xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/AArch64.cpp (revision 4d3fc8b0570b29fb0d6ee9525f104d52176ff0d4)
1 //===- AArch64.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Symbols.h"
10 #include "SyntheticSections.h"
11 #include "Target.h"
12 #include "lld/Common/ErrorHandler.h"
13 #include "llvm/BinaryFormat/ELF.h"
14 #include "llvm/Support/Endian.h"
15 
16 using namespace llvm;
17 using namespace llvm::support::endian;
18 using namespace llvm::ELF;
19 using namespace lld;
20 using namespace lld::elf;
21 
22 // Page(Expr) is the page address of the expression Expr, defined
23 // as (Expr & ~0xFFF). (This applies even if the machine page size
24 // supported by the platform has a different value.)
25 uint64_t elf::getAArch64Page(uint64_t expr) {
26   return expr & ~static_cast<uint64_t>(0xFFF);
27 }
28 
29 namespace {
30 class AArch64 : public TargetInfo {
31 public:
32   AArch64();
33   RelExpr getRelExpr(RelType type, const Symbol &s,
34                      const uint8_t *loc) const override;
35   RelType getDynRel(RelType type) const override;
36   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
37   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
38   void writePltHeader(uint8_t *buf) const override;
39   void writePlt(uint8_t *buf, const Symbol &sym,
40                 uint64_t pltEntryAddr) const override;
41   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
42                   uint64_t branchAddr, const Symbol &s,
43                   int64_t a) const override;
44   uint32_t getThunkSectionSpacing() const override;
45   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
46   bool usesOnlyLowPageBits(RelType type) const override;
47   void relocate(uint8_t *loc, const Relocation &rel,
48                 uint64_t val) const override;
49   RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
50   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
51                       uint64_t val) const override;
52   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
53                       uint64_t val) const override;
54   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
55                       uint64_t val) const override;
56 };
57 } // namespace
58 
59 AArch64::AArch64() {
60   copyRel = R_AARCH64_COPY;
61   relativeRel = R_AARCH64_RELATIVE;
62   iRelativeRel = R_AARCH64_IRELATIVE;
63   gotRel = R_AARCH64_GLOB_DAT;
64   pltRel = R_AARCH64_JUMP_SLOT;
65   symbolicRel = R_AARCH64_ABS64;
66   tlsDescRel = R_AARCH64_TLSDESC;
67   tlsGotRel = R_AARCH64_TLS_TPREL64;
68   pltHeaderSize = 32;
69   pltEntrySize = 16;
70   ipltEntrySize = 16;
71   defaultMaxPageSize = 65536;
72 
73   // Align to the 2 MiB page size (known as a superpage or huge page).
74   // FreeBSD automatically promotes 2 MiB-aligned allocations.
75   defaultImageBase = 0x200000;
76 
77   needsThunks = true;
78 }
79 
80 RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
81                             const uint8_t *loc) const {
82   switch (type) {
83   case R_AARCH64_ABS16:
84   case R_AARCH64_ABS32:
85   case R_AARCH64_ABS64:
86   case R_AARCH64_ADD_ABS_LO12_NC:
87   case R_AARCH64_LDST128_ABS_LO12_NC:
88   case R_AARCH64_LDST16_ABS_LO12_NC:
89   case R_AARCH64_LDST32_ABS_LO12_NC:
90   case R_AARCH64_LDST64_ABS_LO12_NC:
91   case R_AARCH64_LDST8_ABS_LO12_NC:
92   case R_AARCH64_MOVW_SABS_G0:
93   case R_AARCH64_MOVW_SABS_G1:
94   case R_AARCH64_MOVW_SABS_G2:
95   case R_AARCH64_MOVW_UABS_G0:
96   case R_AARCH64_MOVW_UABS_G0_NC:
97   case R_AARCH64_MOVW_UABS_G1:
98   case R_AARCH64_MOVW_UABS_G1_NC:
99   case R_AARCH64_MOVW_UABS_G2:
100   case R_AARCH64_MOVW_UABS_G2_NC:
101   case R_AARCH64_MOVW_UABS_G3:
102     return R_ABS;
103   case R_AARCH64_TLSDESC_ADR_PAGE21:
104     return R_AARCH64_TLSDESC_PAGE;
105   case R_AARCH64_TLSDESC_LD64_LO12:
106   case R_AARCH64_TLSDESC_ADD_LO12:
107     return R_TLSDESC;
108   case R_AARCH64_TLSDESC_CALL:
109     return R_TLSDESC_CALL;
110   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
111   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
112   case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
113   case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
114   case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
115   case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
116   case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
117   case R_AARCH64_TLSLE_MOVW_TPREL_G0:
118   case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
119   case R_AARCH64_TLSLE_MOVW_TPREL_G1:
120   case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
121   case R_AARCH64_TLSLE_MOVW_TPREL_G2:
122     return R_TPREL;
123   case R_AARCH64_CALL26:
124   case R_AARCH64_CONDBR19:
125   case R_AARCH64_JUMP26:
126   case R_AARCH64_TSTBR14:
127   case R_AARCH64_PLT32:
128     return R_PLT_PC;
129   case R_AARCH64_PREL16:
130   case R_AARCH64_PREL32:
131   case R_AARCH64_PREL64:
132   case R_AARCH64_ADR_PREL_LO21:
133   case R_AARCH64_LD_PREL_LO19:
134   case R_AARCH64_MOVW_PREL_G0:
135   case R_AARCH64_MOVW_PREL_G0_NC:
136   case R_AARCH64_MOVW_PREL_G1:
137   case R_AARCH64_MOVW_PREL_G1_NC:
138   case R_AARCH64_MOVW_PREL_G2:
139   case R_AARCH64_MOVW_PREL_G2_NC:
140   case R_AARCH64_MOVW_PREL_G3:
141     return R_PC;
142   case R_AARCH64_ADR_PREL_PG_HI21:
143   case R_AARCH64_ADR_PREL_PG_HI21_NC:
144     return R_AARCH64_PAGE_PC;
145   case R_AARCH64_LD64_GOT_LO12_NC:
146   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
147     return R_GOT;
148   case R_AARCH64_LD64_GOTPAGE_LO15:
149     return R_AARCH64_GOT_PAGE;
150   case R_AARCH64_ADR_GOT_PAGE:
151   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
152     return R_AARCH64_GOT_PAGE_PC;
153   case R_AARCH64_NONE:
154     return R_NONE;
155   default:
156     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
157           ") against symbol " + toString(s));
158     return R_NONE;
159   }
160 }
161 
162 RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const {
163   if (expr == R_RELAX_TLS_GD_TO_IE) {
164     if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
165       return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
166     return R_RELAX_TLS_GD_TO_IE_ABS;
167   }
168   return expr;
169 }
170 
171 bool AArch64::usesOnlyLowPageBits(RelType type) const {
172   switch (type) {
173   default:
174     return false;
175   case R_AARCH64_ADD_ABS_LO12_NC:
176   case R_AARCH64_LD64_GOT_LO12_NC:
177   case R_AARCH64_LDST128_ABS_LO12_NC:
178   case R_AARCH64_LDST16_ABS_LO12_NC:
179   case R_AARCH64_LDST32_ABS_LO12_NC:
180   case R_AARCH64_LDST64_ABS_LO12_NC:
181   case R_AARCH64_LDST8_ABS_LO12_NC:
182   case R_AARCH64_TLSDESC_ADD_LO12:
183   case R_AARCH64_TLSDESC_LD64_LO12:
184   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
185     return true;
186   }
187 }
188 
189 RelType AArch64::getDynRel(RelType type) const {
190   if (type == R_AARCH64_ABS64)
191     return type;
192   return R_AARCH64_NONE;
193 }
194 
195 int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const {
196   switch (type) {
197   case R_AARCH64_TLSDESC:
198     return read64(buf + 8);
199   case R_AARCH64_NONE:
200     return 0;
201   case R_AARCH64_PREL32:
202     return SignExtend64<32>(read32(buf));
203   case R_AARCH64_ABS64:
204   case R_AARCH64_PREL64:
205     return read64(buf);
206   default:
207     internalLinkerError(getErrorLocation(buf),
208                         "cannot read addend for relocation " + toString(type));
209     return 0;
210   }
211 }
212 
213 void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
214   write64(buf, in.plt->getVA());
215 }
216 
217 void AArch64::writePltHeader(uint8_t *buf) const {
218   const uint8_t pltData[] = {
219       0xf0, 0x7b, 0xbf, 0xa9, // stp    x16, x30, [sp,#-16]!
220       0x10, 0x00, 0x00, 0x90, // adrp   x16, Page(&(.plt.got[2]))
221       0x11, 0x02, 0x40, 0xf9, // ldr    x17, [x16, Offset(&(.plt.got[2]))]
222       0x10, 0x02, 0x00, 0x91, // add    x16, x16, Offset(&(.plt.got[2]))
223       0x20, 0x02, 0x1f, 0xd6, // br     x17
224       0x1f, 0x20, 0x03, 0xd5, // nop
225       0x1f, 0x20, 0x03, 0xd5, // nop
226       0x1f, 0x20, 0x03, 0xd5  // nop
227   };
228   memcpy(buf, pltData, sizeof(pltData));
229 
230   uint64_t got = in.gotPlt->getVA();
231   uint64_t plt = in.plt->getVA();
232   relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
233                 getAArch64Page(got + 16) - getAArch64Page(plt + 4));
234   relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
235   relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
236 }
237 
238 void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
239                        uint64_t pltEntryAddr) const {
240   const uint8_t inst[] = {
241       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
242       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
243       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
244       0x20, 0x02, 0x1f, 0xd6  // br   x17
245   };
246   memcpy(buf, inst, sizeof(inst));
247 
248   uint64_t gotPltEntryAddr = sym.getGotPltVA();
249   relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
250                 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
251   relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
252   relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
253 }
254 
255 bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
256                          uint64_t branchAddr, const Symbol &s,
257                          int64_t a) const {
258   // If s is an undefined weak symbol and does not have a PLT entry then it will
259   // be resolved as a branch to the next instruction. If it is hidden, its
260   // binding has been converted to local, so we just check isUndefined() here. A
261   // undefined non-weak symbol will have been errored.
262   if (s.isUndefined() && !s.isInPlt())
263     return false;
264   // ELF for the ARM 64-bit architecture, section Call and Jump relocations
265   // only permits range extension thunks for R_AARCH64_CALL26 and
266   // R_AARCH64_JUMP26 relocation types.
267   if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
268       type != R_AARCH64_PLT32)
269     return false;
270   uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
271   return !inBranchRange(type, branchAddr, dst);
272 }
273 
274 uint32_t AArch64::getThunkSectionSpacing() const {
275   // See comment in Arch/ARM.cpp for a more detailed explanation of
276   // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
277   // Thunk have a range of +/- 128 MiB
278   return (128 * 1024 * 1024) - 0x30000;
279 }
280 
281 bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
282   if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
283       type != R_AARCH64_PLT32)
284     return true;
285   // The AArch64 call and unconditional branch instructions have a range of
286   // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB.
287   uint64_t range =
288       type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024);
289   if (dst > src) {
290     // Immediate of branch is signed.
291     range -= 4;
292     return dst - src <= range;
293   }
294   return src - dst <= range;
295 }
296 
297 static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
298   uint32_t immLo = (imm & 0x3) << 29;
299   uint32_t immHi = (imm & 0x1FFFFC) << 3;
300   uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
301   write32le(l, (read32le(l) & ~mask) | immLo | immHi);
302 }
303 
304 // Return the bits [Start, End] from Val shifted Start bits.
305 // For instance, getBits(0xF0, 4, 8) returns 0xF.
306 static uint64_t getBits(uint64_t val, int start, int end) {
307   uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
308   return (val >> start) & mask;
309 }
310 
311 static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
312 
313 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
314 static void or32AArch64Imm(uint8_t *l, uint64_t imm) {
315   or32le(l, (imm & 0xFFF) << 10);
316 }
317 
318 // Update the immediate field in an AArch64 movk, movn or movz instruction
319 // for a signed relocation, and update the opcode of a movn or movz instruction
320 // to match the sign of the operand.
321 static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
322   uint32_t inst = read32le(loc);
323   // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
324   if (!(inst & (1 << 29))) {
325     // movn or movz.
326     if (imm & 0x10000) {
327       // Change opcode to movn, which takes an inverted operand.
328       imm ^= 0xFFFF;
329       inst &= ~(1 << 30);
330     } else {
331       // Change opcode to movz.
332       inst |= 1 << 30;
333     }
334   }
335   write32le(loc, inst | ((imm & 0xFFFF) << 5));
336 }
337 
338 void AArch64::relocate(uint8_t *loc, const Relocation &rel,
339                        uint64_t val) const {
340   switch (rel.type) {
341   case R_AARCH64_ABS16:
342   case R_AARCH64_PREL16:
343     checkIntUInt(loc, val, 16, rel);
344     write16(loc, val);
345     break;
346   case R_AARCH64_ABS32:
347   case R_AARCH64_PREL32:
348     checkIntUInt(loc, val, 32, rel);
349     write32(loc, val);
350     break;
351   case R_AARCH64_PLT32:
352     checkInt(loc, val, 32, rel);
353     write32(loc, val);
354     break;
355   case R_AARCH64_ABS64:
356   case R_AARCH64_PREL64:
357     write64(loc, val);
358     break;
359   case R_AARCH64_ADD_ABS_LO12_NC:
360     or32AArch64Imm(loc, val);
361     break;
362   case R_AARCH64_ADR_GOT_PAGE:
363   case R_AARCH64_ADR_PREL_PG_HI21:
364   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
365   case R_AARCH64_TLSDESC_ADR_PAGE21:
366     checkInt(loc, val, 33, rel);
367     LLVM_FALLTHROUGH;
368   case R_AARCH64_ADR_PREL_PG_HI21_NC:
369     write32AArch64Addr(loc, val >> 12);
370     break;
371   case R_AARCH64_ADR_PREL_LO21:
372     checkInt(loc, val, 21, rel);
373     write32AArch64Addr(loc, val);
374     break;
375   case R_AARCH64_JUMP26:
376     // Normally we would just write the bits of the immediate field, however
377     // when patching instructions for the cpu errata fix -fix-cortex-a53-843419
378     // we want to replace a non-branch instruction with a branch immediate
379     // instruction. By writing all the bits of the instruction including the
380     // opcode and the immediate (0 001 | 01 imm26) we can do this
381     // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
382     // the instruction we want to patch.
383     write32le(loc, 0x14000000);
384     LLVM_FALLTHROUGH;
385   case R_AARCH64_CALL26:
386     checkInt(loc, val, 28, rel);
387     or32le(loc, (val & 0x0FFFFFFC) >> 2);
388     break;
389   case R_AARCH64_CONDBR19:
390   case R_AARCH64_LD_PREL_LO19:
391     checkAlignment(loc, val, 4, rel);
392     checkInt(loc, val, 21, rel);
393     or32le(loc, (val & 0x1FFFFC) << 3);
394     break;
395   case R_AARCH64_LDST8_ABS_LO12_NC:
396   case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
397     or32AArch64Imm(loc, getBits(val, 0, 11));
398     break;
399   case R_AARCH64_LDST16_ABS_LO12_NC:
400   case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
401     checkAlignment(loc, val, 2, rel);
402     or32AArch64Imm(loc, getBits(val, 1, 11));
403     break;
404   case R_AARCH64_LDST32_ABS_LO12_NC:
405   case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
406     checkAlignment(loc, val, 4, rel);
407     or32AArch64Imm(loc, getBits(val, 2, 11));
408     break;
409   case R_AARCH64_LDST64_ABS_LO12_NC:
410   case R_AARCH64_LD64_GOT_LO12_NC:
411   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
412   case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
413   case R_AARCH64_TLSDESC_LD64_LO12:
414     checkAlignment(loc, val, 8, rel);
415     or32AArch64Imm(loc, getBits(val, 3, 11));
416     break;
417   case R_AARCH64_LDST128_ABS_LO12_NC:
418   case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
419     checkAlignment(loc, val, 16, rel);
420     or32AArch64Imm(loc, getBits(val, 4, 11));
421     break;
422   case R_AARCH64_LD64_GOTPAGE_LO15:
423     checkAlignment(loc, val, 8, rel);
424     or32AArch64Imm(loc, getBits(val, 3, 14));
425     break;
426   case R_AARCH64_MOVW_UABS_G0:
427     checkUInt(loc, val, 16, rel);
428     LLVM_FALLTHROUGH;
429   case R_AARCH64_MOVW_UABS_G0_NC:
430     or32le(loc, (val & 0xFFFF) << 5);
431     break;
432   case R_AARCH64_MOVW_UABS_G1:
433     checkUInt(loc, val, 32, rel);
434     LLVM_FALLTHROUGH;
435   case R_AARCH64_MOVW_UABS_G1_NC:
436     or32le(loc, (val & 0xFFFF0000) >> 11);
437     break;
438   case R_AARCH64_MOVW_UABS_G2:
439     checkUInt(loc, val, 48, rel);
440     LLVM_FALLTHROUGH;
441   case R_AARCH64_MOVW_UABS_G2_NC:
442     or32le(loc, (val & 0xFFFF00000000) >> 27);
443     break;
444   case R_AARCH64_MOVW_UABS_G3:
445     or32le(loc, (val & 0xFFFF000000000000) >> 43);
446     break;
447   case R_AARCH64_MOVW_PREL_G0:
448   case R_AARCH64_MOVW_SABS_G0:
449   case R_AARCH64_TLSLE_MOVW_TPREL_G0:
450     checkInt(loc, val, 17, rel);
451     LLVM_FALLTHROUGH;
452   case R_AARCH64_MOVW_PREL_G0_NC:
453   case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
454     writeSMovWImm(loc, val);
455     break;
456   case R_AARCH64_MOVW_PREL_G1:
457   case R_AARCH64_MOVW_SABS_G1:
458   case R_AARCH64_TLSLE_MOVW_TPREL_G1:
459     checkInt(loc, val, 33, rel);
460     LLVM_FALLTHROUGH;
461   case R_AARCH64_MOVW_PREL_G1_NC:
462   case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
463     writeSMovWImm(loc, val >> 16);
464     break;
465   case R_AARCH64_MOVW_PREL_G2:
466   case R_AARCH64_MOVW_SABS_G2:
467   case R_AARCH64_TLSLE_MOVW_TPREL_G2:
468     checkInt(loc, val, 49, rel);
469     LLVM_FALLTHROUGH;
470   case R_AARCH64_MOVW_PREL_G2_NC:
471     writeSMovWImm(loc, val >> 32);
472     break;
473   case R_AARCH64_MOVW_PREL_G3:
474     writeSMovWImm(loc, val >> 48);
475     break;
476   case R_AARCH64_TSTBR14:
477     checkInt(loc, val, 16, rel);
478     or32le(loc, (val & 0xFFFC) << 3);
479     break;
480   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
481     checkUInt(loc, val, 24, rel);
482     or32AArch64Imm(loc, val >> 12);
483     break;
484   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
485   case R_AARCH64_TLSDESC_ADD_LO12:
486     or32AArch64Imm(loc, val);
487     break;
488   case R_AARCH64_TLSDESC:
489     // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word.
490     write64(loc + 8, val);
491     break;
492   default:
493     llvm_unreachable("unknown relocation");
494   }
495 }
496 
497 void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
498                              uint64_t val) const {
499   // TLSDESC Global-Dynamic relocation are in the form:
500   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
501   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12]
502   //   add     x0, x0, :tlsdesc_los:v     [R_AARCH64_TLSDESC_ADD_LO12]
503   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
504   //   blr     x1
505   // And it can optimized to:
506   //   movz    x0, #0x0, lsl #16
507   //   movk    x0, #0x10
508   //   nop
509   //   nop
510   checkUInt(loc, val, 32, rel);
511 
512   switch (rel.type) {
513   case R_AARCH64_TLSDESC_ADD_LO12:
514   case R_AARCH64_TLSDESC_CALL:
515     write32le(loc, 0xd503201f); // nop
516     return;
517   case R_AARCH64_TLSDESC_ADR_PAGE21:
518     write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
519     return;
520   case R_AARCH64_TLSDESC_LD64_LO12:
521     write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
522     return;
523   default:
524     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
525   }
526 }
527 
528 void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
529                              uint64_t val) const {
530   // TLSDESC Global-Dynamic relocation are in the form:
531   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
532   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12]
533   //   add     x0, x0, :tlsdesc_los:v     [R_AARCH64_TLSDESC_ADD_LO12]
534   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
535   //   blr     x1
536   // And it can optimized to:
537   //   adrp    x0, :gottprel:v
538   //   ldr     x0, [x0, :gottprel_lo12:v]
539   //   nop
540   //   nop
541 
542   switch (rel.type) {
543   case R_AARCH64_TLSDESC_ADD_LO12:
544   case R_AARCH64_TLSDESC_CALL:
545     write32le(loc, 0xd503201f); // nop
546     break;
547   case R_AARCH64_TLSDESC_ADR_PAGE21:
548     write32le(loc, 0x90000000); // adrp
549     relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
550     break;
551   case R_AARCH64_TLSDESC_LD64_LO12:
552     write32le(loc, 0xf9400000); // ldr
553     relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
554     break;
555   default:
556     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
557   }
558 }
559 
560 void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
561                              uint64_t val) const {
562   checkUInt(loc, val, 32, rel);
563 
564   if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
565     // Generate MOVZ.
566     uint32_t regNo = read32le(loc) & 0x1f;
567     write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
568     return;
569   }
570   if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
571     // Generate MOVK.
572     uint32_t regNo = read32le(loc) & 0x1f;
573     write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
574     return;
575   }
576   llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
577 }
578 
579 AArch64Relaxer::AArch64Relaxer(ArrayRef<Relocation> relocs) {
580   if (!config->relax || config->emachine != EM_AARCH64) {
581     safeToRelaxAdrpLdr = false;
582     return;
583   }
584   // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC
585   // always appear in pairs.
586   size_t i = 0;
587   const size_t size = relocs.size();
588   for (; i != size; ++i) {
589     if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) {
590       if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) {
591         ++i;
592         continue;
593       }
594       break;
595     } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) {
596       break;
597     }
598   }
599   safeToRelaxAdrpLdr = i == size;
600 }
601 
602 bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel,
603                                      const Relocation &addRel, uint64_t secAddr,
604                                      uint8_t *buf) const {
605   // When the address of sym is within the range of ADR then
606   // we may relax
607   // ADRP xn, sym
608   // ADD  xn, xn, :lo12: sym
609   // to
610   // NOP
611   // ADR xn, sym
612   if (!config->relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 ||
613       addRel.type != R_AARCH64_ADD_ABS_LO12_NC)
614     return false;
615   // Check if the relocations apply to consecutive instructions.
616   if (adrpRel.offset + 4 != addRel.offset)
617     return false;
618   if (adrpRel.sym != addRel.sym)
619     return false;
620   if (adrpRel.addend != 0 || addRel.addend != 0)
621     return false;
622 
623   uint32_t adrpInstr = read32le(buf + adrpRel.offset);
624   uint32_t addInstr = read32le(buf + addRel.offset);
625   // Check if the first instruction is ADRP and the second instruction is ADD.
626   if ((adrpInstr & 0x9f000000) != 0x90000000 ||
627       (addInstr & 0xffc00000) != 0x91000000)
628     return false;
629   uint32_t adrpDestReg = adrpInstr & 0x1f;
630   uint32_t addDestReg = addInstr & 0x1f;
631   uint32_t addSrcReg = (addInstr >> 5) & 0x1f;
632   if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg)
633     return false;
634 
635   Symbol &sym = *adrpRel.sym;
636   // Check if the address difference is within 1MiB range.
637   int64_t val = sym.getVA() - (secAddr + addRel.offset);
638   if (val < -1024 * 1024 || val >= 1024 * 1024)
639     return false;
640 
641   Relocation adrRel = {R_ABS, R_AARCH64_ADR_PREL_LO21, addRel.offset,
642                        /*addend=*/0, &sym};
643   // nop
644   write32le(buf + adrpRel.offset, 0xd503201f);
645   // adr x_<dest_reg>
646   write32le(buf + adrRel.offset, 0x10000000 | adrpDestReg);
647   target->relocate(buf + adrRel.offset, adrRel, val);
648   return true;
649 }
650 
651 bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel,
652                                      const Relocation &ldrRel, uint64_t secAddr,
653                                      uint8_t *buf) const {
654   if (!safeToRelaxAdrpLdr)
655     return false;
656 
657   // When the definition of sym is not preemptible then we may
658   // be able to relax
659   // ADRP xn, :got: sym
660   // LDR xn, [ xn :got_lo12: sym]
661   // to
662   // ADRP xn, sym
663   // ADD xn, xn, :lo_12: sym
664 
665   if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE ||
666       ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC)
667     return false;
668   // Check if the relocations apply to consecutive instructions.
669   if (adrpRel.offset + 4 != ldrRel.offset)
670     return false;
671   // Check if the relocations reference the same symbol and
672   // skip undefined, preemptible and STT_GNU_IFUNC symbols.
673   if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() ||
674       adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc())
675     return false;
676   // Check if the addends of the both relocations are zero.
677   if (adrpRel.addend != 0 || ldrRel.addend != 0)
678     return false;
679   uint32_t adrpInstr = read32le(buf + adrpRel.offset);
680   uint32_t ldrInstr = read32le(buf + ldrRel.offset);
681   // Check if the first instruction is ADRP and the second instruction is LDR.
682   if ((adrpInstr & 0x9f000000) != 0x90000000 ||
683       (ldrInstr & 0x3b000000) != 0x39000000)
684     return false;
685   // Check the value of the sf bit.
686   if (!(ldrInstr >> 31))
687     return false;
688   uint32_t adrpDestReg = adrpInstr & 0x1f;
689   uint32_t ldrDestReg = ldrInstr & 0x1f;
690   uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f;
691   // Check if ADPR and LDR use the same register.
692   if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg)
693     return false;
694 
695   Symbol &sym = *adrpRel.sym;
696   // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in
697   // position-independent code because these instructions produce a relative
698   // address.
699   if (config->isPic && !cast<Defined>(sym).section)
700     return false;
701   // Check if the address difference is within 4GB range.
702   int64_t val =
703       getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpRel.offset);
704   if (val != llvm::SignExtend64(val, 33))
705     return false;
706 
707   Relocation adrpSymRel = {R_AARCH64_PAGE_PC, R_AARCH64_ADR_PREL_PG_HI21,
708                            adrpRel.offset, /*addend=*/0, &sym};
709   Relocation addRel = {R_ABS, R_AARCH64_ADD_ABS_LO12_NC, ldrRel.offset,
710                        /*addend=*/0, &sym};
711 
712   // adrp x_<dest_reg>
713   write32le(buf + adrpSymRel.offset, 0x90000000 | adrpDestReg);
714   // add x_<dest reg>, x_<dest reg>
715   write32le(buf + addRel.offset, 0x91000000 | adrpDestReg | (adrpDestReg << 5));
716 
717   target->relocate(buf + adrpSymRel.offset, adrpSymRel,
718                    SignExtend64(getAArch64Page(sym.getVA()) -
719                                     getAArch64Page(secAddr + adrpSymRel.offset),
720                                 64));
721   target->relocate(buf + addRel.offset, addRel, SignExtend64(sym.getVA(), 64));
722   tryRelaxAdrpAdd(adrpSymRel, addRel, secAddr, buf);
723   return true;
724 }
725 
726 // AArch64 may use security features in variant PLT sequences. These are:
727 // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
728 // Indicator (BTI) introduced in armv8.5-a. The additional instructions used
729 // in the variant Plt sequences are encoded in the Hint space so they can be
730 // deployed on older architectures, which treat the instructions as a nop.
731 // PAC and BTI can be combined leading to the following combinations:
732 // writePltHeader
733 // writePltHeaderBti (no PAC Header needed)
734 // writePlt
735 // writePltBti (BTI only)
736 // writePltPac (PAC only)
737 // writePltBtiPac (BTI and PAC)
738 //
739 // When PAC is enabled the dynamic loader encrypts the address that it places
740 // in the .got.plt using the pacia1716 instruction which encrypts the value in
741 // x17 using the modifier in x16. The static linker places autia1716 before the
742 // indirect branch to x17 to authenticate the address in x17 with the modifier
743 // in x16. This makes it more difficult for an attacker to modify the value in
744 // the .got.plt.
745 //
746 // When BTI is enabled all indirect branches must land on a bti instruction.
747 // The static linker must place a bti instruction at the start of any PLT entry
748 // that may be the target of an indirect branch. As the PLT entries call the
749 // lazy resolver indirectly this must have a bti instruction at start. In
750 // general a bti instruction is not needed for a PLT entry as indirect calls
751 // are resolved to the function address and not the PLT entry for the function.
752 // There are a small number of cases where the PLT address can escape, such as
753 // taking the address of a function or ifunc via a non got-generating
754 // relocation, and a shared library refers to that symbol.
755 //
756 // We use the bti c variant of the instruction which permits indirect branches
757 // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
758 // guarantees that all indirect branches from code requiring BTI protection
759 // will go via x16/x17
760 
761 namespace {
762 class AArch64BtiPac final : public AArch64 {
763 public:
764   AArch64BtiPac();
765   void writePltHeader(uint8_t *buf) const override;
766   void writePlt(uint8_t *buf, const Symbol &sym,
767                 uint64_t pltEntryAddr) const override;
768 
769 private:
770   bool btiHeader; // bti instruction needed in PLT Header and Entry
771   bool pacEntry;  // autia1716 instruction needed in PLT Entry
772 };
773 } // namespace
774 
775 AArch64BtiPac::AArch64BtiPac() {
776   btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
777   // A BTI (Branch Target Indicator) Plt Entry is only required if the
778   // address of the PLT entry can be taken by the program, which permits an
779   // indirect jump to the PLT entry. This can happen when the address
780   // of the PLT entry for a function is canonicalised due to the address of
781   // the function in an executable being taken by a shared library, or
782   // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating
783   // relocations.
784   // The PAC PLT entries require dynamic loader support and this isn't known
785   // from properties in the objects, so we use the command line flag.
786   pacEntry = config->zPacPlt;
787 
788   if (btiHeader || pacEntry) {
789     pltEntrySize = 24;
790     ipltEntrySize = 24;
791   }
792 }
793 
794 void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
795   const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
796   const uint8_t pltData[] = {
797       0xf0, 0x7b, 0xbf, 0xa9, // stp    x16, x30, [sp,#-16]!
798       0x10, 0x00, 0x00, 0x90, // adrp   x16, Page(&(.plt.got[2]))
799       0x11, 0x02, 0x40, 0xf9, // ldr    x17, [x16, Offset(&(.plt.got[2]))]
800       0x10, 0x02, 0x00, 0x91, // add    x16, x16, Offset(&(.plt.got[2]))
801       0x20, 0x02, 0x1f, 0xd6, // br     x17
802       0x1f, 0x20, 0x03, 0xd5, // nop
803       0x1f, 0x20, 0x03, 0xd5  // nop
804   };
805   const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
806 
807   uint64_t got = in.gotPlt->getVA();
808   uint64_t plt = in.plt->getVA();
809 
810   if (btiHeader) {
811     // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
812     // instruction.
813     memcpy(buf, btiData, sizeof(btiData));
814     buf += sizeof(btiData);
815     plt += sizeof(btiData);
816   }
817   memcpy(buf, pltData, sizeof(pltData));
818 
819   relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
820                 getAArch64Page(got + 16) - getAArch64Page(plt + 8));
821   relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
822   relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
823   if (!btiHeader)
824     // We didn't add the BTI c instruction so round out size with NOP.
825     memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
826 }
827 
828 void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
829                              uint64_t pltEntryAddr) const {
830   // The PLT entry is of the form:
831   // [btiData] addrInst (pacBr | stdBr) [nopData]
832   const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
833   const uint8_t addrInst[] = {
834       0x10, 0x00, 0x00, 0x90,  // adrp x16, Page(&(.plt.got[n]))
835       0x11, 0x02, 0x40, 0xf9,  // ldr  x17, [x16, Offset(&(.plt.got[n]))]
836       0x10, 0x02, 0x00, 0x91   // add  x16, x16, Offset(&(.plt.got[n]))
837   };
838   const uint8_t pacBr[] = {
839       0x9f, 0x21, 0x03, 0xd5,  // autia1716
840       0x20, 0x02, 0x1f, 0xd6   // br   x17
841   };
842   const uint8_t stdBr[] = {
843       0x20, 0x02, 0x1f, 0xd6,  // br   x17
844       0x1f, 0x20, 0x03, 0xd5   // nop
845   };
846   const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
847 
848   // needsCopy indicates a non-ifunc canonical PLT entry whose address may
849   // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its
850   // address may escape if referenced by a direct relocation. The condition is
851   // conservative.
852   bool hasBti = btiHeader && (sym.needsCopy || sym.isInIplt);
853   if (hasBti) {
854     memcpy(buf, btiData, sizeof(btiData));
855     buf += sizeof(btiData);
856     pltEntryAddr += sizeof(btiData);
857   }
858 
859   uint64_t gotPltEntryAddr = sym.getGotPltVA();
860   memcpy(buf, addrInst, sizeof(addrInst));
861   relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
862                 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
863   relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
864   relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
865 
866   if (pacEntry)
867     memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
868   else
869     memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
870   if (!hasBti)
871     // We didn't add the BTI c instruction so round out size with NOP.
872     memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
873 }
874 
875 static TargetInfo *getTargetInfo() {
876   if ((config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ||
877       config->zPacPlt) {
878     static AArch64BtiPac t;
879     return &t;
880   }
881   static AArch64 t;
882   return &t;
883 }
884 
885 TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); }
886