1 //===- ARMErrataFix.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // This file implements Section Patching for the purpose of working around the 9 // Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions 10 // can result in an incorrect instruction fetch or processor deadlock." The 11 // erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the 12 // Cortex-A8. A high level description of the patching technique is given in 13 // the opening comment of AArch64ErrataFix.cpp. 14 //===----------------------------------------------------------------------===// 15 16 #include "ARMErrataFix.h" 17 #include "InputFiles.h" 18 #include "LinkerScript.h" 19 #include "OutputSections.h" 20 #include "Relocations.h" 21 #include "Symbols.h" 22 #include "SyntheticSections.h" 23 #include "Target.h" 24 #include "lld/Common/CommonLinkerContext.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/Support/Endian.h" 27 #include <algorithm> 28 29 using namespace llvm; 30 using namespace llvm::ELF; 31 using namespace llvm::object; 32 using namespace llvm::support; 33 using namespace llvm::support::endian; 34 using namespace lld; 35 using namespace lld::elf; 36 37 // The documented title for Erratum 657417 is: 38 // "A 32bit branch instruction that spans two 4K regions can result in an 39 // incorrect instruction fetch or processor deadlock". Graphically using a 40 // 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff 41 // xxxxxx000 // Memory region 1 start 42 // target: 43 // ... 44 // xxxxxxffe f7fe // First halfword of branch to target: 45 // xxxxxx000 // Memory region 2 start 46 // xxxxxx002 bfff // Second halfword of branch to target: 47 // 48 // The specific trigger conditions that can be detected at link time are: 49 // - There is a 32-bit Thumb-2 branch instruction with an address of the form 50 // xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the 51 // second 2 bytes are in region 2. 52 // - The branch instruction is one of BLX, BL, B.w BCC.w 53 // - The instruction preceding the branch is a 32-bit non-branch instruction. 54 // - The target of the branch is in region 1. 55 // 56 // The linker mitigation for the fix is to redirect any branch that meets the 57 // erratum conditions to a patch section containing a branch to the target. 58 // 59 // As adding patch sections may move branches onto region boundaries the patch 60 // must iterate until no more patches are added. 61 // 62 // Example, before: 63 // 00000FFA func: NOP.w // 32-bit Thumb function 64 // 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st. 65 // Example, after: 66 // 00000FFA func: NOP.w // 32-bit Thumb function 67 // 00000FFE B.w __CortexA8657417_00000FFE 68 // 00001002 2 - bytes padding 69 // 00001004 __CortexA8657417_00000FFE: B.w func 70 71 class elf::Patch657417Section : public SyntheticSection { 72 public: 73 Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM); 74 75 void writeTo(uint8_t *buf) override; 76 77 size_t getSize() const override { return 4; } 78 79 // Get the virtual address of the branch instruction at patcheeOffset. 80 uint64_t getBranchAddr() const; 81 82 static bool classof(const SectionBase *d) { 83 return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch"; 84 } 85 86 // The Section we are patching. 87 const InputSection *patchee; 88 // The offset of the instruction in the Patchee section we are patching. 89 uint64_t patcheeOffset; 90 // A label for the start of the Patch that we can use as a relocation target. 91 Symbol *patchSym; 92 // A decoding of the branch instruction at patcheeOffset. 93 uint32_t instr; 94 // True If the patch is to be written in ARM state, otherwise the patch will 95 // be written in Thumb state. 96 bool isARM; 97 }; 98 99 // Return true if the half-word, when taken as the first of a pair of halfwords 100 // is the first half of a 32-bit instruction. 101 // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition 102 // section A6.3: 32-bit Thumb instruction encoding 103 // | HW1 | HW2 | 104 // | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) | 105 // With op1 == 0b00, a 16-bit instruction is encoded. 106 // 107 // We test only the first halfword, looking for op != 0b00. 108 static bool is32bitInstruction(uint16_t hw) { 109 return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000; 110 } 111 112 // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition 113 // section A6.3.4 Branches and miscellaneous control. 114 // | HW1 | HW2 | 115 // | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) | 116 // op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W) 117 // op1 == 0x1 | Branch (B.W) 118 // op1 == 1x0 | Branch with Link and Exchange (BLX.w) 119 // op1 == 1x1 | Branch with Link (BL.W) 120 121 static bool isBcc(uint32_t instr) { 122 return (instr & 0xf800d000) == 0xf0008000 && 123 (instr & 0x03800000) != 0x03800000; 124 } 125 126 static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; } 127 128 static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; } 129 130 static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; } 131 132 static bool is32bitBranch(uint32_t instr) { 133 return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr); 134 } 135 136 Patch657417Section::Patch657417Section(InputSection *p, uint64_t off, 137 uint32_t instr, bool isARM) 138 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, 139 ".text.patch"), 140 patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) { 141 parent = p->getParent(); 142 patchSym = addSyntheticLocal( 143 saver().save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC, 144 isARM ? 0 : 1, getSize(), *this); 145 addSyntheticLocal(saver().save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this); 146 } 147 148 uint64_t Patch657417Section::getBranchAddr() const { 149 return patchee->getVA(patcheeOffset); 150 } 151 152 // Given a branch instruction instr at sourceAddr work out its destination 153 // address. This is only used when the branch instruction has no relocation. 154 static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) { 155 uint8_t buf[4]; 156 write16le(buf, instr >> 16); 157 write16le(buf + 2, instr & 0x0000ffff); 158 int64_t offset; 159 if (isBcc(instr)) 160 offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19); 161 else if (isB(instr)) 162 offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24); 163 else 164 offset = target->getImplicitAddend(buf, R_ARM_THM_CALL); 165 // A BLX instruction from Thumb to Arm may have an address that is 166 // not 4-byte aligned. As Arm instructions are always 4-byte aligned 167 // the instruction is calculated (from Arm ARM): 168 // targetAddress = Align(PC, 4) + imm32 169 // where 170 // Align(x, y) = y * (x Div y) 171 // which corresponds to alignDown. 172 if (isBLX(instr)) 173 sourceAddr = alignDown(sourceAddr, 4); 174 return sourceAddr + offset + 4; 175 } 176 177 void Patch657417Section::writeTo(uint8_t *buf) { 178 // The base instruction of the patch is always a 32-bit unconditional branch. 179 if (isARM) 180 write32le(buf, 0xea000000); 181 else 182 write32le(buf, 0x9000f000); 183 // If we have a relocation then apply it. 184 if (!relocations.empty()) { 185 relocateAlloc(buf, buf + getSize()); 186 return; 187 } 188 189 // If we don't have a relocation then we must calculate and write the offset 190 // ourselves. 191 // Get the destination offset from the addend in the branch instruction. 192 // We cannot use the instruction in the patchee section as this will have 193 // been altered to point to us! 194 uint64_t s = getThumbDestAddr(getBranchAddr(), instr); 195 // A BLX changes the state of the branch in the patch to Arm state, which 196 // has a PC Bias of 8, whereas in all other cases the branch is in Thumb 197 // state with a PC Bias of 4. 198 uint64_t pcBias = isBLX(instr) ? 8 : 4; 199 uint64_t p = getVA(pcBias); 200 target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p); 201 } 202 203 // Given a branch instruction spanning two 4KiB regions, at offset off from the 204 // start of isec, return true if the destination of the branch is within the 205 // first of the two 4Kib regions. 206 static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off, 207 uint32_t instr, const Relocation *r) { 208 uint64_t sourceAddr = isec->getVA(0) + off; 209 assert((sourceAddr & 0xfff) == 0xffe); 210 uint64_t destAddr; 211 // If there is a branch relocation at the same offset we must use this to 212 // find the destination address as the branch could be indirected via a thunk 213 // or the PLT. 214 if (r) { 215 uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA(); 216 // Account for Thumb PC bias, usually cancelled to 0 by addend of -4. 217 destAddr = dst + r->addend + 4; 218 } else { 219 // If there is no relocation, we must have an intra-section branch 220 // We must extract the offset from the addend manually. 221 destAddr = getThumbDestAddr(sourceAddr, instr); 222 } 223 224 return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000); 225 } 226 227 // Return true if a branch can reach a patch section placed after isec. 228 // The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB. 229 static bool patchInRange(const InputSection *isec, uint64_t off, 230 uint32_t instr) { 231 232 // We need the branch at source to reach a patch section placed immediately 233 // after isec. As there can be more than one patch in the patch section we 234 // add 0x100 as contingency to account for worst case of 1 branch every 4KiB 235 // for a 1 MiB range. 236 return target->inBranchRange( 237 isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off), 238 isec->getVA() + isec->getSize() + 0x100); 239 } 240 241 struct ScanResult { 242 // Offset of branch within its InputSection. 243 uint64_t off; 244 // Cached decoding of the branch instruction. 245 uint32_t instr; 246 // Branch relocation at off. Will be nullptr if no relocation exists. 247 Relocation *rel; 248 }; 249 250 // Detect the erratum sequence, returning the offset of the branch instruction 251 // and a decoding of the branch. If the erratum sequence is not found then 252 // return an offset of 0 for the branch. 0 is a safe value to use for no patch 253 // as there must be at least one 32-bit non-branch instruction before the 254 // branch so the minimum offset for a patch is 4. 255 static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off, 256 uint64_t limit) { 257 uint64_t isecAddr = isec->getVA(0); 258 // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We 259 // need to check for a 32-bit instruction immediately before a 32-bit branch 260 // at 0xffe modulo 0x1000. 261 off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr; 262 if (off >= limit || limit - off < 8) { 263 // Need at least 2 4-byte sized instructions to trigger erratum. 264 off = limit; 265 return {0, 0, nullptr}; 266 } 267 268 ScanResult scanRes = {0, 0, nullptr}; 269 const uint8_t *buf = isec->rawData.begin(); 270 // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive 271 // little-endian halfwords. 272 const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off); 273 uint16_t hw11 = *instBuf++; 274 uint16_t hw12 = *instBuf++; 275 uint16_t hw21 = *instBuf++; 276 uint16_t hw22 = *instBuf++; 277 if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) { 278 uint32_t instr1 = (hw11 << 16) | hw12; 279 uint32_t instr2 = (hw21 << 16) | hw22; 280 if (!is32bitBranch(instr1) && is32bitBranch(instr2)) { 281 // Find a relocation for the branch if it exists. This will be used 282 // to determine the target. 283 uint64_t branchOff = off + 4; 284 auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) { 285 return r.offset == branchOff && 286 (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 || 287 r.type == R_ARM_THM_CALL); 288 }); 289 if (relIt != isec->relocations.end()) 290 scanRes.rel = &(*relIt); 291 if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) { 292 if (patchInRange(isec, branchOff, instr2)) { 293 scanRes.off = branchOff; 294 scanRes.instr = instr2; 295 } else { 296 warn(toString(isec->file) + 297 ": skipping cortex-a8 657417 erratum sequence, section " + 298 isec->name + " is too large to patch"); 299 } 300 } 301 } 302 } 303 off += 0x1000; 304 return scanRes; 305 } 306 307 void ARMErr657417Patcher::init() { 308 // The Arm ABI permits a mix of ARM, Thumb and Data in the same 309 // InputSection. We must only scan Thumb instructions to avoid false 310 // matches. We use the mapping symbols in the InputObjects to identify this 311 // data, caching the results in sectionMap so we don't have to recalculate 312 // it each pass. 313 314 // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe 315 // half open intervals [Symbol Value, Next Symbol Value) of code and data 316 // within sections. If there is no next symbol then the half open interval is 317 // [Symbol Value, End of section). The type, code or data, is determined by 318 // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data. 319 auto isArmMapSymbol = [](const Symbol *s) { 320 return s->getName() == "$a" || s->getName().startswith("$a."); 321 }; 322 auto isThumbMapSymbol = [](const Symbol *s) { 323 return s->getName() == "$t" || s->getName().startswith("$t."); 324 }; 325 auto isDataMapSymbol = [](const Symbol *s) { 326 return s->getName() == "$d" || s->getName().startswith("$d."); 327 }; 328 329 // Collect mapping symbols for every executable InputSection. 330 for (ELFFileBase *file : ctx->objectFiles) { 331 for (Symbol *s : file->getLocalSymbols()) { 332 auto *def = dyn_cast<Defined>(s); 333 if (!def) 334 continue; 335 if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) && 336 !isDataMapSymbol(def)) 337 continue; 338 if (auto *sec = dyn_cast_or_null<InputSection>(def->section)) 339 if (sec->flags & SHF_EXECINSTR) 340 sectionMap[sec].push_back(def); 341 } 342 } 343 // For each InputSection make sure the mapping symbols are in sorted in 344 // ascending order and are in alternating Thumb, non-Thumb order. 345 for (auto &kv : sectionMap) { 346 std::vector<const Defined *> &mapSyms = kv.second; 347 llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) { 348 return a->value < b->value; 349 }); 350 mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(), 351 [=](const Defined *a, const Defined *b) { 352 return (isThumbMapSymbol(a) == 353 isThumbMapSymbol(b)); 354 }), 355 mapSyms.end()); 356 // Always start with a Thumb Mapping Symbol 357 if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front())) 358 mapSyms.erase(mapSyms.begin()); 359 } 360 initialized = true; 361 } 362 363 void ARMErr657417Patcher::insertPatches( 364 InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) { 365 uint64_t spacing = 0x100000 - 0x7500; 366 uint64_t isecLimit; 367 uint64_t prevIsecLimit = isd.sections.front()->outSecOff; 368 uint64_t patchUpperBound = prevIsecLimit + spacing; 369 uint64_t outSecAddr = isd.sections.front()->getParent()->addr; 370 371 // Set the outSecOff of patches to the place where we want to insert them. 372 // We use a similar strategy to initial thunk placement, using 1 MiB as the 373 // range of the Thumb-2 conditional branch with a contingency accounting for 374 // thunk generation. 375 auto patchIt = patches.begin(); 376 auto patchEnd = patches.end(); 377 for (const InputSection *isec : isd.sections) { 378 isecLimit = isec->outSecOff + isec->getSize(); 379 if (isecLimit > patchUpperBound) { 380 for (; patchIt != patchEnd; ++patchIt) { 381 if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit) 382 break; 383 (*patchIt)->outSecOff = prevIsecLimit; 384 } 385 patchUpperBound = prevIsecLimit + spacing; 386 } 387 prevIsecLimit = isecLimit; 388 } 389 for (; patchIt != patchEnd; ++patchIt) 390 (*patchIt)->outSecOff = isecLimit; 391 392 // Merge all patch sections. We use the outSecOff assigned above to 393 // determine the insertion point. This is ok as we only merge into an 394 // InputSectionDescription once per pass, and at the end of the pass 395 // assignAddresses() will recalculate all the outSecOff values. 396 SmallVector<InputSection *, 0> tmp; 397 tmp.reserve(isd.sections.size() + patches.size()); 398 auto mergeCmp = [](const InputSection *a, const InputSection *b) { 399 if (a->outSecOff != b->outSecOff) 400 return a->outSecOff < b->outSecOff; 401 return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b); 402 }; 403 std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(), 404 patches.end(), std::back_inserter(tmp), mergeCmp); 405 isd.sections = std::move(tmp); 406 } 407 408 // Given a branch instruction described by ScanRes redirect it to a patch 409 // section containing an unconditional branch instruction to the target. 410 // Ensure that this patch section is 4-byte aligned so that the branch cannot 411 // span two 4 KiB regions. Place the patch section so that it is always after 412 // isec so the branch we are patching always goes forwards. 413 static void implementPatch(ScanResult sr, InputSection *isec, 414 std::vector<Patch657417Section *> &patches) { 415 416 log("detected cortex-a8-657419 erratum sequence starting at " + 417 utohexstr(isec->getVA(sr.off)) + " in unpatched output."); 418 Patch657417Section *psec; 419 // We have two cases to deal with. 420 // Case 1. There is a relocation at patcheeOffset to a symbol. The 421 // unconditional branch in the patch must have a relocation so that any 422 // further redirection via the PLT or a Thunk happens as normal. At 423 // patcheeOffset we redirect the existing relocation to a Symbol defined at 424 // the start of the patch section. 425 // 426 // Case 2. There is no relocation at patcheeOffset. We are unlikely to have 427 // a symbol that we can use as a target for a relocation in the patch section. 428 // Luckily we know that the destination cannot be indirected via the PLT or 429 // a Thunk so we can just write the destination directly. 430 if (sr.rel) { 431 // Case 1. We have an existing relocation to redirect to patch and a 432 // Symbol target. 433 434 // Create a branch relocation for the unconditional branch in the patch. 435 // This can be redirected via the PLT or Thunks. 436 RelType patchRelType = R_ARM_THM_JUMP24; 437 int64_t patchRelAddend = sr.rel->addend; 438 bool destIsARM = false; 439 if (isBL(sr.instr) || isBLX(sr.instr)) { 440 // The final target of the branch may be ARM or Thumb, if the target 441 // is ARM then we write the patch in ARM state to avoid a state change 442 // Thunk from the patch to the target. 443 uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA() 444 : sr.rel->sym->getVA(); 445 destIsARM = (dstSymAddr & 1) == 0; 446 } 447 psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM); 448 if (destIsARM) { 449 // The patch will be in ARM state. Use an ARM relocation and account for 450 // the larger ARM PC-bias of 8 rather than Thumb's 4. 451 patchRelType = R_ARM_JUMP24; 452 patchRelAddend -= 4; 453 } 454 psec->relocations.push_back( 455 Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym}); 456 // Redirect the existing branch relocation to the patch. 457 sr.rel->expr = R_PC; 458 sr.rel->addend = -4; 459 sr.rel->sym = psec->patchSym; 460 } else { 461 // Case 2. We do not have a relocation to the patch. Add a relocation of the 462 // appropriate type to the patch at patcheeOffset. 463 464 // The destination is ARM if we have a BLX. 465 psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr)); 466 RelType type; 467 if (isBcc(sr.instr)) 468 type = R_ARM_THM_JUMP19; 469 else if (isB(sr.instr)) 470 type = R_ARM_THM_JUMP24; 471 else 472 type = R_ARM_THM_CALL; 473 isec->relocations.push_back( 474 Relocation{R_PC, type, sr.off, -4, psec->patchSym}); 475 } 476 patches.push_back(psec); 477 } 478 479 // Scan all the instructions in InputSectionDescription, for each instance of 480 // the erratum sequence create a Patch657417Section. We return the list of 481 // Patch657417Sections that need to be applied to the InputSectionDescription. 482 std::vector<Patch657417Section *> 483 ARMErr657417Patcher::patchInputSectionDescription( 484 InputSectionDescription &isd) { 485 std::vector<Patch657417Section *> patches; 486 for (InputSection *isec : isd.sections) { 487 // LLD doesn't use the erratum sequence in SyntheticSections. 488 if (isa<SyntheticSection>(isec)) 489 continue; 490 // Use sectionMap to make sure we only scan Thumb code and not Arm or inline 491 // data. We have already sorted mapSyms in ascending order and removed 492 // consecutive mapping symbols of the same type. Our range of executable 493 // instructions to scan is therefore [thumbSym->value, nonThumbSym->value) 494 // or [thumbSym->value, section size). 495 std::vector<const Defined *> &mapSyms = sectionMap[isec]; 496 497 auto thumbSym = mapSyms.begin(); 498 while (thumbSym != mapSyms.end()) { 499 auto nonThumbSym = std::next(thumbSym); 500 uint64_t off = (*thumbSym)->value; 501 uint64_t limit = (nonThumbSym == mapSyms.end()) ? isec->rawData.size() 502 : (*nonThumbSym)->value; 503 504 while (off < limit) { 505 ScanResult sr = scanCortexA8Errata657417(isec, off, limit); 506 if (sr.off) 507 implementPatch(sr, isec, patches); 508 } 509 if (nonThumbSym == mapSyms.end()) 510 break; 511 thumbSym = std::next(nonThumbSym); 512 } 513 } 514 return patches; 515 } 516 517 bool ARMErr657417Patcher::createFixes() { 518 if (!initialized) 519 init(); 520 521 bool addressesChanged = false; 522 for (OutputSection *os : outputSections) { 523 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 524 continue; 525 for (SectionCommand *cmd : os->commands) 526 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 527 std::vector<Patch657417Section *> patches = 528 patchInputSectionDescription(*isd); 529 if (!patches.empty()) { 530 insertPatches(*isd, patches); 531 addressesChanged = true; 532 } 533 } 534 } 535 return addressesChanged; 536 } 537