xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/AArch64.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- AArch64.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/Support/Endian.h"
17 
18 using namespace llvm;
19 using namespace llvm::support::endian;
20 using namespace llvm::ELF;
21 using namespace lld;
22 using namespace lld::elf;
23 
24 // Page(Expr) is the page address of the expression Expr, defined
25 // as (Expr & ~0xFFF). (This applies even if the machine page size
26 // supported by the platform has a different value.)
27 uint64_t elf::getAArch64Page(uint64_t expr) {
28   return expr & ~static_cast<uint64_t>(0xFFF);
29 }
30 
31 namespace {
32 class AArch64 : public TargetInfo {
33 public:
34   AArch64();
35   RelExpr getRelExpr(RelType type, const Symbol &s,
36                      const uint8_t *loc) const override;
37   RelType getDynRel(RelType type) const override;
38   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
39   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
40   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
41   void writePltHeader(uint8_t *buf) const override;
42   void writePlt(uint8_t *buf, const Symbol &sym,
43                 uint64_t pltEntryAddr) const override;
44   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
45                   uint64_t branchAddr, const Symbol &s,
46                   int64_t a) const override;
47   uint32_t getThunkSectionSpacing() const override;
48   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
49   bool usesOnlyLowPageBits(RelType type) const override;
50   void relocate(uint8_t *loc, const Relocation &rel,
51                 uint64_t val) const override;
52   RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
53   void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
54 
55 private:
56   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
57   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
58   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
59 };
60 
61 struct AArch64Relaxer {
62   bool safeToRelaxAdrpLdr = false;
63 
64   AArch64Relaxer(ArrayRef<Relocation> relocs);
65   bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel,
66                        uint64_t secAddr, uint8_t *buf) const;
67   bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel,
68                        uint64_t secAddr, uint8_t *buf) const;
69 };
70 } // namespace
71 
72 // Return the bits [Start, End] from Val shifted Start bits.
73 // For instance, getBits(0xF0, 4, 8) returns 0xF.
74 static uint64_t getBits(uint64_t val, int start, int end) {
75   uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
76   return (val >> start) & mask;
77 }
78 
79 AArch64::AArch64() {
80   copyRel = R_AARCH64_COPY;
81   relativeRel = R_AARCH64_RELATIVE;
82   iRelativeRel = R_AARCH64_IRELATIVE;
83   gotRel = R_AARCH64_GLOB_DAT;
84   pltRel = R_AARCH64_JUMP_SLOT;
85   symbolicRel = R_AARCH64_ABS64;
86   tlsDescRel = R_AARCH64_TLSDESC;
87   tlsGotRel = R_AARCH64_TLS_TPREL64;
88   pltHeaderSize = 32;
89   pltEntrySize = 16;
90   ipltEntrySize = 16;
91   defaultMaxPageSize = 65536;
92 
93   // Align to the 2 MiB page size (known as a superpage or huge page).
94   // FreeBSD automatically promotes 2 MiB-aligned allocations.
95   defaultImageBase = 0x200000;
96 
97   needsThunks = true;
98 }
99 
100 RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
101                             const uint8_t *loc) const {
102   switch (type) {
103   case R_AARCH64_ABS16:
104   case R_AARCH64_ABS32:
105   case R_AARCH64_ABS64:
106   case R_AARCH64_ADD_ABS_LO12_NC:
107   case R_AARCH64_LDST128_ABS_LO12_NC:
108   case R_AARCH64_LDST16_ABS_LO12_NC:
109   case R_AARCH64_LDST32_ABS_LO12_NC:
110   case R_AARCH64_LDST64_ABS_LO12_NC:
111   case R_AARCH64_LDST8_ABS_LO12_NC:
112   case R_AARCH64_MOVW_SABS_G0:
113   case R_AARCH64_MOVW_SABS_G1:
114   case R_AARCH64_MOVW_SABS_G2:
115   case R_AARCH64_MOVW_UABS_G0:
116   case R_AARCH64_MOVW_UABS_G0_NC:
117   case R_AARCH64_MOVW_UABS_G1:
118   case R_AARCH64_MOVW_UABS_G1_NC:
119   case R_AARCH64_MOVW_UABS_G2:
120   case R_AARCH64_MOVW_UABS_G2_NC:
121   case R_AARCH64_MOVW_UABS_G3:
122     return R_ABS;
123   case R_AARCH64_AUTH_ABS64:
124     return R_AARCH64_AUTH;
125   case R_AARCH64_TLSDESC_ADR_PAGE21:
126     return R_AARCH64_TLSDESC_PAGE;
127   case R_AARCH64_TLSDESC_LD64_LO12:
128   case R_AARCH64_TLSDESC_ADD_LO12:
129     return R_TLSDESC;
130   case R_AARCH64_TLSDESC_CALL:
131     return R_TLSDESC_CALL;
132   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
133   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
134   case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
135   case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
136   case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
137   case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
138   case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
139   case R_AARCH64_TLSLE_MOVW_TPREL_G0:
140   case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
141   case R_AARCH64_TLSLE_MOVW_TPREL_G1:
142   case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
143   case R_AARCH64_TLSLE_MOVW_TPREL_G2:
144     return R_TPREL;
145   case R_AARCH64_CALL26:
146   case R_AARCH64_CONDBR19:
147   case R_AARCH64_JUMP26:
148   case R_AARCH64_TSTBR14:
149     return R_PLT_PC;
150   case R_AARCH64_PLT32:
151     const_cast<Symbol &>(s).thunkAccessed = true;
152     return R_PLT_PC;
153   case R_AARCH64_PREL16:
154   case R_AARCH64_PREL32:
155   case R_AARCH64_PREL64:
156   case R_AARCH64_ADR_PREL_LO21:
157   case R_AARCH64_LD_PREL_LO19:
158   case R_AARCH64_MOVW_PREL_G0:
159   case R_AARCH64_MOVW_PREL_G0_NC:
160   case R_AARCH64_MOVW_PREL_G1:
161   case R_AARCH64_MOVW_PREL_G1_NC:
162   case R_AARCH64_MOVW_PREL_G2:
163   case R_AARCH64_MOVW_PREL_G2_NC:
164   case R_AARCH64_MOVW_PREL_G3:
165     return R_PC;
166   case R_AARCH64_ADR_PREL_PG_HI21:
167   case R_AARCH64_ADR_PREL_PG_HI21_NC:
168     return R_AARCH64_PAGE_PC;
169   case R_AARCH64_LD64_GOT_LO12_NC:
170   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
171     return R_GOT;
172   case R_AARCH64_LD64_GOTPAGE_LO15:
173     return R_AARCH64_GOT_PAGE;
174   case R_AARCH64_ADR_GOT_PAGE:
175   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
176     return R_AARCH64_GOT_PAGE_PC;
177   case R_AARCH64_GOTPCREL32:
178   case R_AARCH64_GOT_LD_PREL19:
179     return R_GOT_PC;
180   case R_AARCH64_NONE:
181     return R_NONE;
182   default:
183     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
184           ") against symbol " + toString(s));
185     return R_NONE;
186   }
187 }
188 
189 RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const {
190   if (expr == R_RELAX_TLS_GD_TO_IE) {
191     if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
192       return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
193     return R_RELAX_TLS_GD_TO_IE_ABS;
194   }
195   return expr;
196 }
197 
198 bool AArch64::usesOnlyLowPageBits(RelType type) const {
199   switch (type) {
200   default:
201     return false;
202   case R_AARCH64_ADD_ABS_LO12_NC:
203   case R_AARCH64_LD64_GOT_LO12_NC:
204   case R_AARCH64_LDST128_ABS_LO12_NC:
205   case R_AARCH64_LDST16_ABS_LO12_NC:
206   case R_AARCH64_LDST32_ABS_LO12_NC:
207   case R_AARCH64_LDST64_ABS_LO12_NC:
208   case R_AARCH64_LDST8_ABS_LO12_NC:
209   case R_AARCH64_TLSDESC_ADD_LO12:
210   case R_AARCH64_TLSDESC_LD64_LO12:
211   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
212     return true;
213   }
214 }
215 
216 RelType AArch64::getDynRel(RelType type) const {
217   if (type == R_AARCH64_ABS64 || type == R_AARCH64_AUTH_ABS64)
218     return type;
219   return R_AARCH64_NONE;
220 }
221 
222 int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const {
223   switch (type) {
224   case R_AARCH64_TLSDESC:
225     return read64(buf + 8);
226   case R_AARCH64_NONE:
227   case R_AARCH64_GLOB_DAT:
228   case R_AARCH64_JUMP_SLOT:
229     return 0;
230   case R_AARCH64_ABS16:
231   case R_AARCH64_PREL16:
232     return SignExtend64<16>(read16(buf));
233   case R_AARCH64_ABS32:
234   case R_AARCH64_PREL32:
235     return SignExtend64<32>(read32(buf));
236   case R_AARCH64_ABS64:
237   case R_AARCH64_PREL64:
238   case R_AARCH64_RELATIVE:
239   case R_AARCH64_IRELATIVE:
240   case R_AARCH64_TLS_TPREL64:
241     return read64(buf);
242 
243     // The following relocation types all point at instructions, and
244     // relocate an immediate field in the instruction.
245     //
246     // The general rule, from AAELF64 §5.7.2 "Addends and PC-bias",
247     // says: "If the relocation relocates an instruction the immediate
248     // field of the instruction is extracted, scaled as required by
249     // the instruction field encoding, and sign-extended to 64 bits".
250 
251     // The R_AARCH64_MOVW family operates on wide MOV/MOVK/MOVZ
252     // instructions, which have a 16-bit immediate field with its low
253     // bit in bit 5 of the instruction encoding. When the immediate
254     // field is used as an implicit addend for REL-type relocations,
255     // it is treated as added to the low bits of the output value, not
256     // shifted depending on the relocation type.
257     //
258     // This allows REL relocations to express the requirement 'please
259     // add 12345 to this symbol value and give me the four 16-bit
260     // chunks of the result', by putting the same addend 12345 in all
261     // four instructions. Carries between the 16-bit chunks are
262     // handled correctly, because the whole 64-bit addition is done
263     // once per relocation.
264   case R_AARCH64_MOVW_UABS_G0:
265   case R_AARCH64_MOVW_UABS_G0_NC:
266   case R_AARCH64_MOVW_UABS_G1:
267   case R_AARCH64_MOVW_UABS_G1_NC:
268   case R_AARCH64_MOVW_UABS_G2:
269   case R_AARCH64_MOVW_UABS_G2_NC:
270   case R_AARCH64_MOVW_UABS_G3:
271     return SignExtend64<16>(getBits(read32(buf), 5, 20));
272 
273     // R_AARCH64_TSTBR14 points at a TBZ or TBNZ instruction, which
274     // has a 14-bit offset measured in instructions, i.e. shifted left
275     // by 2.
276   case R_AARCH64_TSTBR14:
277     return SignExtend64<16>(getBits(read32(buf), 5, 18) << 2);
278 
279     // R_AARCH64_CONDBR19 operates on the ordinary B.cond instruction,
280     // which has a 19-bit offset measured in instructions.
281     //
282     // R_AARCH64_LD_PREL_LO19 operates on the LDR (literal)
283     // instruction, which also has a 19-bit offset, measured in 4-byte
284     // chunks. So the calculation is the same as for
285     // R_AARCH64_CONDBR19.
286   case R_AARCH64_CONDBR19:
287   case R_AARCH64_LD_PREL_LO19:
288     return SignExtend64<21>(getBits(read32(buf), 5, 23) << 2);
289 
290     // R_AARCH64_ADD_ABS_LO12_NC operates on ADD (immediate). The
291     // immediate can optionally be shifted left by 12 bits, but this
292     // relocation is intended for the case where it is not.
293   case R_AARCH64_ADD_ABS_LO12_NC:
294     return SignExtend64<12>(getBits(read32(buf), 10, 21));
295 
296     // R_AARCH64_ADR_PREL_LO21 operates on an ADR instruction, whose
297     // 21-bit immediate is split between two bits high up in the word
298     // (in fact the two _lowest_ order bits of the value) and 19 bits
299     // lower down.
300     //
301     // R_AARCH64_ADR_PREL_PG_HI21[_NC] operate on an ADRP instruction,
302     // which encodes the immediate in the same way, but will shift it
303     // left by 12 bits when the instruction executes. For the same
304     // reason as the MOVW family, we don't apply that left shift here.
305   case R_AARCH64_ADR_PREL_LO21:
306   case R_AARCH64_ADR_PREL_PG_HI21:
307   case R_AARCH64_ADR_PREL_PG_HI21_NC:
308     return SignExtend64<21>((getBits(read32(buf), 5, 23) << 2) |
309                             getBits(read32(buf), 29, 30));
310 
311     // R_AARCH64_{JUMP,CALL}26 operate on B and BL, which have a
312     // 26-bit offset measured in instructions.
313   case R_AARCH64_JUMP26:
314   case R_AARCH64_CALL26:
315     return SignExtend64<28>(getBits(read32(buf), 0, 25) << 2);
316 
317   default:
318     internalLinkerError(getErrorLocation(buf),
319                         "cannot read addend for relocation " + toString(type));
320     return 0;
321   }
322 }
323 
324 void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
325   write64(buf, in.plt->getVA());
326 }
327 
328 void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
329   if (config->writeAddends)
330     write64(buf, s.getVA());
331 }
332 
333 void AArch64::writePltHeader(uint8_t *buf) const {
334   const uint8_t pltData[] = {
335       0xf0, 0x7b, 0xbf, 0xa9, // stp    x16, x30, [sp,#-16]!
336       0x10, 0x00, 0x00, 0x90, // adrp   x16, Page(&(.got.plt[2]))
337       0x11, 0x02, 0x40, 0xf9, // ldr    x17, [x16, Offset(&(.got.plt[2]))]
338       0x10, 0x02, 0x00, 0x91, // add    x16, x16, Offset(&(.got.plt[2]))
339       0x20, 0x02, 0x1f, 0xd6, // br     x17
340       0x1f, 0x20, 0x03, 0xd5, // nop
341       0x1f, 0x20, 0x03, 0xd5, // nop
342       0x1f, 0x20, 0x03, 0xd5  // nop
343   };
344   memcpy(buf, pltData, sizeof(pltData));
345 
346   uint64_t got = in.gotPlt->getVA();
347   uint64_t plt = in.plt->getVA();
348   relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
349                 getAArch64Page(got + 16) - getAArch64Page(plt + 4));
350   relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
351   relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
352 }
353 
354 void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
355                        uint64_t pltEntryAddr) const {
356   const uint8_t inst[] = {
357       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n]))
358       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.got.plt[n]))]
359       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.got.plt[n]))
360       0x20, 0x02, 0x1f, 0xd6  // br   x17
361   };
362   memcpy(buf, inst, sizeof(inst));
363 
364   uint64_t gotPltEntryAddr = sym.getGotPltVA();
365   relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
366                 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
367   relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
368   relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
369 }
370 
371 bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
372                          uint64_t branchAddr, const Symbol &s,
373                          int64_t a) const {
374   // If s is an undefined weak symbol and does not have a PLT entry then it will
375   // be resolved as a branch to the next instruction. If it is hidden, its
376   // binding has been converted to local, so we just check isUndefined() here. A
377   // undefined non-weak symbol will have been errored.
378   if (s.isUndefined() && !s.isInPlt())
379     return false;
380   // ELF for the ARM 64-bit architecture, section Call and Jump relocations
381   // only permits range extension thunks for R_AARCH64_CALL26 and
382   // R_AARCH64_JUMP26 relocation types.
383   if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
384       type != R_AARCH64_PLT32)
385     return false;
386   uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
387   return !inBranchRange(type, branchAddr, dst);
388 }
389 
390 uint32_t AArch64::getThunkSectionSpacing() const {
391   // See comment in Arch/ARM.cpp for a more detailed explanation of
392   // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
393   // Thunk have a range of +/- 128 MiB
394   return (128 * 1024 * 1024) - 0x30000;
395 }
396 
397 bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
398   if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
399       type != R_AARCH64_PLT32)
400     return true;
401   // The AArch64 call and unconditional branch instructions have a range of
402   // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB.
403   uint64_t range =
404       type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024);
405   if (dst > src) {
406     // Immediate of branch is signed.
407     range -= 4;
408     return dst - src <= range;
409   }
410   return src - dst <= range;
411 }
412 
413 static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
414   uint32_t immLo = (imm & 0x3) << 29;
415   uint32_t immHi = (imm & 0x1FFFFC) << 3;
416   uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
417   write32le(l, (read32le(l) & ~mask) | immLo | immHi);
418 }
419 
420 static void writeMaskedBits32le(uint8_t *p, int32_t v, uint32_t mask) {
421   write32le(p, (read32le(p) & ~mask) | v);
422 }
423 
424 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
425 static void write32Imm12(uint8_t *l, uint64_t imm) {
426   writeMaskedBits32le(l, (imm & 0xFFF) << 10, 0xFFF << 10);
427 }
428 
429 // Update the immediate field in an AArch64 movk, movn or movz instruction
430 // for a signed relocation, and update the opcode of a movn or movz instruction
431 // to match the sign of the operand.
432 static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
433   uint32_t inst = read32le(loc);
434   // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
435   if (!(inst & (1 << 29))) {
436     // movn or movz.
437     if (imm & 0x10000) {
438       // Change opcode to movn, which takes an inverted operand.
439       imm ^= 0xFFFF;
440       inst &= ~(1 << 30);
441     } else {
442       // Change opcode to movz.
443       inst |= 1 << 30;
444     }
445   }
446   write32le(loc, inst | ((imm & 0xFFFF) << 5));
447 }
448 
449 void AArch64::relocate(uint8_t *loc, const Relocation &rel,
450                        uint64_t val) const {
451   switch (rel.type) {
452   case R_AARCH64_ABS16:
453   case R_AARCH64_PREL16:
454     checkIntUInt(loc, val, 16, rel);
455     write16(loc, val);
456     break;
457   case R_AARCH64_ABS32:
458   case R_AARCH64_PREL32:
459     checkIntUInt(loc, val, 32, rel);
460     write32(loc, val);
461     break;
462   case R_AARCH64_PLT32:
463   case R_AARCH64_GOTPCREL32:
464     checkInt(loc, val, 32, rel);
465     write32(loc, val);
466     break;
467   case R_AARCH64_ABS64:
468     // AArch64 relocations to tagged symbols have extended semantics, as
469     // described here:
470     // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative.
471     // tl;dr: encode the symbol's special addend in the place, which is an
472     // offset to the point where the logical tag is derived from. Quick hack, if
473     // the addend is within the symbol's bounds, no need to encode the tag
474     // derivation offset.
475     if (rel.sym && rel.sym->isTagged() &&
476         (rel.addend < 0 ||
477          rel.addend >= static_cast<int64_t>(rel.sym->getSize())))
478       write64(loc, -rel.addend);
479     else
480       write64(loc, val);
481     break;
482   case R_AARCH64_PREL64:
483     write64(loc, val);
484     break;
485   case R_AARCH64_AUTH_ABS64:
486     // If val is wider than 32 bits, the relocation must have been moved from
487     // .relr.auth.dyn to .rela.dyn, and the addend write is not needed.
488     //
489     // If val fits in 32 bits, we have two potential scenarios:
490     // * True RELR: Write the 32-bit `val`.
491     // * RELA: Even if the value now fits in 32 bits, it might have been
492     //   converted from RELR during an iteration in
493     //   finalizeAddressDependentContent(). Writing the value is harmless
494     //   because dynamic linking ignores it.
495     if (isInt<32>(val))
496       write32(loc, val);
497     break;
498   case R_AARCH64_ADD_ABS_LO12_NC:
499     write32Imm12(loc, val);
500     break;
501   case R_AARCH64_ADR_GOT_PAGE:
502   case R_AARCH64_ADR_PREL_PG_HI21:
503   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
504   case R_AARCH64_TLSDESC_ADR_PAGE21:
505     checkInt(loc, val, 33, rel);
506     [[fallthrough]];
507   case R_AARCH64_ADR_PREL_PG_HI21_NC:
508     write32AArch64Addr(loc, val >> 12);
509     break;
510   case R_AARCH64_ADR_PREL_LO21:
511     checkInt(loc, val, 21, rel);
512     write32AArch64Addr(loc, val);
513     break;
514   case R_AARCH64_JUMP26:
515     // Normally we would just write the bits of the immediate field, however
516     // when patching instructions for the cpu errata fix -fix-cortex-a53-843419
517     // we want to replace a non-branch instruction with a branch immediate
518     // instruction. By writing all the bits of the instruction including the
519     // opcode and the immediate (0 001 | 01 imm26) we can do this
520     // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
521     // the instruction we want to patch.
522     write32le(loc, 0x14000000);
523     [[fallthrough]];
524   case R_AARCH64_CALL26:
525     checkInt(loc, val, 28, rel);
526     writeMaskedBits32le(loc, (val & 0x0FFFFFFC) >> 2, 0x0FFFFFFC >> 2);
527     break;
528   case R_AARCH64_CONDBR19:
529   case R_AARCH64_LD_PREL_LO19:
530   case R_AARCH64_GOT_LD_PREL19:
531     checkAlignment(loc, val, 4, rel);
532     checkInt(loc, val, 21, rel);
533     writeMaskedBits32le(loc, (val & 0x1FFFFC) << 3, 0x1FFFFC << 3);
534     break;
535   case R_AARCH64_LDST8_ABS_LO12_NC:
536   case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
537     write32Imm12(loc, getBits(val, 0, 11));
538     break;
539   case R_AARCH64_LDST16_ABS_LO12_NC:
540   case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
541     checkAlignment(loc, val, 2, rel);
542     write32Imm12(loc, getBits(val, 1, 11));
543     break;
544   case R_AARCH64_LDST32_ABS_LO12_NC:
545   case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
546     checkAlignment(loc, val, 4, rel);
547     write32Imm12(loc, getBits(val, 2, 11));
548     break;
549   case R_AARCH64_LDST64_ABS_LO12_NC:
550   case R_AARCH64_LD64_GOT_LO12_NC:
551   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
552   case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
553   case R_AARCH64_TLSDESC_LD64_LO12:
554     checkAlignment(loc, val, 8, rel);
555     write32Imm12(loc, getBits(val, 3, 11));
556     break;
557   case R_AARCH64_LDST128_ABS_LO12_NC:
558   case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
559     checkAlignment(loc, val, 16, rel);
560     write32Imm12(loc, getBits(val, 4, 11));
561     break;
562   case R_AARCH64_LD64_GOTPAGE_LO15:
563     checkAlignment(loc, val, 8, rel);
564     write32Imm12(loc, getBits(val, 3, 14));
565     break;
566   case R_AARCH64_MOVW_UABS_G0:
567     checkUInt(loc, val, 16, rel);
568     [[fallthrough]];
569   case R_AARCH64_MOVW_UABS_G0_NC:
570     writeMaskedBits32le(loc, (val & 0xFFFF) << 5, 0xFFFF << 5);
571     break;
572   case R_AARCH64_MOVW_UABS_G1:
573     checkUInt(loc, val, 32, rel);
574     [[fallthrough]];
575   case R_AARCH64_MOVW_UABS_G1_NC:
576     writeMaskedBits32le(loc, (val & 0xFFFF0000) >> 11, 0xFFFF0000 >> 11);
577     break;
578   case R_AARCH64_MOVW_UABS_G2:
579     checkUInt(loc, val, 48, rel);
580     [[fallthrough]];
581   case R_AARCH64_MOVW_UABS_G2_NC:
582     writeMaskedBits32le(loc, (val & 0xFFFF00000000) >> 27,
583                         0xFFFF00000000 >> 27);
584     break;
585   case R_AARCH64_MOVW_UABS_G3:
586     writeMaskedBits32le(loc, (val & 0xFFFF000000000000) >> 43,
587                         0xFFFF000000000000 >> 43);
588     break;
589   case R_AARCH64_MOVW_PREL_G0:
590   case R_AARCH64_MOVW_SABS_G0:
591   case R_AARCH64_TLSLE_MOVW_TPREL_G0:
592     checkInt(loc, val, 17, rel);
593     [[fallthrough]];
594   case R_AARCH64_MOVW_PREL_G0_NC:
595   case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
596     writeSMovWImm(loc, val);
597     break;
598   case R_AARCH64_MOVW_PREL_G1:
599   case R_AARCH64_MOVW_SABS_G1:
600   case R_AARCH64_TLSLE_MOVW_TPREL_G1:
601     checkInt(loc, val, 33, rel);
602     [[fallthrough]];
603   case R_AARCH64_MOVW_PREL_G1_NC:
604   case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
605     writeSMovWImm(loc, val >> 16);
606     break;
607   case R_AARCH64_MOVW_PREL_G2:
608   case R_AARCH64_MOVW_SABS_G2:
609   case R_AARCH64_TLSLE_MOVW_TPREL_G2:
610     checkInt(loc, val, 49, rel);
611     [[fallthrough]];
612   case R_AARCH64_MOVW_PREL_G2_NC:
613     writeSMovWImm(loc, val >> 32);
614     break;
615   case R_AARCH64_MOVW_PREL_G3:
616     writeSMovWImm(loc, val >> 48);
617     break;
618   case R_AARCH64_TSTBR14:
619     checkInt(loc, val, 16, rel);
620     writeMaskedBits32le(loc, (val & 0xFFFC) << 3, 0xFFFC << 3);
621     break;
622   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
623     checkUInt(loc, val, 24, rel);
624     write32Imm12(loc, val >> 12);
625     break;
626   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
627   case R_AARCH64_TLSDESC_ADD_LO12:
628     write32Imm12(loc, val);
629     break;
630   case R_AARCH64_TLSDESC:
631     // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word.
632     write64(loc + 8, val);
633     break;
634   default:
635     llvm_unreachable("unknown relocation");
636   }
637 }
638 
639 void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
640                              uint64_t val) const {
641   // TLSDESC Global-Dynamic relocation are in the form:
642   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
643   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12]
644   //   add     x0, x0, :tlsdesc_los:v     [R_AARCH64_TLSDESC_ADD_LO12]
645   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
646   //   blr     x1
647   // And it can optimized to:
648   //   movz    x0, #0x0, lsl #16
649   //   movk    x0, #0x10
650   //   nop
651   //   nop
652   checkUInt(loc, val, 32, rel);
653 
654   switch (rel.type) {
655   case R_AARCH64_TLSDESC_ADD_LO12:
656   case R_AARCH64_TLSDESC_CALL:
657     write32le(loc, 0xd503201f); // nop
658     return;
659   case R_AARCH64_TLSDESC_ADR_PAGE21:
660     write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
661     return;
662   case R_AARCH64_TLSDESC_LD64_LO12:
663     write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
664     return;
665   default:
666     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
667   }
668 }
669 
670 void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
671                              uint64_t val) const {
672   // TLSDESC Global-Dynamic relocation are in the form:
673   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
674   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12]
675   //   add     x0, x0, :tlsdesc_los:v     [R_AARCH64_TLSDESC_ADD_LO12]
676   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
677   //   blr     x1
678   // And it can optimized to:
679   //   adrp    x0, :gottprel:v
680   //   ldr     x0, [x0, :gottprel_lo12:v]
681   //   nop
682   //   nop
683 
684   switch (rel.type) {
685   case R_AARCH64_TLSDESC_ADD_LO12:
686   case R_AARCH64_TLSDESC_CALL:
687     write32le(loc, 0xd503201f); // nop
688     break;
689   case R_AARCH64_TLSDESC_ADR_PAGE21:
690     write32le(loc, 0x90000000); // adrp
691     relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
692     break;
693   case R_AARCH64_TLSDESC_LD64_LO12:
694     write32le(loc, 0xf9400000); // ldr
695     relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
696     break;
697   default:
698     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
699   }
700 }
701 
702 void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
703                              uint64_t val) const {
704   checkUInt(loc, val, 32, rel);
705 
706   if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
707     // Generate MOVZ.
708     uint32_t regNo = read32le(loc) & 0x1f;
709     write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
710     return;
711   }
712   if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
713     // Generate MOVK.
714     uint32_t regNo = read32le(loc) & 0x1f;
715     write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
716     return;
717   }
718   llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
719 }
720 
721 AArch64Relaxer::AArch64Relaxer(ArrayRef<Relocation> relocs) {
722   if (!config->relax)
723     return;
724   // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC
725   // always appear in pairs.
726   size_t i = 0;
727   const size_t size = relocs.size();
728   for (; i != size; ++i) {
729     if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) {
730       if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) {
731         ++i;
732         continue;
733       }
734       break;
735     } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) {
736       break;
737     }
738   }
739   safeToRelaxAdrpLdr = i == size;
740 }
741 
742 bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel,
743                                      const Relocation &addRel, uint64_t secAddr,
744                                      uint8_t *buf) const {
745   // When the address of sym is within the range of ADR then
746   // we may relax
747   // ADRP xn, sym
748   // ADD  xn, xn, :lo12: sym
749   // to
750   // NOP
751   // ADR xn, sym
752   if (!config->relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 ||
753       addRel.type != R_AARCH64_ADD_ABS_LO12_NC)
754     return false;
755   // Check if the relocations apply to consecutive instructions.
756   if (adrpRel.offset + 4 != addRel.offset)
757     return false;
758   if (adrpRel.sym != addRel.sym)
759     return false;
760   if (adrpRel.addend != 0 || addRel.addend != 0)
761     return false;
762 
763   uint32_t adrpInstr = read32le(buf + adrpRel.offset);
764   uint32_t addInstr = read32le(buf + addRel.offset);
765   // Check if the first instruction is ADRP and the second instruction is ADD.
766   if ((adrpInstr & 0x9f000000) != 0x90000000 ||
767       (addInstr & 0xffc00000) != 0x91000000)
768     return false;
769   uint32_t adrpDestReg = adrpInstr & 0x1f;
770   uint32_t addDestReg = addInstr & 0x1f;
771   uint32_t addSrcReg = (addInstr >> 5) & 0x1f;
772   if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg)
773     return false;
774 
775   Symbol &sym = *adrpRel.sym;
776   // Check if the address difference is within 1MiB range.
777   int64_t val = sym.getVA() - (secAddr + addRel.offset);
778   if (val < -1024 * 1024 || val >= 1024 * 1024)
779     return false;
780 
781   Relocation adrRel = {R_ABS, R_AARCH64_ADR_PREL_LO21, addRel.offset,
782                        /*addend=*/0, &sym};
783   // nop
784   write32le(buf + adrpRel.offset, 0xd503201f);
785   // adr x_<dest_reg>
786   write32le(buf + adrRel.offset, 0x10000000 | adrpDestReg);
787   target->relocate(buf + adrRel.offset, adrRel, val);
788   return true;
789 }
790 
791 bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel,
792                                      const Relocation &ldrRel, uint64_t secAddr,
793                                      uint8_t *buf) const {
794   if (!safeToRelaxAdrpLdr)
795     return false;
796 
797   // When the definition of sym is not preemptible then we may
798   // be able to relax
799   // ADRP xn, :got: sym
800   // LDR xn, [ xn :got_lo12: sym]
801   // to
802   // ADRP xn, sym
803   // ADD xn, xn, :lo_12: sym
804 
805   if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE ||
806       ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC)
807     return false;
808   // Check if the relocations apply to consecutive instructions.
809   if (adrpRel.offset + 4 != ldrRel.offset)
810     return false;
811   // Check if the relocations reference the same symbol and
812   // skip undefined, preemptible and STT_GNU_IFUNC symbols.
813   if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() ||
814       adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc())
815     return false;
816   // Check if the addends of the both relocations are zero.
817   if (adrpRel.addend != 0 || ldrRel.addend != 0)
818     return false;
819   uint32_t adrpInstr = read32le(buf + adrpRel.offset);
820   uint32_t ldrInstr = read32le(buf + ldrRel.offset);
821   // Check if the first instruction is ADRP and the second instruction is LDR.
822   if ((adrpInstr & 0x9f000000) != 0x90000000 ||
823       (ldrInstr & 0x3b000000) != 0x39000000)
824     return false;
825   // Check the value of the sf bit.
826   if (!(ldrInstr >> 31))
827     return false;
828   uint32_t adrpDestReg = adrpInstr & 0x1f;
829   uint32_t ldrDestReg = ldrInstr & 0x1f;
830   uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f;
831   // Check if ADPR and LDR use the same register.
832   if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg)
833     return false;
834 
835   Symbol &sym = *adrpRel.sym;
836   // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in
837   // position-independent code because these instructions produce a relative
838   // address.
839   if (config->isPic && !cast<Defined>(sym).section)
840     return false;
841   // Check if the address difference is within 4GB range.
842   int64_t val =
843       getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpRel.offset);
844   if (val != llvm::SignExtend64(val, 33))
845     return false;
846 
847   Relocation adrpSymRel = {R_AARCH64_PAGE_PC, R_AARCH64_ADR_PREL_PG_HI21,
848                            adrpRel.offset, /*addend=*/0, &sym};
849   Relocation addRel = {R_ABS, R_AARCH64_ADD_ABS_LO12_NC, ldrRel.offset,
850                        /*addend=*/0, &sym};
851 
852   // adrp x_<dest_reg>
853   write32le(buf + adrpSymRel.offset, 0x90000000 | adrpDestReg);
854   // add x_<dest reg>, x_<dest reg>
855   write32le(buf + addRel.offset, 0x91000000 | adrpDestReg | (adrpDestReg << 5));
856 
857   target->relocate(buf + adrpSymRel.offset, adrpSymRel,
858                    SignExtend64(getAArch64Page(sym.getVA()) -
859                                     getAArch64Page(secAddr + adrpSymRel.offset),
860                                 64));
861   target->relocate(buf + addRel.offset, addRel, SignExtend64(sym.getVA(), 64));
862   tryRelaxAdrpAdd(adrpSymRel, addRel, secAddr, buf);
863   return true;
864 }
865 
866 // Tagged symbols have upper address bits that are added by the dynamic loader,
867 // and thus need the full 64-bit GOT entry. Do not relax such symbols.
868 static bool needsGotForMemtag(const Relocation &rel) {
869   return rel.sym->isTagged() && needsGot(rel.expr);
870 }
871 
872 void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
873   uint64_t secAddr = sec.getOutputSection()->addr;
874   if (auto *s = dyn_cast<InputSection>(&sec))
875     secAddr += s->outSecOff;
876   else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
877     secAddr += ehIn->getParent()->outSecOff;
878   AArch64Relaxer relaxer(sec.relocs());
879   for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) {
880     const Relocation &rel = sec.relocs()[i];
881     uint8_t *loc = buf + rel.offset;
882     const uint64_t val =
883         sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
884                              secAddr + rel.offset, *rel.sym, rel.expr);
885 
886     if (needsGotForMemtag(rel)) {
887       relocate(loc, rel, val);
888       continue;
889     }
890 
891     switch (rel.expr) {
892     case R_AARCH64_GOT_PAGE_PC:
893       if (i + 1 < size &&
894           relaxer.tryRelaxAdrpLdr(rel, sec.relocs()[i + 1], secAddr, buf)) {
895         ++i;
896         continue;
897       }
898       break;
899     case R_AARCH64_PAGE_PC:
900       if (i + 1 < size &&
901           relaxer.tryRelaxAdrpAdd(rel, sec.relocs()[i + 1], secAddr, buf)) {
902         ++i;
903         continue;
904       }
905       break;
906     case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
907     case R_RELAX_TLS_GD_TO_IE_ABS:
908       relaxTlsGdToIe(loc, rel, val);
909       continue;
910     case R_RELAX_TLS_GD_TO_LE:
911       relaxTlsGdToLe(loc, rel, val);
912       continue;
913     case R_RELAX_TLS_IE_TO_LE:
914       relaxTlsIeToLe(loc, rel, val);
915       continue;
916     default:
917       break;
918     }
919     relocate(loc, rel, val);
920   }
921 }
922 
923 // AArch64 may use security features in variant PLT sequences. These are:
924 // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
925 // Indicator (BTI) introduced in armv8.5-a. The additional instructions used
926 // in the variant Plt sequences are encoded in the Hint space so they can be
927 // deployed on older architectures, which treat the instructions as a nop.
928 // PAC and BTI can be combined leading to the following combinations:
929 // writePltHeader
930 // writePltHeaderBti (no PAC Header needed)
931 // writePlt
932 // writePltBti (BTI only)
933 // writePltPac (PAC only)
934 // writePltBtiPac (BTI and PAC)
935 //
936 // When PAC is enabled the dynamic loader encrypts the address that it places
937 // in the .got.plt using the pacia1716 instruction which encrypts the value in
938 // x17 using the modifier in x16. The static linker places autia1716 before the
939 // indirect branch to x17 to authenticate the address in x17 with the modifier
940 // in x16. This makes it more difficult for an attacker to modify the value in
941 // the .got.plt.
942 //
943 // When BTI is enabled all indirect branches must land on a bti instruction.
944 // The static linker must place a bti instruction at the start of any PLT entry
945 // that may be the target of an indirect branch. As the PLT entries call the
946 // lazy resolver indirectly this must have a bti instruction at start. In
947 // general a bti instruction is not needed for a PLT entry as indirect calls
948 // are resolved to the function address and not the PLT entry for the function.
949 // There are a small number of cases where the PLT address can escape, such as
950 // taking the address of a function or ifunc via a non got-generating
951 // relocation, and a shared library refers to that symbol.
952 //
953 // We use the bti c variant of the instruction which permits indirect branches
954 // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
955 // guarantees that all indirect branches from code requiring BTI protection
956 // will go via x16/x17
957 
958 namespace {
959 class AArch64BtiPac final : public AArch64 {
960 public:
961   AArch64BtiPac();
962   void writePltHeader(uint8_t *buf) const override;
963   void writePlt(uint8_t *buf, const Symbol &sym,
964                 uint64_t pltEntryAddr) const override;
965 
966 private:
967   bool btiHeader; // bti instruction needed in PLT Header and Entry
968   bool pacEntry;  // autia1716 instruction needed in PLT Entry
969 };
970 } // namespace
971 
972 AArch64BtiPac::AArch64BtiPac() {
973   btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
974   // A BTI (Branch Target Indicator) Plt Entry is only required if the
975   // address of the PLT entry can be taken by the program, which permits an
976   // indirect jump to the PLT entry. This can happen when the address
977   // of the PLT entry for a function is canonicalised due to the address of
978   // the function in an executable being taken by a shared library, or
979   // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating
980   // relocations.
981   // The PAC PLT entries require dynamic loader support and this isn't known
982   // from properties in the objects, so we use the command line flag.
983   pacEntry = config->zPacPlt;
984 
985   if (btiHeader || pacEntry) {
986     pltEntrySize = 24;
987     ipltEntrySize = 24;
988   }
989 }
990 
991 void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
992   const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
993   const uint8_t pltData[] = {
994       0xf0, 0x7b, 0xbf, 0xa9, // stp    x16, x30, [sp,#-16]!
995       0x10, 0x00, 0x00, 0x90, // adrp   x16, Page(&(.got.plt[2]))
996       0x11, 0x02, 0x40, 0xf9, // ldr    x17, [x16, Offset(&(.got.plt[2]))]
997       0x10, 0x02, 0x00, 0x91, // add    x16, x16, Offset(&(.got.plt[2]))
998       0x20, 0x02, 0x1f, 0xd6, // br     x17
999       0x1f, 0x20, 0x03, 0xd5, // nop
1000       0x1f, 0x20, 0x03, 0xd5  // nop
1001   };
1002   const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
1003 
1004   uint64_t got = in.gotPlt->getVA();
1005   uint64_t plt = in.plt->getVA();
1006 
1007   if (btiHeader) {
1008     // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
1009     // instruction.
1010     memcpy(buf, btiData, sizeof(btiData));
1011     buf += sizeof(btiData);
1012     plt += sizeof(btiData);
1013   }
1014   memcpy(buf, pltData, sizeof(pltData));
1015 
1016   relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
1017                 getAArch64Page(got + 16) - getAArch64Page(plt + 8));
1018   relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
1019   relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
1020   if (!btiHeader)
1021     // We didn't add the BTI c instruction so round out size with NOP.
1022     memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
1023 }
1024 
1025 void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
1026                              uint64_t pltEntryAddr) const {
1027   // The PLT entry is of the form:
1028   // [btiData] addrInst (pacBr | stdBr) [nopData]
1029   const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
1030   const uint8_t addrInst[] = {
1031       0x10, 0x00, 0x00, 0x90,  // adrp x16, Page(&(.got.plt[n]))
1032       0x11, 0x02, 0x40, 0xf9,  // ldr  x17, [x16, Offset(&(.got.plt[n]))]
1033       0x10, 0x02, 0x00, 0x91   // add  x16, x16, Offset(&(.got.plt[n]))
1034   };
1035   const uint8_t pacBr[] = {
1036       0x9f, 0x21, 0x03, 0xd5,  // autia1716
1037       0x20, 0x02, 0x1f, 0xd6   // br   x17
1038   };
1039   const uint8_t stdBr[] = {
1040       0x20, 0x02, 0x1f, 0xd6,  // br   x17
1041       0x1f, 0x20, 0x03, 0xd5   // nop
1042   };
1043   const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
1044 
1045   // NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may
1046   // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its
1047   // address may escape if referenced by a direct relocation. If relative
1048   // vtables are used then if the vtable is in a shared object the offsets will
1049   // be to the PLT entry. The condition is conservative.
1050   bool hasBti = btiHeader &&
1051                 (sym.hasFlag(NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed);
1052   if (hasBti) {
1053     memcpy(buf, btiData, sizeof(btiData));
1054     buf += sizeof(btiData);
1055     pltEntryAddr += sizeof(btiData);
1056   }
1057 
1058   uint64_t gotPltEntryAddr = sym.getGotPltVA();
1059   memcpy(buf, addrInst, sizeof(addrInst));
1060   relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
1061                 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
1062   relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
1063   relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
1064 
1065   if (pacEntry)
1066     memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
1067   else
1068     memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
1069   if (!hasBti)
1070     // We didn't add the BTI c instruction so round out size with NOP.
1071     memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
1072 }
1073 
1074 static TargetInfo *getTargetInfo() {
1075   if ((config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ||
1076       config->zPacPlt) {
1077     static AArch64BtiPac t;
1078     return &t;
1079   }
1080   static AArch64 t;
1081   return &t;
1082 }
1083 
1084 TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); }
1085 
1086 template <class ELFT>
1087 static void
1088 addTaggedSymbolReferences(InputSectionBase &sec,
1089                           DenseMap<Symbol *, unsigned> &referenceCount) {
1090   assert(sec.type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC);
1091 
1092   const RelsOrRelas<ELFT> rels = sec.relsOrRelas<ELFT>();
1093   if (rels.areRelocsRel())
1094     error("non-RELA relocations are not allowed with memtag globals");
1095 
1096   for (const typename ELFT::Rela &rel : rels.relas) {
1097     Symbol &sym = sec.file->getRelocTargetSym(rel);
1098     // Linker-synthesized symbols such as __executable_start may be referenced
1099     // as tagged in input objfiles, and we don't want them to be tagged. A
1100     // cheap way to exclude them is the type check, but their type is
1101     // STT_NOTYPE. In addition, this save us from checking untaggable symbols,
1102     // like functions or TLS symbols.
1103     if (sym.type != STT_OBJECT)
1104       continue;
1105     // STB_LOCAL symbols can't be referenced from outside the object file, and
1106     // thus don't need to be checked for references from other object files.
1107     if (sym.binding == STB_LOCAL) {
1108       sym.setIsTagged(true);
1109       continue;
1110     }
1111     ++referenceCount[&sym];
1112   }
1113   sec.markDead();
1114 }
1115 
1116 // A tagged symbol must be denoted as being tagged by all references and the
1117 // chosen definition. For simplicity, here, it must also be denoted as tagged
1118 // for all definitions. Otherwise:
1119 //
1120 //  1. A tagged definition can be used by an untagged declaration, in which case
1121 //     the untagged access may be PC-relative, causing a tag mismatch at
1122 //     runtime.
1123 //  2. An untagged definition can be used by a tagged declaration, where the
1124 //     compiler has taken advantage of the increased alignment of the tagged
1125 //     declaration, but the alignment at runtime is wrong, causing a fault.
1126 //
1127 // Ideally, this isn't a problem, as any TU that imports or exports tagged
1128 // symbols should also be built with tagging. But, to handle these cases, we
1129 // demote the symbol to be untagged.
1130 void lld::elf::createTaggedSymbols(const SmallVector<ELFFileBase *, 0> &files) {
1131   assert(hasMemtag());
1132 
1133   // First, collect all symbols that are marked as tagged, and count how many
1134   // times they're marked as tagged.
1135   DenseMap<Symbol *, unsigned> taggedSymbolReferenceCount;
1136   for (InputFile* file : files) {
1137     if (file->kind() != InputFile::ObjKind)
1138       continue;
1139     for (InputSectionBase *section : file->getSections()) {
1140       if (!section || section->type != SHT_AARCH64_MEMTAG_GLOBALS_STATIC ||
1141           section == &InputSection::discarded)
1142         continue;
1143       invokeELFT(addTaggedSymbolReferences, *section,
1144                  taggedSymbolReferenceCount);
1145     }
1146   }
1147 
1148   // Now, go through all the symbols. If the number of declarations +
1149   // definitions to a symbol exceeds the amount of times they're marked as
1150   // tagged, it means we have an objfile that uses the untagged variant of the
1151   // symbol.
1152   for (InputFile *file : files) {
1153     if (file->kind() != InputFile::BinaryKind &&
1154         file->kind() != InputFile::ObjKind)
1155       continue;
1156 
1157     for (Symbol *symbol : file->getSymbols()) {
1158       // See `addTaggedSymbolReferences` for more details.
1159       if (symbol->type != STT_OBJECT ||
1160           symbol->binding == STB_LOCAL)
1161         continue;
1162       auto it = taggedSymbolReferenceCount.find(symbol);
1163       if (it == taggedSymbolReferenceCount.end()) continue;
1164       unsigned &remainingAllowedTaggedRefs = it->second;
1165       if (remainingAllowedTaggedRefs == 0) {
1166         taggedSymbolReferenceCount.erase(it);
1167         continue;
1168       }
1169       --remainingAllowedTaggedRefs;
1170     }
1171   }
1172 
1173   // `addTaggedSymbolReferences` has already checked that we have RELA
1174   // relocations, the only other way to get written addends is with
1175   // --apply-dynamic-relocs.
1176   if (!taggedSymbolReferenceCount.empty() && config->writeAddends)
1177     error("--apply-dynamic-relocs cannot be used with MTE globals");
1178 
1179   // Now, `taggedSymbolReferenceCount` should only contain symbols that are
1180   // defined as tagged exactly the same amount as it's referenced, meaning all
1181   // uses are tagged.
1182   for (auto &[symbol, remainingTaggedRefs] : taggedSymbolReferenceCount) {
1183     assert(remainingTaggedRefs == 0 &&
1184             "Symbol is defined as tagged more times than it's used");
1185     symbol->setIsTagged(true);
1186   }
1187 }
1188