1 //===- AArch64.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "OutputSections.h" 11 #include "Symbols.h" 12 #include "SyntheticSections.h" 13 #include "Target.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/Support/Endian.h" 17 18 using namespace llvm; 19 using namespace llvm::support::endian; 20 using namespace llvm::ELF; 21 using namespace lld; 22 using namespace lld::elf; 23 24 // Page(Expr) is the page address of the expression Expr, defined 25 // as (Expr & ~0xFFF). (This applies even if the machine page size 26 // supported by the platform has a different value.) 27 uint64_t elf::getAArch64Page(uint64_t expr) { 28 return expr & ~static_cast<uint64_t>(0xFFF); 29 } 30 31 namespace { 32 class AArch64 : public TargetInfo { 33 public: 34 AArch64(); 35 RelExpr getRelExpr(RelType type, const Symbol &s, 36 const uint8_t *loc) const override; 37 RelType getDynRel(RelType type) const override; 38 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; 39 void writeGotPlt(uint8_t *buf, const Symbol &s) const override; 40 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; 41 void writePltHeader(uint8_t *buf) const override; 42 void writePlt(uint8_t *buf, const Symbol &sym, 43 uint64_t pltEntryAddr) const override; 44 bool needsThunk(RelExpr expr, RelType type, const InputFile *file, 45 uint64_t branchAddr, const Symbol &s, 46 int64_t a) const override; 47 uint32_t getThunkSectionSpacing() const override; 48 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; 49 bool usesOnlyLowPageBits(RelType type) const override; 50 void relocate(uint8_t *loc, const Relocation &rel, 51 uint64_t val) const override; 52 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; 53 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; 54 55 private: 56 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 57 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 58 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; 59 }; 60 61 struct AArch64Relaxer { 62 bool safeToRelaxAdrpLdr = false; 63 64 AArch64Relaxer(ArrayRef<Relocation> relocs); 65 bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel, 66 uint64_t secAddr, uint8_t *buf) const; 67 bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel, 68 uint64_t secAddr, uint8_t *buf) const; 69 }; 70 } // namespace 71 72 // Return the bits [Start, End] from Val shifted Start bits. 73 // For instance, getBits(0xF0, 4, 8) returns 0xF. 74 static uint64_t getBits(uint64_t val, int start, int end) { 75 uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1; 76 return (val >> start) & mask; 77 } 78 79 AArch64::AArch64() { 80 copyRel = R_AARCH64_COPY; 81 relativeRel = R_AARCH64_RELATIVE; 82 iRelativeRel = R_AARCH64_IRELATIVE; 83 gotRel = R_AARCH64_GLOB_DAT; 84 pltRel = R_AARCH64_JUMP_SLOT; 85 symbolicRel = R_AARCH64_ABS64; 86 tlsDescRel = R_AARCH64_TLSDESC; 87 tlsGotRel = R_AARCH64_TLS_TPREL64; 88 pltHeaderSize = 32; 89 pltEntrySize = 16; 90 ipltEntrySize = 16; 91 defaultMaxPageSize = 65536; 92 93 // Align to the 2 MiB page size (known as a superpage or huge page). 94 // FreeBSD automatically promotes 2 MiB-aligned allocations. 95 defaultImageBase = 0x200000; 96 97 needsThunks = true; 98 } 99 100 RelExpr AArch64::getRelExpr(RelType type, const Symbol &s, 101 const uint8_t *loc) const { 102 switch (type) { 103 case R_AARCH64_ABS16: 104 case R_AARCH64_ABS32: 105 case R_AARCH64_ABS64: 106 case R_AARCH64_ADD_ABS_LO12_NC: 107 case R_AARCH64_LDST128_ABS_LO12_NC: 108 case R_AARCH64_LDST16_ABS_LO12_NC: 109 case R_AARCH64_LDST32_ABS_LO12_NC: 110 case R_AARCH64_LDST64_ABS_LO12_NC: 111 case R_AARCH64_LDST8_ABS_LO12_NC: 112 case R_AARCH64_MOVW_SABS_G0: 113 case R_AARCH64_MOVW_SABS_G1: 114 case R_AARCH64_MOVW_SABS_G2: 115 case R_AARCH64_MOVW_UABS_G0: 116 case R_AARCH64_MOVW_UABS_G0_NC: 117 case R_AARCH64_MOVW_UABS_G1: 118 case R_AARCH64_MOVW_UABS_G1_NC: 119 case R_AARCH64_MOVW_UABS_G2: 120 case R_AARCH64_MOVW_UABS_G2_NC: 121 case R_AARCH64_MOVW_UABS_G3: 122 return R_ABS; 123 case R_AARCH64_AUTH_ABS64: 124 return R_AARCH64_AUTH; 125 case R_AARCH64_TLSDESC_ADR_PAGE21: 126 return R_AARCH64_TLSDESC_PAGE; 127 case R_AARCH64_TLSDESC_LD64_LO12: 128 case R_AARCH64_TLSDESC_ADD_LO12: 129 return R_TLSDESC; 130 case R_AARCH64_TLSDESC_CALL: 131 return R_TLSDESC_CALL; 132 case R_AARCH64_TLSLE_ADD_TPREL_HI12: 133 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 134 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: 135 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: 136 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: 137 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: 138 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC: 139 case R_AARCH64_TLSLE_MOVW_TPREL_G0: 140 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: 141 case R_AARCH64_TLSLE_MOVW_TPREL_G1: 142 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: 143 case R_AARCH64_TLSLE_MOVW_TPREL_G2: 144 return R_TPREL; 145 case R_AARCH64_CALL26: 146 case R_AARCH64_CONDBR19: 147 case R_AARCH64_JUMP26: 148 case R_AARCH64_TSTBR14: 149 return R_PLT_PC; 150 case R_AARCH64_PLT32: 151 const_cast<Symbol &>(s).thunkAccessed = true; 152 return R_PLT_PC; 153 case R_AARCH64_PREL16: 154 case R_AARCH64_PREL32: 155 case R_AARCH64_PREL64: 156 case R_AARCH64_ADR_PREL_LO21: 157 case R_AARCH64_LD_PREL_LO19: 158 case R_AARCH64_MOVW_PREL_G0: 159 case R_AARCH64_MOVW_PREL_G0_NC: 160 case R_AARCH64_MOVW_PREL_G1: 161 case R_AARCH64_MOVW_PREL_G1_NC: 162 case R_AARCH64_MOVW_PREL_G2: 163 case R_AARCH64_MOVW_PREL_G2_NC: 164 case R_AARCH64_MOVW_PREL_G3: 165 return R_PC; 166 case R_AARCH64_ADR_PREL_PG_HI21: 167 case R_AARCH64_ADR_PREL_PG_HI21_NC: 168 return R_AARCH64_PAGE_PC; 169 case R_AARCH64_LD64_GOT_LO12_NC: 170 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 171 return R_GOT; 172 case R_AARCH64_LD64_GOTPAGE_LO15: 173 return R_AARCH64_GOT_PAGE; 174 case R_AARCH64_ADR_GOT_PAGE: 175 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 176 return R_AARCH64_GOT_PAGE_PC; 177 case R_AARCH64_GOTPCREL32: 178 case R_AARCH64_GOT_LD_PREL19: 179 return R_GOT_PC; 180 case R_AARCH64_NONE: 181 return R_NONE; 182 default: 183 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 184 ") against symbol " + toString(s)); 185 return R_NONE; 186 } 187 } 188 189 RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const { 190 if (expr == R_RELAX_TLS_GD_TO_IE) { 191 if (type == R_AARCH64_TLSDESC_ADR_PAGE21) 192 return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC; 193 return R_RELAX_TLS_GD_TO_IE_ABS; 194 } 195 return expr; 196 } 197 198 bool AArch64::usesOnlyLowPageBits(RelType type) const { 199 switch (type) { 200 default: 201 return false; 202 case R_AARCH64_ADD_ABS_LO12_NC: 203 case R_AARCH64_LD64_GOT_LO12_NC: 204 case R_AARCH64_LDST128_ABS_LO12_NC: 205 case R_AARCH64_LDST16_ABS_LO12_NC: 206 case R_AARCH64_LDST32_ABS_LO12_NC: 207 case R_AARCH64_LDST64_ABS_LO12_NC: 208 case R_AARCH64_LDST8_ABS_LO12_NC: 209 case R_AARCH64_TLSDESC_ADD_LO12: 210 case R_AARCH64_TLSDESC_LD64_LO12: 211 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 212 return true; 213 } 214 } 215 216 RelType AArch64::getDynRel(RelType type) const { 217 if (type == R_AARCH64_ABS64 || type == R_AARCH64_AUTH_ABS64) 218 return type; 219 return R_AARCH64_NONE; 220 } 221 222 int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const { 223 switch (type) { 224 case R_AARCH64_TLSDESC: 225 return read64(buf + 8); 226 case R_AARCH64_NONE: 227 case R_AARCH64_GLOB_DAT: 228 case R_AARCH64_JUMP_SLOT: 229 return 0; 230 case R_AARCH64_ABS16: 231 case R_AARCH64_PREL16: 232 return SignExtend64<16>(read16(buf)); 233 case R_AARCH64_ABS32: 234 case R_AARCH64_PREL32: 235 return SignExtend64<32>(read32(buf)); 236 case R_AARCH64_ABS64: 237 case R_AARCH64_PREL64: 238 case R_AARCH64_RELATIVE: 239 case R_AARCH64_IRELATIVE: 240 case R_AARCH64_TLS_TPREL64: 241 return read64(buf); 242 243 // The following relocation types all point at instructions, and 244 // relocate an immediate field in the instruction. 245 // 246 // The general rule, from AAELF64 §5.7.2 "Addends and PC-bias", 247 // says: "If the relocation relocates an instruction the immediate 248 // field of the instruction is extracted, scaled as required by 249 // the instruction field encoding, and sign-extended to 64 bits". 250 251 // The R_AARCH64_MOVW family operates on wide MOV/MOVK/MOVZ 252 // instructions, which have a 16-bit immediate field with its low 253 // bit in bit 5 of the instruction encoding. When the immediate 254 // field is used as an implicit addend for REL-type relocations, 255 // it is treated as added to the low bits of the output value, not 256 // shifted depending on the relocation type. 257 // 258 // This allows REL relocations to express the requirement 'please 259 // add 12345 to this symbol value and give me the four 16-bit 260 // chunks of the result', by putting the same addend 12345 in all 261 // four instructions. Carries between the 16-bit chunks are 262 // handled correctly, because the whole 64-bit addition is done 263 // once per relocation. 264 case R_AARCH64_MOVW_UABS_G0: 265 case R_AARCH64_MOVW_UABS_G0_NC: 266 case R_AARCH64_MOVW_UABS_G1: 267 case R_AARCH64_MOVW_UABS_G1_NC: 268 case R_AARCH64_MOVW_UABS_G2: 269 case R_AARCH64_MOVW_UABS_G2_NC: 270 case R_AARCH64_MOVW_UABS_G3: 271 return SignExtend64<16>(getBits(read32(buf), 5, 20)); 272 273 // R_AARCH64_TSTBR14 points at a TBZ or TBNZ instruction, which 274 // has a 14-bit offset measured in instructions, i.e. shifted left 275 // by 2. 276 case R_AARCH64_TSTBR14: 277 return SignExtend64<16>(getBits(read32(buf), 5, 18) << 2); 278 279 // R_AARCH64_CONDBR19 operates on the ordinary B.cond instruction, 280 // which has a 19-bit offset measured in instructions. 281 // 282 // R_AARCH64_LD_PREL_LO19 operates on the LDR (literal) 283 // instruction, which also has a 19-bit offset, measured in 4-byte 284 // chunks. So the calculation is the same as for 285 // R_AARCH64_CONDBR19. 286 case R_AARCH64_CONDBR19: 287 case R_AARCH64_LD_PREL_LO19: 288 return SignExtend64<21>(getBits(read32(buf), 5, 23) << 2); 289 290 // R_AARCH64_ADD_ABS_LO12_NC operates on ADD (immediate). The 291 // immediate can optionally be shifted left by 12 bits, but this 292 // relocation is intended for the case where it is not. 293 case R_AARCH64_ADD_ABS_LO12_NC: 294 return SignExtend64<12>(getBits(read32(buf), 10, 21)); 295 296 // R_AARCH64_ADR_PREL_LO21 operates on an ADR instruction, whose 297 // 21-bit immediate is split between two bits high up in the word 298 // (in fact the two _lowest_ order bits of the value) and 19 bits 299 // lower down. 300 // 301 // R_AARCH64_ADR_PREL_PG_HI21[_NC] operate on an ADRP instruction, 302 // which encodes the immediate in the same way, but will shift it 303 // left by 12 bits when the instruction executes. For the same 304 // reason as the MOVW family, we don't apply that left shift here. 305 case R_AARCH64_ADR_PREL_LO21: 306 case R_AARCH64_ADR_PREL_PG_HI21: 307 case R_AARCH64_ADR_PREL_PG_HI21_NC: 308 return SignExtend64<21>((getBits(read32(buf), 5, 23) << 2) | 309 getBits(read32(buf), 29, 30)); 310 311 // R_AARCH64_{JUMP,CALL}26 operate on B and BL, which have a 312 // 26-bit offset measured in instructions. 313 case R_AARCH64_JUMP26: 314 case R_AARCH64_CALL26: 315 return SignExtend64<28>(getBits(read32(buf), 0, 25) << 2); 316 317 default: 318 internalLinkerError(getErrorLocation(buf), 319 "cannot read addend for relocation " + toString(type)); 320 return 0; 321 } 322 } 323 324 void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const { 325 write64(buf, in.plt->getVA()); 326 } 327 328 void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { 329 if (config->writeAddends) 330 write64(buf, s.getVA()); 331 } 332 333 void AArch64::writePltHeader(uint8_t *buf) const { 334 const uint8_t pltData[] = { 335 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! 336 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2])) 337 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))] 338 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2])) 339 0x20, 0x02, 0x1f, 0xd6, // br x17 340 0x1f, 0x20, 0x03, 0xd5, // nop 341 0x1f, 0x20, 0x03, 0xd5, // nop 342 0x1f, 0x20, 0x03, 0xd5 // nop 343 }; 344 memcpy(buf, pltData, sizeof(pltData)); 345 346 uint64_t got = in.gotPlt->getVA(); 347 uint64_t plt = in.plt->getVA(); 348 relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21, 349 getAArch64Page(got + 16) - getAArch64Page(plt + 4)); 350 relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16); 351 relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16); 352 } 353 354 void AArch64::writePlt(uint8_t *buf, const Symbol &sym, 355 uint64_t pltEntryAddr) const { 356 const uint8_t inst[] = { 357 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n])) 358 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))] 359 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[n])) 360 0x20, 0x02, 0x1f, 0xd6 // br x17 361 }; 362 memcpy(buf, inst, sizeof(inst)); 363 364 uint64_t gotPltEntryAddr = sym.getGotPltVA(); 365 relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21, 366 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr)); 367 relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr); 368 relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr); 369 } 370 371 bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file, 372 uint64_t branchAddr, const Symbol &s, 373 int64_t a) const { 374 // If s is an undefined weak symbol and does not have a PLT entry then it will 375 // be resolved as a branch to the next instruction. If it is hidden, its 376 // binding has been converted to local, so we just check isUndefined() here. A 377 // undefined non-weak symbol will have been errored. 378 if (s.isUndefined() && !s.isInPlt()) 379 return false; 380 // ELF for the ARM 64-bit architecture, section Call and Jump relocations 381 // only permits range extension thunks for R_AARCH64_CALL26 and 382 // R_AARCH64_JUMP26 relocation types. 383 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && 384 type != R_AARCH64_PLT32) 385 return false; 386 uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a); 387 return !inBranchRange(type, branchAddr, dst); 388 } 389 390 uint32_t AArch64::getThunkSectionSpacing() const { 391 // See comment in Arch/ARM.cpp for a more detailed explanation of 392 // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to 393 // Thunk have a range of +/- 128 MiB 394 return (128 * 1024 * 1024) - 0x30000; 395 } 396 397 bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { 398 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && 399 type != R_AARCH64_PLT32) 400 return true; 401 // The AArch64 call and unconditional branch instructions have a range of 402 // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB. 403 uint64_t range = 404 type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024); 405 if (dst > src) { 406 // Immediate of branch is signed. 407 range -= 4; 408 return dst - src <= range; 409 } 410 return src - dst <= range; 411 } 412 413 static void write32AArch64Addr(uint8_t *l, uint64_t imm) { 414 uint32_t immLo = (imm & 0x3) << 29; 415 uint32_t immHi = (imm & 0x1FFFFC) << 3; 416 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); 417 write32le(l, (read32le(l) & ~mask) | immLo | immHi); 418 } 419 420 static void writeMaskedBits32le(uint8_t *p, int32_t v, uint32_t mask) { 421 write32le(p, (read32le(p) & ~mask) | v); 422 } 423 424 // Update the immediate field in a AARCH64 ldr, str, and add instruction. 425 static void write32Imm12(uint8_t *l, uint64_t imm) { 426 writeMaskedBits32le(l, (imm & 0xFFF) << 10, 0xFFF << 10); 427 } 428 429 // Update the immediate field in an AArch64 movk, movn or movz instruction 430 // for a signed relocation, and update the opcode of a movn or movz instruction 431 // to match the sign of the operand. 432 static void writeSMovWImm(uint8_t *loc, uint32_t imm) { 433 uint32_t inst = read32le(loc); 434 // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk. 435 if (!(inst & (1 << 29))) { 436 // movn or movz. 437 if (imm & 0x10000) { 438 // Change opcode to movn, which takes an inverted operand. 439 imm ^= 0xFFFF; 440 inst &= ~(1 << 30); 441 } else { 442 // Change opcode to movz. 443 inst |= 1 << 30; 444 } 445 } 446 write32le(loc, inst | ((imm & 0xFFFF) << 5)); 447 } 448 449 void AArch64::relocate(uint8_t *loc, const Relocation &rel, 450 uint64_t val) const { 451 switch (rel.type) { 452 case R_AARCH64_ABS16: 453 case R_AARCH64_PREL16: 454 checkIntUInt(loc, val, 16, rel); 455 write16(loc, val); 456 break; 457 case R_AARCH64_ABS32: 458 case R_AARCH64_PREL32: 459 checkIntUInt(loc, val, 32, rel); 460 write32(loc, val); 461 break; 462 case R_AARCH64_PLT32: 463 case R_AARCH64_GOTPCREL32: 464 checkInt(loc, val, 32, rel); 465 write32(loc, val); 466 break; 467 case R_AARCH64_ABS64: 468 // AArch64 relocations to tagged symbols have extended semantics, as 469 // described here: 470 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative. 471 // tl;dr: encode the symbol's special addend in the place, which is an 472 // offset to the point where the logical tag is derived from. Quick hack, if 473 // the addend is within the symbol's bounds, no need to encode the tag 474 // derivation offset. 475 if (rel.sym && rel.sym->isTagged() && 476 (rel.addend < 0 || 477 rel.addend >= static_cast<int64_t>(rel.sym->getSize()))) 478 write64(loc, -rel.addend); 479 else 480 write64(loc, val); 481 break; 482 case R_AARCH64_PREL64: 483 write64(loc, val); 484 break; 485 case R_AARCH64_AUTH_ABS64: 486 // If val is wider than 32 bits, the relocation must have been moved from 487 // .relr.auth.dyn to .rela.dyn, and the addend write is not needed. 488 // 489 // If val fits in 32 bits, we have two potential scenarios: 490 // * True RELR: Write the 32-bit `val`. 491 // * RELA: Even if the value now fits in 32 bits, it might have been 492 // converted from RELR during an iteration in 493 // finalizeAddressDependentContent(). Writing the value is harmless 494 // because dynamic linking ignores it. 495 if (isInt<32>(val)) 496 write32(loc, val); 497 break; 498 case R_AARCH64_ADD_ABS_LO12_NC: 499 write32Imm12(loc, val); 500 break; 501 case R_AARCH64_ADR_GOT_PAGE: 502 case R_AARCH64_ADR_PREL_PG_HI21: 503 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 504 case R_AARCH64_TLSDESC_ADR_PAGE21: 505 checkInt(loc, val, 33, rel); 506 [[fallthrough]]; 507 case R_AARCH64_ADR_PREL_PG_HI21_NC: 508 write32AArch64Addr(loc, val >> 12); 509 break; 510 case R_AARCH64_ADR_PREL_LO21: 511 checkInt(loc, val, 21, rel); 512 write32AArch64Addr(loc, val); 513 break; 514 case R_AARCH64_JUMP26: 515 // Normally we would just write the bits of the immediate field, however 516 // when patching instructions for the cpu errata fix -fix-cortex-a53-843419 517 // we want to replace a non-branch instruction with a branch immediate 518 // instruction. By writing all the bits of the instruction including the 519 // opcode and the immediate (0 001 | 01 imm26) we can do this 520 // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of 521 // the instruction we want to patch. 522 write32le(loc, 0x14000000); 523 [[fallthrough]]; 524 case R_AARCH64_CALL26: 525 checkInt(loc, val, 28, rel); 526 writeMaskedBits32le(loc, (val & 0x0FFFFFFC) >> 2, 0x0FFFFFFC >> 2); 527 break; 528 case R_AARCH64_CONDBR19: 529 case R_AARCH64_LD_PREL_LO19: 530 case R_AARCH64_GOT_LD_PREL19: 531 checkAlignment(loc, val, 4, rel); 532 checkInt(loc, val, 21, rel); 533 writeMaskedBits32le(loc, (val & 0x1FFFFC) << 3, 0x1FFFFC << 3); 534 break; 535 case R_AARCH64_LDST8_ABS_LO12_NC: 536 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: 537 write32Imm12(loc, getBits(val, 0, 11)); 538 break; 539 case R_AARCH64_LDST16_ABS_LO12_NC: 540 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: 541 checkAlignment(loc, val, 2, rel); 542 write32Imm12(loc, getBits(val, 1, 11)); 543 break; 544 case R_AARCH64_LDST32_ABS_LO12_NC: 545 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: 546 checkAlignment(loc, val, 4, rel); 547 write32Imm12(loc, getBits(val, 2, 11)); 548 break; 549 case R_AARCH64_LDST64_ABS_LO12_NC: 550 case R_AARCH64_LD64_GOT_LO12_NC: 551 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 552 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: 553 case R_AARCH64_TLSDESC_LD64_LO12: 554 checkAlignment(loc, val, 8, rel); 555 write32Imm12(loc, getBits(val, 3, 11)); 556 break; 557 case R_AARCH64_LDST128_ABS_LO12_NC: 558 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC: 559 checkAlignment(loc, val, 16, rel); 560 write32Imm12(loc, getBits(val, 4, 11)); 561 break; 562 case R_AARCH64_LD64_GOTPAGE_LO15: 563 checkAlignment(loc, val, 8, rel); 564 write32Imm12(loc, getBits(val, 3, 14)); 565 break; 566 case R_AARCH64_MOVW_UABS_G0: 567 checkUInt(loc, val, 16, rel); 568 [[fallthrough]]; 569 case R_AARCH64_MOVW_UABS_G0_NC: 570 writeMaskedBits32le(loc, (val & 0xFFFF) << 5, 0xFFFF << 5); 571 break; 572 case R_AARCH64_MOVW_UABS_G1: 573 checkUInt(loc, val, 32, rel); 574 [[fallthrough]]; 575 case R_AARCH64_MOVW_UABS_G1_NC: 576 writeMaskedBits32le(loc, (val & 0xFFFF0000) >> 11, 0xFFFF0000 >> 11); 577 break; 578 case R_AARCH64_MOVW_UABS_G2: 579 checkUInt(loc, val, 48, rel); 580 [[fallthrough]]; 581 case R_AARCH64_MOVW_UABS_G2_NC: 582 writeMaskedBits32le(loc, (val & 0xFFFF00000000) >> 27, 583 0xFFFF00000000 >> 27); 584 break; 585 case R_AARCH64_MOVW_UABS_G3: 586 writeMaskedBits32le(loc, (val & 0xFFFF000000000000) >> 43, 587 0xFFFF000000000000 >> 43); 588 break; 589 case R_AARCH64_MOVW_PREL_G0: 590 case R_AARCH64_MOVW_SABS_G0: 591 case R_AARCH64_TLSLE_MOVW_TPREL_G0: 592 checkInt(loc, val, 17, rel); 593 [[fallthrough]]; 594 case R_AARCH64_MOVW_PREL_G0_NC: 595 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: 596 writeSMovWImm(loc, val); 597 break; 598 case R_AARCH64_MOVW_PREL_G1: 599 case R_AARCH64_MOVW_SABS_G1: 600 case R_AARCH64_TLSLE_MOVW_TPREL_G1: 601 checkInt(loc, val, 33, rel); 602 [[fallthrough]]; 603 case R_AARCH64_MOVW_PREL_G1_NC: 604 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: 605 writeSMovWImm(loc, val >> 16); 606 break; 607 case R_AARCH64_MOVW_PREL_G2: 608 case R_AARCH64_MOVW_SABS_G2: 609 case R_AARCH64_TLSLE_MOVW_TPREL_G2: 610 checkInt(loc, val, 49, rel); 611 [[fallthrough]]; 612 case R_AARCH64_MOVW_PREL_G2_NC: 613 writeSMovWImm(loc, val >> 32); 614 break; 615 case R_AARCH64_MOVW_PREL_G3: 616 writeSMovWImm(loc, val >> 48); 617 break; 618 case R_AARCH64_TSTBR14: 619 checkInt(loc, val, 16, rel); 620 writeMaskedBits32le(loc, (val & 0xFFFC) << 3, 0xFFFC << 3); 621 break; 622 case R_AARCH64_TLSLE_ADD_TPREL_HI12: 623 checkUInt(loc, val, 24, rel); 624 write32Imm12(loc, val >> 12); 625 break; 626 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 627 case R_AARCH64_TLSDESC_ADD_LO12: 628 write32Imm12(loc, val); 629 break; 630 case R_AARCH64_TLSDESC: 631 // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word. 632 write64(loc + 8, val); 633 break; 634 default: 635 llvm_unreachable("unknown relocation"); 636 } 637 } 638 639 void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 640 uint64_t val) const { 641 // TLSDESC Global-Dynamic relocation are in the form: 642 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] 643 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12] 644 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12] 645 // .tlsdesccall [R_AARCH64_TLSDESC_CALL] 646 // blr x1 647 // And it can optimized to: 648 // movz x0, #0x0, lsl #16 649 // movk x0, #0x10 650 // nop 651 // nop 652 checkUInt(loc, val, 32, rel); 653 654 switch (rel.type) { 655 case R_AARCH64_TLSDESC_ADD_LO12: 656 case R_AARCH64_TLSDESC_CALL: 657 write32le(loc, 0xd503201f); // nop 658 return; 659 case R_AARCH64_TLSDESC_ADR_PAGE21: 660 write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz 661 return; 662 case R_AARCH64_TLSDESC_LD64_LO12: 663 write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk 664 return; 665 default: 666 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 667 } 668 } 669 670 void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 671 uint64_t val) const { 672 // TLSDESC Global-Dynamic relocation are in the form: 673 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] 674 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12] 675 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12] 676 // .tlsdesccall [R_AARCH64_TLSDESC_CALL] 677 // blr x1 678 // And it can optimized to: 679 // adrp x0, :gottprel:v 680 // ldr x0, [x0, :gottprel_lo12:v] 681 // nop 682 // nop 683 684 switch (rel.type) { 685 case R_AARCH64_TLSDESC_ADD_LO12: 686 case R_AARCH64_TLSDESC_CALL: 687 write32le(loc, 0xd503201f); // nop 688 break; 689 case R_AARCH64_TLSDESC_ADR_PAGE21: 690 write32le(loc, 0x90000000); // adrp 691 relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val); 692 break; 693 case R_AARCH64_TLSDESC_LD64_LO12: 694 write32le(loc, 0xf9400000); // ldr 695 relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val); 696 break; 697 default: 698 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 699 } 700 } 701 702 void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 703 uint64_t val) const { 704 checkUInt(loc, val, 32, rel); 705 706 if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { 707 // Generate MOVZ. 708 uint32_t regNo = read32le(loc) & 0x1f; 709 write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5)); 710 return; 711 } 712 if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { 713 // Generate MOVK. 714 uint32_t regNo = read32le(loc) & 0x1f; 715 write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5)); 716 return; 717 } 718 llvm_unreachable("invalid relocation for TLS IE to LE relaxation"); 719 } 720 721 AArch64Relaxer::AArch64Relaxer(ArrayRef<Relocation> relocs) { 722 if (!config->relax) 723 return; 724 // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC 725 // always appear in pairs. 726 size_t i = 0; 727 const size_t size = relocs.size(); 728 for (; i != size; ++i) { 729 if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) { 730 if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) { 731 ++i; 732 continue; 733 } 734 break; 735 } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) { 736 break; 737 } 738 } 739 safeToRelaxAdrpLdr = i == size; 740 } 741 742 bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel, 743 const Relocation &addRel, uint64_t secAddr, 744 uint8_t *buf) const { 745 // When the address of sym is within the range of ADR then 746 // we may relax 747 // ADRP xn, sym 748 // ADD xn, xn, :lo12: sym 749 // to 750 // NOP 751 // ADR xn, sym 752 if (!config->relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 || 753 addRel.type != R_AARCH64_ADD_ABS_LO12_NC) 754 return false; 755 // Check if the relocations apply to consecutive instructions. 756 if (adrpRel.offset + 4 != addRel.offset) 757 return false; 758 if (adrpRel.sym != addRel.sym) 759 return false; 760 if (adrpRel.addend != 0 || addRel.addend != 0) 761 return false; 762 763 uint32_t adrpInstr = read32le(buf + adrpRel.offset); 764 uint32_t addInstr = read32le(buf + addRel.offset); 765 // Check if the first instruction is ADRP and the second instruction is ADD. 766 if ((adrpInstr & 0x9f000000) != 0x90000000 || 767 (addInstr & 0xffc00000) != 0x91000000) 768 return false; 769 uint32_t adrpDestReg = adrpInstr & 0x1f; 770 uint32_t addDestReg = addInstr & 0x1f; 771 uint32_t addSrcReg = (addInstr >> 5) & 0x1f; 772 if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg) 773 return false; 774 775 Symbol &sym = *adrpRel.sym; 776 // Check if the address difference is within 1MiB range. 777 int64_t val = sym.getVA() - (secAddr + addRel.offset); 778 if (val < -1024 * 1024 || val >= 1024 * 1024) 779 return false; 780 781 Relocation adrRel = {R_ABS, R_AARCH64_ADR_PREL_LO21, addRel.offset, 782 /*addend=*/0, &sym}; 783 // nop 784 write32le(buf + adrpRel.offset, 0xd503201f); 785 // adr x_<dest_reg> 786 write32le(buf + adrRel.offset, 0x10000000 | adrpDestReg); 787 target->relocate(buf + adrRel.offset, adrRel, val); 788 return true; 789 } 790 791 bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel, 792 const Relocation &ldrRel, uint64_t secAddr, 793 uint8_t *buf) const { 794 if (!safeToRelaxAdrpLdr) 795 return false; 796 797 // When the definition of sym is not preemptible then we may 798 // be able to relax 799 // ADRP xn, :got: sym 800 // LDR xn, [ xn :got_lo12: sym] 801 // to 802 // ADRP xn, sym 803 // ADD xn, xn, :lo_12: sym 804 805 if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE || 806 ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC) 807 return false; 808 // Check if the relocations apply to consecutive instructions. 809 if (adrpRel.offset + 4 != ldrRel.offset) 810 return false; 811 // Check if the relocations reference the same symbol and 812 // skip undefined, preemptible and STT_GNU_IFUNC symbols. 813 if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() || 814 adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc()) 815 return false; 816 // Check if the addends of the both relocations are zero. 817 if (adrpRel.addend != 0 || ldrRel.addend != 0) 818 return false; 819 uint32_t adrpInstr = read32le(buf + adrpRel.offset); 820 uint32_t ldrInstr = read32le(buf + ldrRel.offset); 821 // Check if the first instruction is ADRP and the second instruction is LDR. 822 if ((adrpInstr & 0x9f000000) != 0x90000000 || 823 (ldrInstr & 0x3b000000) != 0x39000000) 824 return false; 825 // Check the value of the sf bit. 826 if (!(ldrInstr >> 31)) 827 return false; 828 uint32_t adrpDestReg = adrpInstr & 0x1f; 829 uint32_t ldrDestReg = ldrInstr & 0x1f; 830 uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f; 831 // Check if ADPR and LDR use the same register. 832 if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg) 833 return false; 834 835 Symbol &sym = *adrpRel.sym; 836 // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in 837 // position-independent code because these instructions produce a relative 838 // address. 839 if (config->isPic && !cast<Defined>(sym).section) 840 return false; 841 // Check if the address difference is within 4GB range. 842 int64_t val = 843 getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpRel.offset); 844 if (val != llvm::SignExtend64(val, 33)) 845 return false; 846 847 Relocation adrpSymRel = {R_AARCH64_PAGE_PC, R_AARCH64_ADR_PREL_PG_HI21, 848 adrpRel.offset, /*addend=*/0, &sym}; 849 Relocation addRel = {R_ABS, R_AARCH64_ADD_ABS_LO12_NC, ldrRel.offset, 850 /*addend=*/0, &sym}; 851 852 // adrp x_<dest_reg> 853 write32le(buf + adrpSymRel.offset, 0x90000000 | adrpDestReg); 854 // add x_<dest reg>, x_<dest reg> 855 write32le(buf + addRel.offset, 0x91000000 | adrpDestReg | (adrpDestReg << 5)); 856 857 target->relocate(buf + adrpSymRel.offset, adrpSymRel, 858 SignExtend64(getAArch64Page(sym.getVA()) - 859 getAArch64Page(secAddr + adrpSymRel.offset), 860 64)); 861 target->relocate(buf + addRel.offset, addRel, SignExtend64(sym.getVA(), 64)); 862 tryRelaxAdrpAdd(adrpSymRel, addRel, secAddr, buf); 863 return true; 864 } 865 866 // Tagged symbols have upper address bits that are added by the dynamic loader, 867 // and thus need the full 64-bit GOT entry. Do not relax such symbols. 868 static bool needsGotForMemtag(const Relocation &rel) { 869 return rel.sym->isTagged() && needsGot(rel.expr); 870 } 871 872 void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { 873 uint64_t secAddr = sec.getOutputSection()->addr; 874 if (auto *s = dyn_cast<InputSection>(&sec)) 875 secAddr += s->outSecOff; 876 else if (auto *ehIn = dyn_cast<EhInputSection>(&sec)) 877 secAddr += ehIn->getParent()->outSecOff; 878 AArch64Relaxer relaxer(sec.relocs()); 879 for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) { 880 const Relocation &rel = sec.relocs()[i]; 881 uint8_t *loc = buf + rel.offset; 882 const uint64_t val = 883 sec.getRelocTargetVA(sec.file, rel.type, rel.addend, 884 secAddr + rel.offset, *rel.sym, rel.expr); 885 886 if (needsGotForMemtag(rel)) { 887 relocate(loc, rel, val); 888 continue; 889 } 890 891 switch (rel.expr) { 892 case R_AARCH64_GOT_PAGE_PC: 893 if (i + 1 < size && 894 relaxer.tryRelaxAdrpLdr(rel, sec.relocs()[i + 1], secAddr, buf)) { 895 ++i; 896 continue; 897 } 898 break; 899 case R_AARCH64_PAGE_PC: 900 if (i + 1 < size && 901 relaxer.tryRelaxAdrpAdd(rel, sec.relocs()[i + 1], secAddr, buf)) { 902 ++i; 903 continue; 904 } 905 break; 906 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 907 case R_RELAX_TLS_GD_TO_IE_ABS: 908 relaxTlsGdToIe(loc, rel, val); 909 continue; 910 case R_RELAX_TLS_GD_TO_LE: 911 relaxTlsGdToLe(loc, rel, val); 912 continue; 913 case R_RELAX_TLS_IE_TO_LE: 914 relaxTlsIeToLe(loc, rel, val); 915 continue; 916 default: 917 break; 918 } 919 relocate(loc, rel, val); 920 } 921 } 922 923 // AArch64 may use security features in variant PLT sequences. These are: 924 // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target 925 // Indicator (BTI) introduced in armv8.5-a. The additional instructions used 926 // in the variant Plt sequences are encoded in the Hint space so they can be 927 // deployed on older architectures, which treat the instructions as a nop. 928 // PAC and BTI can be combined leading to the following combinations: 929 // writePltHeader 930 // writePltHeaderBti (no PAC Header needed) 931 // writePlt 932 // writePltBti (BTI only) 933 // writePltPac (PAC only) 934 // writePltBtiPac (BTI and PAC) 935 // 936 // When PAC is enabled the dynamic loader encrypts the address that it places 937 // in the .got.plt using the pacia1716 instruction which encrypts the value in 938 // x17 using the modifier in x16. The static linker places autia1716 before the 939 // indirect branch to x17 to authenticate the address in x17 with the modifier 940 // in x16. This makes it more difficult for an attacker to modify the value in 941 // the .got.plt. 942 // 943 // When BTI is enabled all indirect branches must land on a bti instruction. 944 // The static linker must place a bti instruction at the start of any PLT entry 945 // that may be the target of an indirect branch. As the PLT entries call the 946 // lazy resolver indirectly this must have a bti instruction at start. In 947 // general a bti instruction is not needed for a PLT entry as indirect calls 948 // are resolved to the function address and not the PLT entry for the function. 949 // There are a small number of cases where the PLT address can escape, such as 950 // taking the address of a function or ifunc via a non got-generating 951 // relocation, and a shared library refers to that symbol. 952 // 953 // We use the bti c variant of the instruction which permits indirect branches 954 // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI 955 // guarantees that all indirect branches from code requiring BTI protection 956 // will go via x16/x17 957 958 namespace { 959 class AArch64BtiPac final : public AArch64 { 960 public: 961 AArch64BtiPac(); 962 void writePltHeader(uint8_t *buf) const override; 963 void writePlt(uint8_t *buf, const Symbol &sym, 964 uint64_t pltEntryAddr) const override; 965 966 private: 967 bool btiHeader; // bti instruction needed in PLT Header and Entry 968 bool pacEntry; // autia1716 instruction needed in PLT Entry 969 }; 970 } // namespace 971 972 AArch64BtiPac::AArch64BtiPac() { 973 btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI); 974 // A BTI (Branch Target Indicator) Plt Entry is only required if the 975 // address of the PLT entry can be taken by the program, which permits an 976 // indirect jump to the PLT entry. This can happen when the address 977 // of the PLT entry for a function is canonicalised due to the address of 978 // the function in an executable being taken by a shared library, or 979 // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating 980 // relocations. 981 // The PAC PLT entries require dynamic loader support and this isn't known 982 // from properties in the objects, so we use the command line flag. 983 pacEntry = config->zPacPlt; 984 985 if (btiHeader || pacEntry) { 986 pltEntrySize = 24; 987 ipltEntrySize = 24; 988 } 989 } 990 991 void AArch64BtiPac::writePltHeader(uint8_t *buf) const { 992 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c 993 const uint8_t pltData[] = { 994 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! 995 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2])) 996 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))] 997 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2])) 998 0x20, 0x02, 0x1f, 0xd6, // br x17 999 0x1f, 0x20, 0x03, 0xd5, // nop 1000 0x1f, 0x20, 0x03, 0xd5 // nop 1001 }; 1002 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop 1003 1004 uint64_t got = in.gotPlt->getVA(); 1005 uint64_t plt = in.plt->getVA(); 1006 1007 if (btiHeader) { 1008 // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C 1009 // instruction. 1010 memcpy(buf, btiData, sizeof(btiData)); 1011 buf += sizeof(btiData); 1012 plt += sizeof(btiData); 1013 } 1014 memcpy(buf, pltData, sizeof(pltData)); 1015 1016 relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21, 1017 getAArch64Page(got + 16) - getAArch64Page(plt + 8)); 1018 relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16); 1019 relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16); 1020 if (!btiHeader) 1021 // We didn't add the BTI c instruction so round out size with NOP. 1022 memcpy(buf + sizeof(pltData), nopData, sizeof(nopData)); 1023 } 1024 1025 void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym, 1026 uint64_t pltEntryAddr) const { 1027 // The PLT entry is of the form: 1028 // [btiData] addrInst (pacBr | stdBr) [nopData] 1029 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c 1030 const uint8_t addrInst[] = { 1031 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n])) 1032 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))] 1033 0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.got.plt[n])) 1034 }; 1035 const uint8_t pacBr[] = { 1036 0x9f, 0x21, 0x03, 0xd5, // autia1716 1037 0x20, 0x02, 0x1f, 0xd6 // br x17 1038 }; 1039 const uint8_t stdBr[] = { 1040 0x20, 0x02, 0x1f, 0xd6, // br x17 1041 0x1f, 0x20, 0x03, 0xd5 // nop 1042 }; 1043 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop 1044 1045 // NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may 1046 // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its 1047 // address may escape if referenced by a direct relocation. If relative 1048 // vtables are used then if the vtable is in a shared object the offsets will 1049 // be to the PLT entry. The condition is conservative. 1050 bool hasBti = btiHeader && 1051 (sym.hasFlag(NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed); 1052 if (hasBti) { 1053 memcpy(buf, btiData, sizeof(btiData)); 1054 buf += sizeof(btiData); 1055 pltEntryAddr += sizeof(btiData); 1056 } 1057 1058 uint64_t gotPltEntryAddr = sym.getGotPltVA(); 1059 memcpy(buf, addrInst, sizeof(addrInst)); 1060 relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21, 1061 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr)); 1062 relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr); 1063 relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr); 1064 1065 if (pacEntry) 1066 memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr)); 1067 else 1068 memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr)); 1069 if (!hasBti) 1070 // We didn't add the BTI c instruction so round out size with NOP. 1071 memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData)); 1072 } 1073 1074 static TargetInfo *getTargetInfo() { 1075 if ((config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) || 1076 config->zPacPlt) { 1077 static AArch64BtiPac t; 1078 return &t; 1079 } 1080 static AArch64 t; 1081 return &t; 1082 } 1083 1084 TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); } 1085 1086 template <class ELFT> 1087 static void 1088 addTaggedSymbolReferences(InputSectionBase &sec, 1089 DenseMap<Symbol *, unsigned> &referenceCount) { 1090 assert(sec.type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC); 1091 1092 const RelsOrRelas<ELFT> rels = sec.relsOrRelas<ELFT>(); 1093 if (rels.areRelocsRel()) 1094 error("non-RELA relocations are not allowed with memtag globals"); 1095 1096 for (const typename ELFT::Rela &rel : rels.relas) { 1097 Symbol &sym = sec.file->getRelocTargetSym(rel); 1098 // Linker-synthesized symbols such as __executable_start may be referenced 1099 // as tagged in input objfiles, and we don't want them to be tagged. A 1100 // cheap way to exclude them is the type check, but their type is 1101 // STT_NOTYPE. In addition, this save us from checking untaggable symbols, 1102 // like functions or TLS symbols. 1103 if (sym.type != STT_OBJECT) 1104 continue; 1105 // STB_LOCAL symbols can't be referenced from outside the object file, and 1106 // thus don't need to be checked for references from other object files. 1107 if (sym.binding == STB_LOCAL) { 1108 sym.setIsTagged(true); 1109 continue; 1110 } 1111 ++referenceCount[&sym]; 1112 } 1113 sec.markDead(); 1114 } 1115 1116 // A tagged symbol must be denoted as being tagged by all references and the 1117 // chosen definition. For simplicity, here, it must also be denoted as tagged 1118 // for all definitions. Otherwise: 1119 // 1120 // 1. A tagged definition can be used by an untagged declaration, in which case 1121 // the untagged access may be PC-relative, causing a tag mismatch at 1122 // runtime. 1123 // 2. An untagged definition can be used by a tagged declaration, where the 1124 // compiler has taken advantage of the increased alignment of the tagged 1125 // declaration, but the alignment at runtime is wrong, causing a fault. 1126 // 1127 // Ideally, this isn't a problem, as any TU that imports or exports tagged 1128 // symbols should also be built with tagging. But, to handle these cases, we 1129 // demote the symbol to be untagged. 1130 void lld::elf::createTaggedSymbols(const SmallVector<ELFFileBase *, 0> &files) { 1131 assert(hasMemtag()); 1132 1133 // First, collect all symbols that are marked as tagged, and count how many 1134 // times they're marked as tagged. 1135 DenseMap<Symbol *, unsigned> taggedSymbolReferenceCount; 1136 for (InputFile* file : files) { 1137 if (file->kind() != InputFile::ObjKind) 1138 continue; 1139 for (InputSectionBase *section : file->getSections()) { 1140 if (!section || section->type != SHT_AARCH64_MEMTAG_GLOBALS_STATIC || 1141 section == &InputSection::discarded) 1142 continue; 1143 invokeELFT(addTaggedSymbolReferences, *section, 1144 taggedSymbolReferenceCount); 1145 } 1146 } 1147 1148 // Now, go through all the symbols. If the number of declarations + 1149 // definitions to a symbol exceeds the amount of times they're marked as 1150 // tagged, it means we have an objfile that uses the untagged variant of the 1151 // symbol. 1152 for (InputFile *file : files) { 1153 if (file->kind() != InputFile::BinaryKind && 1154 file->kind() != InputFile::ObjKind) 1155 continue; 1156 1157 for (Symbol *symbol : file->getSymbols()) { 1158 // See `addTaggedSymbolReferences` for more details. 1159 if (symbol->type != STT_OBJECT || 1160 symbol->binding == STB_LOCAL) 1161 continue; 1162 auto it = taggedSymbolReferenceCount.find(symbol); 1163 if (it == taggedSymbolReferenceCount.end()) continue; 1164 unsigned &remainingAllowedTaggedRefs = it->second; 1165 if (remainingAllowedTaggedRefs == 0) { 1166 taggedSymbolReferenceCount.erase(it); 1167 continue; 1168 } 1169 --remainingAllowedTaggedRefs; 1170 } 1171 } 1172 1173 // `addTaggedSymbolReferences` has already checked that we have RELA 1174 // relocations, the only other way to get written addends is with 1175 // --apply-dynamic-relocs. 1176 if (!taggedSymbolReferenceCount.empty() && config->writeAddends) 1177 error("--apply-dynamic-relocs cannot be used with MTE globals"); 1178 1179 // Now, `taggedSymbolReferenceCount` should only contain symbols that are 1180 // defined as tagged exactly the same amount as it's referenced, meaning all 1181 // uses are tagged. 1182 for (auto &[symbol, remainingTaggedRefs] : taggedSymbolReferenceCount) { 1183 assert(remainingTaggedRefs == 0 && 1184 "Symbol is defined as tagged more times than it's used"); 1185 symbol->setIsTagged(true); 1186 } 1187 } 1188