xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/AArch64.cpp (revision da759cfa320d5076b075d15ff3f00ab3ba5634fd)
1 //===- AArch64.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Symbols.h"
10 #include "SyntheticSections.h"
11 #include "Target.h"
12 #include "Thunks.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/Object/ELF.h"
15 #include "llvm/Support/Endian.h"
16 
17 using namespace llvm;
18 using namespace llvm::support::endian;
19 using namespace llvm::ELF;
20 
21 namespace lld {
22 namespace elf {
23 
24 // Page(Expr) is the page address of the expression Expr, defined
25 // as (Expr & ~0xFFF). (This applies even if the machine page size
26 // supported by the platform has a different value.)
27 uint64_t getAArch64Page(uint64_t expr) {
28   return expr & ~static_cast<uint64_t>(0xFFF);
29 }
30 
31 namespace {
32 class AArch64 : public TargetInfo {
33 public:
34   AArch64();
35   RelExpr getRelExpr(RelType type, const Symbol &s,
36                      const uint8_t *loc) const override;
37   RelType getDynRel(RelType type) const override;
38   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
39   void writePltHeader(uint8_t *buf) const override;
40   void writePlt(uint8_t *buf, const Symbol &sym,
41                 uint64_t pltEntryAddr) const override;
42   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
43                   uint64_t branchAddr, const Symbol &s,
44                   int64_t a) const override;
45   uint32_t getThunkSectionSpacing() const override;
46   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
47   bool usesOnlyLowPageBits(RelType type) const override;
48   void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
49   RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
50                           RelExpr expr) const override;
51   void relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
52   void relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const override;
53   void relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const override;
54 };
55 } // namespace
56 
57 AArch64::AArch64() {
58   copyRel = R_AARCH64_COPY;
59   relativeRel = R_AARCH64_RELATIVE;
60   iRelativeRel = R_AARCH64_IRELATIVE;
61   gotRel = R_AARCH64_GLOB_DAT;
62   noneRel = R_AARCH64_NONE;
63   pltRel = R_AARCH64_JUMP_SLOT;
64   symbolicRel = R_AARCH64_ABS64;
65   tlsDescRel = R_AARCH64_TLSDESC;
66   tlsGotRel = R_AARCH64_TLS_TPREL64;
67   pltHeaderSize = 32;
68   pltEntrySize = 16;
69   ipltEntrySize = 16;
70   defaultMaxPageSize = 65536;
71 
72   // Align to the 2 MiB page size (known as a superpage or huge page).
73   // FreeBSD automatically promotes 2 MiB-aligned allocations.
74   defaultImageBase = 0x200000;
75 
76   needsThunks = true;
77 }
78 
79 RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
80                             const uint8_t *loc) const {
81   switch (type) {
82   case R_AARCH64_ABS16:
83   case R_AARCH64_ABS32:
84   case R_AARCH64_ABS64:
85   case R_AARCH64_ADD_ABS_LO12_NC:
86   case R_AARCH64_LDST128_ABS_LO12_NC:
87   case R_AARCH64_LDST16_ABS_LO12_NC:
88   case R_AARCH64_LDST32_ABS_LO12_NC:
89   case R_AARCH64_LDST64_ABS_LO12_NC:
90   case R_AARCH64_LDST8_ABS_LO12_NC:
91   case R_AARCH64_MOVW_SABS_G0:
92   case R_AARCH64_MOVW_SABS_G1:
93   case R_AARCH64_MOVW_SABS_G2:
94   case R_AARCH64_MOVW_UABS_G0:
95   case R_AARCH64_MOVW_UABS_G0_NC:
96   case R_AARCH64_MOVW_UABS_G1:
97   case R_AARCH64_MOVW_UABS_G1_NC:
98   case R_AARCH64_MOVW_UABS_G2:
99   case R_AARCH64_MOVW_UABS_G2_NC:
100   case R_AARCH64_MOVW_UABS_G3:
101     return R_ABS;
102   case R_AARCH64_TLSDESC_ADR_PAGE21:
103     return R_AARCH64_TLSDESC_PAGE;
104   case R_AARCH64_TLSDESC_LD64_LO12:
105   case R_AARCH64_TLSDESC_ADD_LO12:
106     return R_TLSDESC;
107   case R_AARCH64_TLSDESC_CALL:
108     return R_TLSDESC_CALL;
109   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
110   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
111   case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
112   case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
113   case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
114   case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
115   case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
116   case R_AARCH64_TLSLE_MOVW_TPREL_G0:
117   case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
118   case R_AARCH64_TLSLE_MOVW_TPREL_G1:
119   case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
120   case R_AARCH64_TLSLE_MOVW_TPREL_G2:
121     return R_TLS;
122   case R_AARCH64_CALL26:
123   case R_AARCH64_CONDBR19:
124   case R_AARCH64_JUMP26:
125   case R_AARCH64_TSTBR14:
126     return R_PLT_PC;
127   case R_AARCH64_PREL16:
128   case R_AARCH64_PREL32:
129   case R_AARCH64_PREL64:
130   case R_AARCH64_ADR_PREL_LO21:
131   case R_AARCH64_LD_PREL_LO19:
132   case R_AARCH64_MOVW_PREL_G0:
133   case R_AARCH64_MOVW_PREL_G0_NC:
134   case R_AARCH64_MOVW_PREL_G1:
135   case R_AARCH64_MOVW_PREL_G1_NC:
136   case R_AARCH64_MOVW_PREL_G2:
137   case R_AARCH64_MOVW_PREL_G2_NC:
138   case R_AARCH64_MOVW_PREL_G3:
139     return R_PC;
140   case R_AARCH64_ADR_PREL_PG_HI21:
141   case R_AARCH64_ADR_PREL_PG_HI21_NC:
142     return R_AARCH64_PAGE_PC;
143   case R_AARCH64_LD64_GOT_LO12_NC:
144   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
145     return R_GOT;
146   case R_AARCH64_ADR_GOT_PAGE:
147   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
148     return R_AARCH64_GOT_PAGE_PC;
149   case R_AARCH64_NONE:
150     return R_NONE;
151   default:
152     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
153           ") against symbol " + toString(s));
154     return R_NONE;
155   }
156 }
157 
158 RelExpr AArch64::adjustRelaxExpr(RelType type, const uint8_t *data,
159                                  RelExpr expr) const {
160   if (expr == R_RELAX_TLS_GD_TO_IE) {
161     if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
162       return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
163     return R_RELAX_TLS_GD_TO_IE_ABS;
164   }
165   return expr;
166 }
167 
168 bool AArch64::usesOnlyLowPageBits(RelType type) const {
169   switch (type) {
170   default:
171     return false;
172   case R_AARCH64_ADD_ABS_LO12_NC:
173   case R_AARCH64_LD64_GOT_LO12_NC:
174   case R_AARCH64_LDST128_ABS_LO12_NC:
175   case R_AARCH64_LDST16_ABS_LO12_NC:
176   case R_AARCH64_LDST32_ABS_LO12_NC:
177   case R_AARCH64_LDST64_ABS_LO12_NC:
178   case R_AARCH64_LDST8_ABS_LO12_NC:
179   case R_AARCH64_TLSDESC_ADD_LO12:
180   case R_AARCH64_TLSDESC_LD64_LO12:
181   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
182     return true;
183   }
184 }
185 
186 RelType AArch64::getDynRel(RelType type) const {
187   if (type == R_AARCH64_ABS64)
188     return type;
189   return R_AARCH64_NONE;
190 }
191 
192 void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
193   write64le(buf, in.plt->getVA());
194 }
195 
196 void AArch64::writePltHeader(uint8_t *buf) const {
197   const uint8_t pltData[] = {
198       0xf0, 0x7b, 0xbf, 0xa9, // stp    x16, x30, [sp,#-16]!
199       0x10, 0x00, 0x00, 0x90, // adrp   x16, Page(&(.plt.got[2]))
200       0x11, 0x02, 0x40, 0xf9, // ldr    x17, [x16, Offset(&(.plt.got[2]))]
201       0x10, 0x02, 0x00, 0x91, // add    x16, x16, Offset(&(.plt.got[2]))
202       0x20, 0x02, 0x1f, 0xd6, // br     x17
203       0x1f, 0x20, 0x03, 0xd5, // nop
204       0x1f, 0x20, 0x03, 0xd5, // nop
205       0x1f, 0x20, 0x03, 0xd5  // nop
206   };
207   memcpy(buf, pltData, sizeof(pltData));
208 
209   uint64_t got = in.gotPlt->getVA();
210   uint64_t plt = in.plt->getVA();
211   relocateOne(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
212               getAArch64Page(got + 16) - getAArch64Page(plt + 4));
213   relocateOne(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
214   relocateOne(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
215 }
216 
217 void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
218                        uint64_t pltEntryAddr) const {
219   const uint8_t inst[] = {
220       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
221       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
222       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
223       0x20, 0x02, 0x1f, 0xd6  // br   x17
224   };
225   memcpy(buf, inst, sizeof(inst));
226 
227   uint64_t gotPltEntryAddr = sym.getGotPltVA();
228   relocateOne(buf, R_AARCH64_ADR_PREL_PG_HI21,
229               getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
230   relocateOne(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
231   relocateOne(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
232 }
233 
234 bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
235                          uint64_t branchAddr, const Symbol &s,
236                          int64_t a) const {
237   // If s is an undefined weak symbol and does not have a PLT entry then it
238   // will be resolved as a branch to the next instruction.
239   if (s.isUndefWeak() && !s.isInPlt())
240     return false;
241   // ELF for the ARM 64-bit architecture, section Call and Jump relocations
242   // only permits range extension thunks for R_AARCH64_CALL26 and
243   // R_AARCH64_JUMP26 relocation types.
244   if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26)
245     return false;
246   uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
247   return !inBranchRange(type, branchAddr, dst);
248 }
249 
250 uint32_t AArch64::getThunkSectionSpacing() const {
251   // See comment in Arch/ARM.cpp for a more detailed explanation of
252   // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
253   // Thunk have a range of +/- 128 MiB
254   return (128 * 1024 * 1024) - 0x30000;
255 }
256 
257 bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
258   if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26)
259     return true;
260   // The AArch64 call and unconditional branch instructions have a range of
261   // +/- 128 MiB.
262   uint64_t range = 128 * 1024 * 1024;
263   if (dst > src) {
264     // Immediate of branch is signed.
265     range -= 4;
266     return dst - src <= range;
267   }
268   return src - dst <= range;
269 }
270 
271 static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
272   uint32_t immLo = (imm & 0x3) << 29;
273   uint32_t immHi = (imm & 0x1FFFFC) << 3;
274   uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
275   write32le(l, (read32le(l) & ~mask) | immLo | immHi);
276 }
277 
278 // Return the bits [Start, End] from Val shifted Start bits.
279 // For instance, getBits(0xF0, 4, 8) returns 0xF.
280 static uint64_t getBits(uint64_t val, int start, int end) {
281   uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
282   return (val >> start) & mask;
283 }
284 
285 static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
286 
287 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
288 static void or32AArch64Imm(uint8_t *l, uint64_t imm) {
289   or32le(l, (imm & 0xFFF) << 10);
290 }
291 
292 // Update the immediate field in an AArch64 movk, movn or movz instruction
293 // for a signed relocation, and update the opcode of a movn or movz instruction
294 // to match the sign of the operand.
295 static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
296   uint32_t inst = read32le(loc);
297   // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
298   if (!(inst & (1 << 29))) {
299     // movn or movz.
300     if (imm & 0x10000) {
301       // Change opcode to movn, which takes an inverted operand.
302       imm ^= 0xFFFF;
303       inst &= ~(1 << 30);
304     } else {
305       // Change opcode to movz.
306       inst |= 1 << 30;
307     }
308   }
309   write32le(loc, inst | ((imm & 0xFFFF) << 5));
310 }
311 
312 void AArch64::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
313   switch (type) {
314   case R_AARCH64_ABS16:
315   case R_AARCH64_PREL16:
316     checkIntUInt(loc, val, 16, type);
317     write16le(loc, val);
318     break;
319   case R_AARCH64_ABS32:
320   case R_AARCH64_PREL32:
321     checkIntUInt(loc, val, 32, type);
322     write32le(loc, val);
323     break;
324   case R_AARCH64_ABS64:
325   case R_AARCH64_PREL64:
326     write64le(loc, val);
327     break;
328   case R_AARCH64_ADD_ABS_LO12_NC:
329     or32AArch64Imm(loc, val);
330     break;
331   case R_AARCH64_ADR_GOT_PAGE:
332   case R_AARCH64_ADR_PREL_PG_HI21:
333   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
334   case R_AARCH64_TLSDESC_ADR_PAGE21:
335     checkInt(loc, val, 33, type);
336     LLVM_FALLTHROUGH;
337   case R_AARCH64_ADR_PREL_PG_HI21_NC:
338     write32AArch64Addr(loc, val >> 12);
339     break;
340   case R_AARCH64_ADR_PREL_LO21:
341     checkInt(loc, val, 21, type);
342     write32AArch64Addr(loc, val);
343     break;
344   case R_AARCH64_JUMP26:
345     // Normally we would just write the bits of the immediate field, however
346     // when patching instructions for the cpu errata fix -fix-cortex-a53-843419
347     // we want to replace a non-branch instruction with a branch immediate
348     // instruction. By writing all the bits of the instruction including the
349     // opcode and the immediate (0 001 | 01 imm26) we can do this
350     // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
351     // the instruction we want to patch.
352     write32le(loc, 0x14000000);
353     LLVM_FALLTHROUGH;
354   case R_AARCH64_CALL26:
355     checkInt(loc, val, 28, type);
356     or32le(loc, (val & 0x0FFFFFFC) >> 2);
357     break;
358   case R_AARCH64_CONDBR19:
359   case R_AARCH64_LD_PREL_LO19:
360     checkAlignment(loc, val, 4, type);
361     checkInt(loc, val, 21, type);
362     or32le(loc, (val & 0x1FFFFC) << 3);
363     break;
364   case R_AARCH64_LDST8_ABS_LO12_NC:
365   case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
366     or32AArch64Imm(loc, getBits(val, 0, 11));
367     break;
368   case R_AARCH64_LDST16_ABS_LO12_NC:
369   case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
370     checkAlignment(loc, val, 2, type);
371     or32AArch64Imm(loc, getBits(val, 1, 11));
372     break;
373   case R_AARCH64_LDST32_ABS_LO12_NC:
374   case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
375     checkAlignment(loc, val, 4, type);
376     or32AArch64Imm(loc, getBits(val, 2, 11));
377     break;
378   case R_AARCH64_LDST64_ABS_LO12_NC:
379   case R_AARCH64_LD64_GOT_LO12_NC:
380   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
381   case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
382   case R_AARCH64_TLSDESC_LD64_LO12:
383     checkAlignment(loc, val, 8, type);
384     or32AArch64Imm(loc, getBits(val, 3, 11));
385     break;
386   case R_AARCH64_LDST128_ABS_LO12_NC:
387   case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
388     checkAlignment(loc, val, 16, type);
389     or32AArch64Imm(loc, getBits(val, 4, 11));
390     break;
391   case R_AARCH64_MOVW_UABS_G0:
392     checkUInt(loc, val, 16, type);
393     LLVM_FALLTHROUGH;
394   case R_AARCH64_MOVW_UABS_G0_NC:
395     or32le(loc, (val & 0xFFFF) << 5);
396     break;
397   case R_AARCH64_MOVW_UABS_G1:
398     checkUInt(loc, val, 32, type);
399     LLVM_FALLTHROUGH;
400   case R_AARCH64_MOVW_UABS_G1_NC:
401     or32le(loc, (val & 0xFFFF0000) >> 11);
402     break;
403   case R_AARCH64_MOVW_UABS_G2:
404     checkUInt(loc, val, 48, type);
405     LLVM_FALLTHROUGH;
406   case R_AARCH64_MOVW_UABS_G2_NC:
407     or32le(loc, (val & 0xFFFF00000000) >> 27);
408     break;
409   case R_AARCH64_MOVW_UABS_G3:
410     or32le(loc, (val & 0xFFFF000000000000) >> 43);
411     break;
412   case R_AARCH64_MOVW_PREL_G0:
413   case R_AARCH64_MOVW_SABS_G0:
414   case R_AARCH64_TLSLE_MOVW_TPREL_G0:
415     checkInt(loc, val, 17, type);
416     LLVM_FALLTHROUGH;
417   case R_AARCH64_MOVW_PREL_G0_NC:
418   case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
419     writeSMovWImm(loc, val);
420     break;
421   case R_AARCH64_MOVW_PREL_G1:
422   case R_AARCH64_MOVW_SABS_G1:
423   case R_AARCH64_TLSLE_MOVW_TPREL_G1:
424     checkInt(loc, val, 33, type);
425     LLVM_FALLTHROUGH;
426   case R_AARCH64_MOVW_PREL_G1_NC:
427   case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
428     writeSMovWImm(loc, val >> 16);
429     break;
430   case R_AARCH64_MOVW_PREL_G2:
431   case R_AARCH64_MOVW_SABS_G2:
432   case R_AARCH64_TLSLE_MOVW_TPREL_G2:
433     checkInt(loc, val, 49, type);
434     LLVM_FALLTHROUGH;
435   case R_AARCH64_MOVW_PREL_G2_NC:
436     writeSMovWImm(loc, val >> 32);
437     break;
438   case R_AARCH64_MOVW_PREL_G3:
439     writeSMovWImm(loc, val >> 48);
440     break;
441   case R_AARCH64_TSTBR14:
442     checkInt(loc, val, 16, type);
443     or32le(loc, (val & 0xFFFC) << 3);
444     break;
445   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
446     checkUInt(loc, val, 24, type);
447     or32AArch64Imm(loc, val >> 12);
448     break;
449   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
450   case R_AARCH64_TLSDESC_ADD_LO12:
451     or32AArch64Imm(loc, val);
452     break;
453   default:
454     llvm_unreachable("unknown relocation");
455   }
456 }
457 
458 void AArch64::relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const {
459   // TLSDESC Global-Dynamic relocation are in the form:
460   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
461   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12]
462   //   add     x0, x0, :tlsdesc_los:v     [R_AARCH64_TLSDESC_ADD_LO12]
463   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
464   //   blr     x1
465   // And it can optimized to:
466   //   movz    x0, #0x0, lsl #16
467   //   movk    x0, #0x10
468   //   nop
469   //   nop
470   checkUInt(loc, val, 32, type);
471 
472   switch (type) {
473   case R_AARCH64_TLSDESC_ADD_LO12:
474   case R_AARCH64_TLSDESC_CALL:
475     write32le(loc, 0xd503201f); // nop
476     return;
477   case R_AARCH64_TLSDESC_ADR_PAGE21:
478     write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
479     return;
480   case R_AARCH64_TLSDESC_LD64_LO12:
481     write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
482     return;
483   default:
484     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
485   }
486 }
487 
488 void AArch64::relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const {
489   // TLSDESC Global-Dynamic relocation are in the form:
490   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
491   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12]
492   //   add     x0, x0, :tlsdesc_los:v     [R_AARCH64_TLSDESC_ADD_LO12]
493   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
494   //   blr     x1
495   // And it can optimized to:
496   //   adrp    x0, :gottprel:v
497   //   ldr     x0, [x0, :gottprel_lo12:v]
498   //   nop
499   //   nop
500 
501   switch (type) {
502   case R_AARCH64_TLSDESC_ADD_LO12:
503   case R_AARCH64_TLSDESC_CALL:
504     write32le(loc, 0xd503201f); // nop
505     break;
506   case R_AARCH64_TLSDESC_ADR_PAGE21:
507     write32le(loc, 0x90000000); // adrp
508     relocateOne(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
509     break;
510   case R_AARCH64_TLSDESC_LD64_LO12:
511     write32le(loc, 0xf9400000); // ldr
512     relocateOne(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
513     break;
514   default:
515     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
516   }
517 }
518 
519 void AArch64::relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const {
520   checkUInt(loc, val, 32, type);
521 
522   if (type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
523     // Generate MOVZ.
524     uint32_t regNo = read32le(loc) & 0x1f;
525     write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
526     return;
527   }
528   if (type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
529     // Generate MOVK.
530     uint32_t regNo = read32le(loc) & 0x1f;
531     write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
532     return;
533   }
534   llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
535 }
536 
537 // AArch64 may use security features in variant PLT sequences. These are:
538 // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
539 // Indicator (BTI) introduced in armv8.5-a. The additional instructions used
540 // in the variant Plt sequences are encoded in the Hint space so they can be
541 // deployed on older architectures, which treat the instructions as a nop.
542 // PAC and BTI can be combined leading to the following combinations:
543 // writePltHeader
544 // writePltHeaderBti (no PAC Header needed)
545 // writePlt
546 // writePltBti (BTI only)
547 // writePltPac (PAC only)
548 // writePltBtiPac (BTI and PAC)
549 //
550 // When PAC is enabled the dynamic loader encrypts the address that it places
551 // in the .got.plt using the pacia1716 instruction which encrypts the value in
552 // x17 using the modifier in x16. The static linker places autia1716 before the
553 // indirect branch to x17 to authenticate the address in x17 with the modifier
554 // in x16. This makes it more difficult for an attacker to modify the value in
555 // the .got.plt.
556 //
557 // When BTI is enabled all indirect branches must land on a bti instruction.
558 // The static linker must place a bti instruction at the start of any PLT entry
559 // that may be the target of an indirect branch. As the PLT entries call the
560 // lazy resolver indirectly this must have a bti instruction at start. In
561 // general a bti instruction is not needed for a PLT entry as indirect calls
562 // are resolved to the function address and not the PLT entry for the function.
563 // There are a small number of cases where the PLT address can escape, such as
564 // taking the address of a function or ifunc via a non got-generating
565 // relocation, and a shared library refers to that symbol.
566 //
567 // We use the bti c variant of the instruction which permits indirect branches
568 // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
569 // guarantees that all indirect branches from code requiring BTI protection
570 // will go via x16/x17
571 
572 namespace {
573 class AArch64BtiPac final : public AArch64 {
574 public:
575   AArch64BtiPac();
576   void writePltHeader(uint8_t *buf) const override;
577   void writePlt(uint8_t *buf, const Symbol &sym,
578                 uint64_t pltEntryAddr) const override;
579 
580 private:
581   bool btiHeader; // bti instruction needed in PLT Header
582   bool btiEntry;  // bti instruction needed in PLT Entry
583   bool pacEntry;  // autia1716 instruction needed in PLT Entry
584 };
585 } // namespace
586 
587 AArch64BtiPac::AArch64BtiPac() {
588   btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
589   // A BTI (Branch Target Indicator) Plt Entry is only required if the
590   // address of the PLT entry can be taken by the program, which permits an
591   // indirect jump to the PLT entry. This can happen when the address
592   // of the PLT entry for a function is canonicalised due to the address of
593   // the function in an executable being taken by a shared library.
594   // FIXME: There is a potential optimization to omit the BTI if we detect
595   // that the address of the PLT entry isn't taken.
596   btiEntry = btiHeader && !config->shared;
597   pacEntry = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_PAC);
598 
599   if (btiEntry || pacEntry) {
600     pltEntrySize = 24;
601     ipltEntrySize = 24;
602   }
603 }
604 
605 void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
606   const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
607   const uint8_t pltData[] = {
608       0xf0, 0x7b, 0xbf, 0xa9, // stp    x16, x30, [sp,#-16]!
609       0x10, 0x00, 0x00, 0x90, // adrp   x16, Page(&(.plt.got[2]))
610       0x11, 0x02, 0x40, 0xf9, // ldr    x17, [x16, Offset(&(.plt.got[2]))]
611       0x10, 0x02, 0x00, 0x91, // add    x16, x16, Offset(&(.plt.got[2]))
612       0x20, 0x02, 0x1f, 0xd6, // br     x17
613       0x1f, 0x20, 0x03, 0xd5, // nop
614       0x1f, 0x20, 0x03, 0xd5  // nop
615   };
616   const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
617 
618   uint64_t got = in.gotPlt->getVA();
619   uint64_t plt = in.plt->getVA();
620 
621   if (btiHeader) {
622     // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
623     // instruction.
624     memcpy(buf, btiData, sizeof(btiData));
625     buf += sizeof(btiData);
626     plt += sizeof(btiData);
627   }
628   memcpy(buf, pltData, sizeof(pltData));
629 
630   relocateOne(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
631               getAArch64Page(got + 16) - getAArch64Page(plt + 8));
632   relocateOne(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
633   relocateOne(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
634   if (!btiHeader)
635     // We didn't add the BTI c instruction so round out size with NOP.
636     memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
637 }
638 
639 void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
640                              uint64_t pltEntryAddr) const {
641   // The PLT entry is of the form:
642   // [btiData] addrInst (pacBr | stdBr) [nopData]
643   const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
644   const uint8_t addrInst[] = {
645       0x10, 0x00, 0x00, 0x90,  // adrp x16, Page(&(.plt.got[n]))
646       0x11, 0x02, 0x40, 0xf9,  // ldr  x17, [x16, Offset(&(.plt.got[n]))]
647       0x10, 0x02, 0x00, 0x91   // add  x16, x16, Offset(&(.plt.got[n]))
648   };
649   const uint8_t pacBr[] = {
650       0x9f, 0x21, 0x03, 0xd5,  // autia1716
651       0x20, 0x02, 0x1f, 0xd6   // br   x17
652   };
653   const uint8_t stdBr[] = {
654       0x20, 0x02, 0x1f, 0xd6,  // br   x17
655       0x1f, 0x20, 0x03, 0xd5   // nop
656   };
657   const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
658 
659   if (btiEntry) {
660     memcpy(buf, btiData, sizeof(btiData));
661     buf += sizeof(btiData);
662     pltEntryAddr += sizeof(btiData);
663   }
664 
665   uint64_t gotPltEntryAddr = sym.getGotPltVA();
666   memcpy(buf, addrInst, sizeof(addrInst));
667   relocateOne(buf, R_AARCH64_ADR_PREL_PG_HI21,
668               getAArch64Page(gotPltEntryAddr) -
669                   getAArch64Page(pltEntryAddr));
670   relocateOne(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
671   relocateOne(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
672 
673   if (pacEntry)
674     memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
675   else
676     memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
677   if (!btiEntry)
678     // We didn't add the BTI c instruction so round out size with NOP.
679     memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
680 }
681 
682 static TargetInfo *getTargetInfo() {
683   if (config->andFeatures & (GNU_PROPERTY_AARCH64_FEATURE_1_BTI |
684                              GNU_PROPERTY_AARCH64_FEATURE_1_PAC)) {
685     static AArch64BtiPac t;
686     return &t;
687   }
688   static AArch64 t;
689   return &t;
690 }
691 
692 TargetInfo *getAArch64TargetInfo() { return getTargetInfo(); }
693 
694 } // namespace elf
695 } // namespace lld
696