym> : A standard function name.
1182 // 2) __acle_se_<sym> : A special symbol that prefixes the standard function
1183 // name with __acle_se_.
1184 // Both these symbols are Thumb function symbols with external linkage.
1185 // <sym> may be redefined in .gnu.sgstubs.
1186 void elf::processArmCmseSymbols() {
1187   if (!config->cmseImplib)
1188     return;
1189   // Only symbols with external linkage end up in symtab, so no need to do
1190   // linkage checks. Only check symbol type.
1191   for (Symbol *acleSeSym : symtab.getSymbols()) {
1192     if (!acleSeSym->getName().starts_with(ACLESESYM_PREFIX))
1193       continue;
1194     // If input object build attributes do not support CMSE, error and disable
1195     // further scanning for <sym>, __acle_se_<sym> pairs.
1196     if (!config->armCMSESupport) {
1197       error("CMSE is only supported by ARMv8-M architecture or later");
1198       config->cmseImplib = false;
1199       break;
1200     }
1201 
1202     // Try to find the associated symbol definition.
1203     // Symbol must have external linkage.
1204     StringRef name = acleSeSym->getName().substr(std::strlen(ACLESESYM_PREFIX));
1205     Symbol *sym = symtab.find(name);
1206     if (!sym) {
1207       error(toString(acleSeSym->file) + ": cmse special symbol '" +
1208             acleSeSym->getName() +
1209             "' detected, but no associated entry function definition '" + name +
1210             "' with external linkage found");
1211       continue;
1212     }
1213 
1214     std::string errMsg = checkCmseSymAttributes(acleSeSym, sym);
1215     if (!errMsg.empty()) {
1216       error(errMsg);
1217       continue;
1218     }
1219 
1220     // <sym> may be redefined later in the link in .gnu.sgstubs
1221     symtab.cmseSymMap[name] = {acleSeSym, sym};
1222   }
1223 
1224   // If this is an Arm CMSE secure app, replace references to entry symbol <sym>
1225   // with its corresponding special symbol __acle_se_<sym>.
1226   parallelForEach(ctx.objectFiles, [&](InputFile *file) {
1227     MutableArrayRef<Symbol *> syms = file->getMutableSymbols();
1228     for (size_t i = 0, e = syms.size(); i != e; ++i) {
1229       StringRef symName = syms[i]->getName();
1230       if (symtab.cmseSymMap.count(symName))
1231         syms[i] = symtab.cmseSymMap[symName].acleSeSym;
1232     }
1233   });
1234 }
1235 
1236 class elf::ArmCmseSGVeneer {
1237 public:
1238   ArmCmseSGVeneer(Symbol *sym, Symbol *acleSeSym,
1239                   std::optional<uint64_t> addr = std::nullopt)
1240       : sym(sym), acleSeSym(acleSeSym), entAddr{addr} {}
1241   static const size_t size{ACLESESYM_SIZE};
1242   const std::optional<uint64_t> getAddr() const { return entAddr; };
1243 
1244   Symbol *sym;
1245   Symbol *acleSeSym;
1246   uint64_t offset = 0;
1247 
1248 private:
1249   const std::optional<uint64_t> entAddr;
1250 };
1251 
1252 ArmCmseSGSection::ArmCmseSGSection()
1253     : SyntheticSection(llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR,
1254                        llvm::ELF::SHT_PROGBITS,
1255                        /*alignment=*/32, ".gnu.sgstubs") {
1256   entsize = ACLESESYM_SIZE;
1257   // The range of addresses used in the CMSE import library should be fixed.
1258   for (auto &[_, sym] : symtab.cmseImportLib) {
1259     if (impLibMaxAddr <= sym->value)
1260       impLibMaxAddr = sym->value + sym->size;
1261   }
1262   if (symtab.cmseSymMap.empty())
1263     return;
1264   addMappingSymbol();
1265   for (auto &[_, entryFunc] : symtab.cmseSymMap)
1266     addSGVeneer(cast<Defined>(entryFunc.acleSeSym),
1267                 cast<Defined>(entryFunc.sym));
1268   for (auto &[_, sym] : symtab.cmseImportLib) {
1269     if (!symtab.inCMSEOutImpLib.count(sym->getName()))
1270       warn("entry function '" + sym->getName() +
1271            "' from CMSE import library is not present in secure application");
1272   }
1273 
1274   if (!symtab.cmseImportLib.empty() && config->cmseOutputLib.empty()) {
1275     for (auto &[_, entryFunc] : symtab.cmseSymMap) {
1276       Symbol *sym = entryFunc.sym;
1277       if (!symtab.inCMSEOutImpLib.count(sym->getName()))
1278         warn("new entry function '" + sym->getName() +
1279              "' introduced but no output import library specified");
1280     }
1281   }
1282 }
1283 
1284 void ArmCmseSGSection::addSGVeneer(Symbol *acleSeSym, Symbol *sym) {
1285   entries.emplace_back(acleSeSym, sym);
1286   if (symtab.cmseImportLib.count(sym->getName()))
1287     symtab.inCMSEOutImpLib[sym->getName()] = true;
1288   // Symbol addresses different, nothing to do.
1289   if (acleSeSym->file != sym->file ||
1290       cast<Defined>(*acleSeSym).value != cast<Defined>(*sym).value)
1291     return;
1292   // Only secure symbols with values equal to that of it's non-secure
1293   // counterpart needs to be in the .gnu.sgstubs section.
1294   ArmCmseSGVeneer *ss = nullptr;
1295   if (symtab.cmseImportLib.count(sym->getName())) {
1296     Defined *impSym = symtab.cmseImportLib[sym->getName()];
1297     ss = make<ArmCmseSGVeneer>(sym, acleSeSym, impSym->value);
1298   } else {
1299     ss = make<ArmCmseSGVeneer>(sym, acleSeSym);
1300     ++newEntries;
1301   }
1302   sgVeneers.emplace_back(ss);
1303 }
1304 
1305 void ArmCmseSGSection::writeTo(uint8_t *buf) {
1306   for (ArmCmseSGVeneer *s : sgVeneers) {
1307     uint8_t *p = buf + s->offset;
1308     write16(p + 0, 0xe97f); // SG
1309     write16(p + 2, 0xe97f);
1310     write16(p + 4, 0xf000); // B.W S
1311     write16(p + 6, 0xb000);
1312     target->relocateNoSym(p + 4, R_ARM_THM_JUMP24,
1313                           s->acleSeSym->getVA() -
1314                               (getVA() + s->offset + s->size));
1315   }
1316 }
1317 
1318 void ArmCmseSGSection::addMappingSymbol() {
1319   addSyntheticLocal("$t", STT_NOTYPE, /*off=*/0, /*size=*/0, *this);
1320 }
1321 
1322 size_t ArmCmseSGSection::getSize() const {
1323   if (sgVeneers.empty())
1324     return (impLibMaxAddr ? impLibMaxAddr - getVA() : 0) + newEntries * entsize;
1325 
1326   return entries.size() * entsize;
1327 }
1328 
1329 void ArmCmseSGSection::finalizeContents() {
1330   if (sgVeneers.empty())
1331     return;
1332 
1333   auto it =
1334       std::stable_partition(sgVeneers.begin(), sgVeneers.end(),
1335                             [](auto *i) { return i->getAddr().has_value(); });
1336   std::sort(sgVeneers.begin(), it, [](auto *a, auto *b) {
1337     return a->getAddr().value() < b->getAddr().value();
1338   });
1339   // This is the partition of the veneers with fixed addresses.
1340   uint64_t addr = (*sgVeneers.begin())->getAddr().has_value()
1341                       ? (*sgVeneers.begin())->getAddr().value()
1342                       : getVA();
1343   // Check if the start address of '.gnu.sgstubs' correspond to the
1344   // linker-synthesized veneer with the lowest address.
1345   if ((getVA() & ~1) != (addr & ~1)) {
1346     error("start address of '.gnu.sgstubs' is different from previous link");
1347     return;
1348   }
1349 
1350   for (size_t i = 0; i < sgVeneers.size(); ++i) {
1351     ArmCmseSGVeneer *s = sgVeneers[i];
1352     s->offset = i * s->size;
1353     Defined(file, StringRef(), s->sym->binding, s->sym->stOther, s->sym->type,
1354             s->offset | 1, s->size, this)
1355         .overwrite(*s->sym);
1356   }
1357 }
1358 
1359 // Write the CMSE import library to disk.
1360 // The CMSE import library is a relocatable object with only a symbol table.
1361 // The symbols are copies of the (absolute) symbols of the secure gateways
1362 // in the executable output by this link.
1363 // See Arm® v8-M Security Extensions: Requirements on Development Tools
1364 // https://developer.arm.com/documentation/ecm0359818/latest
1365 template <typename ELFT> void elf::writeARMCmseImportLib() {
1366   StringTableSection *shstrtab =
1367       make<StringTableSection>(".shstrtab", /*dynamic=*/false);
1368   StringTableSection *strtab =
1369       make<StringTableSection>(".strtab", /*dynamic=*/false);
1370   SymbolTableBaseSection *impSymTab = make<SymbolTableSection<ELFT>>(*strtab);
1371 
1372   SmallVector<std::pair<OutputSection *, SyntheticSection *>, 0> osIsPairs;
1373   osIsPairs.emplace_back(make<OutputSection>(strtab->name, 0, 0), strtab);
1374   osIsPairs.emplace_back(make<OutputSection>(impSymTab->name, 0, 0), impSymTab);
1375   osIsPairs.emplace_back(make<OutputSection>(shstrtab->name, 0, 0), shstrtab);
1376 
1377   std::sort(symtab.cmseSymMap.begin(), symtab.cmseSymMap.end(),
1378             [](const auto &a, const auto &b) -> bool {
1379               return a.second.sym->getVA() < b.second.sym->getVA();
1380             });
1381   // Copy the secure gateway entry symbols to the import library symbol table.
1382   for (auto &p : symtab.cmseSymMap) {
1383     Defined *d = cast<Defined>(p.second.sym);
1384     impSymTab->addSymbol(makeDefined(
1385         ctx.internalFile, d->getName(), d->computeBinding(),
1386         /*stOther=*/0, STT_FUNC, d->getVA(), d->getSize(), nullptr));
1387   }
1388 
1389   size_t idx = 0;
1390   uint64_t off = sizeof(typename ELFT::Ehdr);
1391   for (auto &[osec, isec] : osIsPairs) {
1392     osec->sectionIndex = ++idx;
1393     osec->recordSection(isec);
1394     osec->finalizeInputSections();
1395     osec->shName = shstrtab->addString(osec->name);
1396     osec->size = isec->getSize();
1397     isec->finalizeContents();
1398     osec->offset = alignToPowerOf2(off, osec->addralign);
1399     off = osec->offset + osec->size;
1400   }
1401 
1402   const uint64_t sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
1403   const auto shnum = osIsPairs.size() + 1;
1404   const uint64_t fileSize =
1405       sectionHeaderOff + shnum * sizeof(typename ELFT::Shdr);
1406   const unsigned flags =
1407       config->mmapOutputFile ? 0 : (unsigned)FileOutputBuffer::F_no_mmap;
1408   unlinkAsync(config->cmseOutputLib);
1409   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
1410       FileOutputBuffer::create(config->cmseOutputLib, fileSize, flags);
1411   if (!bufferOrErr) {
1412     error("failed to open " + config->cmseOutputLib + ": " +
1413           llvm::toString(bufferOrErr.takeError()));
1414     return;
1415   }
1416 
1417   // Write the ELF Header
1418   std::unique_ptr<FileOutputBuffer> &buffer = *bufferOrErr;
1419   uint8_t *const buf = buffer->getBufferStart();
1420   memcpy(buf, "\177ELF", 4);
1421   auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
1422   eHdr->e_type = ET_REL;
1423   eHdr->e_entry = 0;
1424   eHdr->e_shoff = sectionHeaderOff;
1425   eHdr->e_ident[EI_CLASS] = ELFCLASS32;
1426   eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
1427   eHdr->e_ident[EI_VERSION] = EV_CURRENT;
1428   eHdr->e_ident[EI_OSABI] = config->osabi;
1429   eHdr->e_ident[EI_ABIVERSION] = 0;
1430   eHdr->e_machine = EM_ARM;
1431   eHdr->e_version = EV_CURRENT;
1432   eHdr->e_flags = config->eflags;
1433   eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
1434   eHdr->e_phnum = 0;
1435   eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
1436   eHdr->e_phoff = 0;
1437   eHdr->e_phentsize = 0;
1438   eHdr->e_shnum = shnum;
1439   eHdr->e_shstrndx = shstrtab->getParent()->sectionIndex;
1440 
1441   // Write the section header table.
1442   auto *sHdrs = reinterpret_cast<typename ELFT::Shdr *>(buf + eHdr->e_shoff);
1443   for (auto &[osec, _] : osIsPairs)
1444     osec->template writeHeaderTo<ELFT>(++sHdrs);
1445 
1446   // Write section contents to a mmap'ed file.
1447   {
1448     parallel::TaskGroup tg;
1449     for (auto &[osec, _] : osIsPairs)
1450       osec->template writeTo<ELFT>(buf + osec->offset, tg);
1451   }
1452 
1453   if (auto e = buffer->commit())
1454     fatal("failed to write output '" + buffer->getPath() +
1455           "': " + toString(std::move(e)));
1456 }
1457 
1458 TargetInfo *elf::getARMTargetInfo() {
1459   static ARM target;
1460   return &target;
1461 }
1462 
1463 template void elf::writeARMCmseImportLib<ELF32LE>();
1464 template void elf::writeARMCmseImportLib<ELF32BE>();
1465 template void elf::writeARMCmseImportLib<ELF64LE>();
1466 template void elf::writeARMCmseImportLib<ELF64BE>();
1467 
1468 template void ObjFile<ELF32LE>::importCmseSymbols();
1469 template void ObjFile<ELF32BE>::importCmseSymbols();
1470 template void ObjFile<ELF64LE>::importCmseSymbols();
1471 template void ObjFile<ELF64BE>::importCmseSymbols();
1472