xref: /freebsd/contrib/llvm-project/lld/ELF/ARMErrataFix.cpp (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 //===- ARMErrataFix.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file implements Section Patching for the purpose of working around the
9 // Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
10 // can result in an incorrect instruction fetch or processor deadlock." The
11 // erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
12 // Cortex-A8. A high level description of the patching technique is given in
13 // the opening comment of AArch64ErrataFix.cpp.
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARMErrataFix.h"
17 #include "InputFiles.h"
18 #include "LinkerScript.h"
19 #include "OutputSections.h"
20 #include "Relocations.h"
21 #include "Symbols.h"
22 #include "SyntheticSections.h"
23 #include "Target.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Strings.h"
26 #include "llvm/Support/Endian.h"
27 #include <algorithm>
28 
29 using namespace llvm;
30 using namespace llvm::ELF;
31 using namespace llvm::object;
32 using namespace llvm::support;
33 using namespace llvm::support::endian;
34 using namespace lld;
35 using namespace lld::elf;
36 
37 // The documented title for Erratum 657417 is:
38 // "A 32bit branch instruction that spans two 4K regions can result in an
39 // incorrect instruction fetch or processor deadlock". Graphically using a
40 // 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
41 // xxxxxx000 // Memory region 1 start
42 // target:
43 // ...
44 // xxxxxxffe f7fe // First halfword of branch to target:
45 // xxxxxx000 // Memory region 2 start
46 // xxxxxx002 bfff // Second halfword of branch to target:
47 //
48 // The specific trigger conditions that can be detected at link time are:
49 // - There is a 32-bit Thumb-2 branch instruction with an address of the form
50 //   xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
51 //   second 2 bytes are in region 2.
52 // - The branch instruction is one of BLX, BL, B.w BCC.w
53 // - The instruction preceding the branch is a 32-bit non-branch instruction.
54 // - The target of the branch is in region 1.
55 //
56 // The linker mitigation for the fix is to redirect any branch that meets the
57 // erratum conditions to a patch section containing a branch to the target.
58 //
59 // As adding patch sections may move branches onto region boundaries the patch
60 // must iterate until no more patches are added.
61 //
62 // Example, before:
63 // 00000FFA func: NOP.w      // 32-bit Thumb function
64 // 00000FFE       B.W func   // 32-bit branch spanning 2 regions, dest in 1st.
65 // Example, after:
66 // 00000FFA func: NOP.w      // 32-bit Thumb function
67 // 00000FFE       B.w __CortexA8657417_00000FFE
68 // 00001002       2 - bytes padding
69 // 00001004 __CortexA8657417_00000FFE: B.w func
70 
71 class elf::Patch657417Section final : public SyntheticSection {
72 public:
73   Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM);
74 
75   void writeTo(uint8_t *buf) override;
76 
77   size_t getSize() const override { return 4; }
78 
79   // Get the virtual address of the branch instruction at patcheeOffset.
80   uint64_t getBranchAddr() const;
81 
82   static bool classof(const SectionBase *d) {
83     return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
84   }
85 
86   // The Section we are patching.
87   const InputSection *patchee;
88   // The offset of the instruction in the Patchee section we are patching.
89   uint64_t patcheeOffset;
90   // A label for the start of the Patch that we can use as a relocation target.
91   Symbol *patchSym;
92   // A decoding of the branch instruction at patcheeOffset.
93   uint32_t instr;
94   // True If the patch is to be written in ARM state, otherwise the patch will
95   // be written in Thumb state.
96   bool isARM;
97 };
98 
99 // Return true if the half-word, when taken as the first of a pair of halfwords
100 // is the first half of a 32-bit instruction.
101 // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
102 // section A6.3: 32-bit Thumb instruction encoding
103 // |             HW1                   |               HW2                |
104 // | 1 1 1 | op1 (2) | op2 (7) | x (4) |op|           x (15)              |
105 // With op1 == 0b00, a 16-bit instruction is encoded.
106 //
107 // We test only the first halfword, looking for op != 0b00.
108 static bool is32bitInstruction(uint16_t hw) {
109   return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
110 }
111 
112 // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
113 // section A6.3.4 Branches and miscellaneous control.
114 // |             HW1              |               HW2                |
115 // | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
116 // op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
117 // op1 == 0x1               | Branch (B.W)
118 // op1 == 1x0               | Branch with Link and Exchange (BLX.w)
119 // op1 == 1x1               | Branch with Link (BL.W)
120 
121 static bool isBcc(uint32_t instr) {
122   return (instr & 0xf800d000) == 0xf0008000 &&
123          (instr & 0x03800000) != 0x03800000;
124 }
125 
126 static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }
127 
128 static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }
129 
130 static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }
131 
132 static bool is32bitBranch(uint32_t instr) {
133   return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
134 }
135 
136 Patch657417Section::Patch657417Section(InputSection *p, uint64_t off,
137                                        uint32_t instr, bool isARM)
138     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
139                        ".text.patch"),
140       patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
141   parent = p->getParent();
142   patchSym = addSyntheticLocal(
143       saver().save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC,
144       isARM ? 0 : 1, getSize(), *this);
145   addSyntheticLocal(saver().save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this);
146 }
147 
148 uint64_t Patch657417Section::getBranchAddr() const {
149   return patchee->getVA(patcheeOffset);
150 }
151 
152 // Given a branch instruction instr at sourceAddr work out its destination
153 // address. This is only used when the branch instruction has no relocation.
154 static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) {
155   uint8_t buf[4];
156   write16le(buf, instr >> 16);
157   write16le(buf + 2, instr & 0x0000ffff);
158   int64_t offset;
159   if (isBcc(instr))
160     offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
161   else if (isB(instr))
162     offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
163   else
164     offset = target->getImplicitAddend(buf, R_ARM_THM_CALL);
165   // A BLX instruction from Thumb to Arm may have an address that is
166   // not 4-byte aligned. As Arm instructions are always 4-byte aligned
167   // the instruction is calculated (from Arm ARM):
168   // targetAddress = Align(PC, 4) + imm32
169   // where
170   //   Align(x, y) = y * (x Div y)
171   // which corresponds to alignDown.
172   if (isBLX(instr))
173     sourceAddr = alignDown(sourceAddr, 4);
174   return sourceAddr + offset + 4;
175 }
176 
177 void Patch657417Section::writeTo(uint8_t *buf) {
178   // The base instruction of the patch is always a 32-bit unconditional branch.
179   if (isARM)
180     write32le(buf, 0xea000000);
181   else
182     write32le(buf, 0x9000f000);
183   // If we have a relocation then apply it.
184   if (!relocs().empty()) {
185     target->relocateAlloc(*this, buf);
186     return;
187   }
188 
189   // If we don't have a relocation then we must calculate and write the offset
190   // ourselves.
191   // Get the destination offset from the addend in the branch instruction.
192   // We cannot use the instruction in the patchee section as this will have
193   // been altered to point to us!
194   uint64_t s = getThumbDestAddr(getBranchAddr(), instr);
195   // A BLX changes the state of the branch in the patch to Arm state, which
196   // has a PC Bias of 8, whereas in all other cases the branch is in Thumb
197   // state with a PC Bias of 4.
198   uint64_t pcBias = isBLX(instr) ? 8 : 4;
199   uint64_t p = getVA(pcBias);
200   target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p);
201 }
202 
203 // Given a branch instruction spanning two 4KiB regions, at offset off from the
204 // start of isec, return true if the destination of the branch is within the
205 // first of the two 4Kib regions.
206 static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off,
207                                     uint32_t instr, const Relocation *r) {
208   uint64_t sourceAddr = isec->getVA(0) + off;
209   assert((sourceAddr & 0xfff) == 0xffe);
210   uint64_t destAddr;
211   // If there is a branch relocation at the same offset we must use this to
212   // find the destination address as the branch could be indirected via a thunk
213   // or the PLT.
214   if (r) {
215     uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA();
216     // Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
217     destAddr = dst + r->addend + 4;
218   } else {
219     // If there is no relocation, we must have an intra-section branch
220     // We must extract the offset from the addend manually.
221     destAddr = getThumbDestAddr(sourceAddr, instr);
222   }
223 
224   return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
225 }
226 
227 // Return true if a branch can reach a patch section placed after isec.
228 // The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
229 static bool patchInRange(const InputSection *isec, uint64_t off,
230                          uint32_t instr) {
231 
232   // We need the branch at source to reach a patch section placed immediately
233   // after isec. As there can be more than one patch in the patch section we
234   // add 0x100 as contingency to account for worst case of 1 branch every 4KiB
235   // for a 1 MiB range.
236   return target->inBranchRange(
237       isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
238       isec->getVA() + isec->getSize() + 0x100);
239 }
240 
241 struct ScanResult {
242   // Offset of branch within its InputSection.
243   uint64_t off;
244   // Cached decoding of the branch instruction.
245   uint32_t instr;
246   // Branch relocation at off. Will be nullptr if no relocation exists.
247   Relocation *rel;
248 };
249 
250 // Detect the erratum sequence, returning the offset of the branch instruction
251 // and a decoding of the branch. If the erratum sequence is not found then
252 // return an offset of 0 for the branch. 0 is a safe value to use for no patch
253 // as there must be at least one 32-bit non-branch instruction before the
254 // branch so the minimum offset for a patch is 4.
255 static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
256                                            uint64_t limit) {
257   uint64_t isecAddr = isec->getVA(0);
258   // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
259   // need to check for a 32-bit instruction immediately before a 32-bit branch
260   // at 0xffe modulo 0x1000.
261   off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
262   if (off >= limit || limit - off < 8) {
263     // Need at least 2 4-byte sized instructions to trigger erratum.
264     off = limit;
265     return {0, 0, nullptr};
266   }
267 
268   ScanResult scanRes = {0, 0, nullptr};
269   const uint8_t *buf = isec->content().begin();
270   // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
271   // little-endian halfwords.
272   const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
273   uint16_t hw11 = *instBuf++;
274   uint16_t hw12 = *instBuf++;
275   uint16_t hw21 = *instBuf++;
276   uint16_t hw22 = *instBuf++;
277   if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
278     uint32_t instr1 = (hw11 << 16) | hw12;
279     uint32_t instr2 = (hw21 << 16) | hw22;
280     if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
281       // Find a relocation for the branch if it exists. This will be used
282       // to determine the target.
283       uint64_t branchOff = off + 4;
284       auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) {
285         return r.offset == branchOff &&
286                (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
287                 r.type == R_ARM_THM_CALL);
288       });
289       if (relIt != isec->relocs().end())
290         scanRes.rel = &(*relIt);
291       if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) {
292         if (patchInRange(isec, branchOff, instr2)) {
293           scanRes.off = branchOff;
294           scanRes.instr = instr2;
295         } else {
296           warn(toString(isec->file) +
297                ": skipping cortex-a8 657417 erratum sequence, section " +
298                isec->name + " is too large to patch");
299         }
300       }
301     }
302   }
303   off += 0x1000;
304   return scanRes;
305 }
306 
307 void ARMErr657417Patcher::init() {
308   // The Arm ABI permits a mix of ARM, Thumb and Data in the same
309   // InputSection. We must only scan Thumb instructions to avoid false
310   // matches. We use the mapping symbols in the InputObjects to identify this
311   // data, caching the results in sectionMap so we don't have to recalculate
312   // it each pass.
313 
314   // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
315   // half open intervals [Symbol Value, Next Symbol Value) of code and data
316   // within sections. If there is no next symbol then the half open interval is
317   // [Symbol Value, End of section). The type, code or data, is determined by
318   // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
319   auto isArmMapSymbol = [](const Symbol *s) {
320     return s->getName() == "$a" || s->getName().startswith("$a.");
321   };
322   auto isThumbMapSymbol = [](const Symbol *s) {
323     return s->getName() == "$t" || s->getName().startswith("$t.");
324   };
325   auto isDataMapSymbol = [](const Symbol *s) {
326     return s->getName() == "$d" || s->getName().startswith("$d.");
327   };
328 
329   // Collect mapping symbols for every executable InputSection.
330   for (ELFFileBase *file : ctx.objectFiles) {
331     for (Symbol *s : file->getLocalSymbols()) {
332       auto *def = dyn_cast<Defined>(s);
333       if (!def)
334         continue;
335       if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
336           !isDataMapSymbol(def))
337         continue;
338       if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
339         if (sec->flags & SHF_EXECINSTR)
340           sectionMap[sec].push_back(def);
341     }
342   }
343   // For each InputSection make sure the mapping symbols are in sorted in
344   // ascending order and are in alternating Thumb, non-Thumb order.
345   for (auto &kv : sectionMap) {
346     std::vector<const Defined *> &mapSyms = kv.second;
347     llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
348       return a->value < b->value;
349     });
350     mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
351                               [=](const Defined *a, const Defined *b) {
352                                 return (isThumbMapSymbol(a) ==
353                                         isThumbMapSymbol(b));
354                               }),
355                   mapSyms.end());
356     // Always start with a Thumb Mapping Symbol
357     if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
358       mapSyms.erase(mapSyms.begin());
359   }
360   initialized = true;
361 }
362 
363 void ARMErr657417Patcher::insertPatches(
364     InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
365   uint64_t spacing = 0x100000 - 0x7500;
366   uint64_t isecLimit;
367   uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
368   uint64_t patchUpperBound = prevIsecLimit + spacing;
369   uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
370 
371   // Set the outSecOff of patches to the place where we want to insert them.
372   // We use a similar strategy to initial thunk placement, using 1 MiB as the
373   // range of the Thumb-2 conditional branch with a contingency accounting for
374   // thunk generation.
375   auto patchIt = patches.begin();
376   auto patchEnd = patches.end();
377   for (const InputSection *isec : isd.sections) {
378     isecLimit = isec->outSecOff + isec->getSize();
379     if (isecLimit > patchUpperBound) {
380       for (; patchIt != patchEnd; ++patchIt) {
381         if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
382           break;
383         (*patchIt)->outSecOff = prevIsecLimit;
384       }
385       patchUpperBound = prevIsecLimit + spacing;
386     }
387     prevIsecLimit = isecLimit;
388   }
389   for (; patchIt != patchEnd; ++patchIt)
390     (*patchIt)->outSecOff = isecLimit;
391 
392   // Merge all patch sections. We use the outSecOff assigned above to
393   // determine the insertion point. This is ok as we only merge into an
394   // InputSectionDescription once per pass, and at the end of the pass
395   // assignAddresses() will recalculate all the outSecOff values.
396   SmallVector<InputSection *, 0> tmp;
397   tmp.reserve(isd.sections.size() + patches.size());
398   auto mergeCmp = [](const InputSection *a, const InputSection *b) {
399     if (a->outSecOff != b->outSecOff)
400       return a->outSecOff < b->outSecOff;
401     return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
402   };
403   std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
404              patches.end(), std::back_inserter(tmp), mergeCmp);
405   isd.sections = std::move(tmp);
406 }
407 
408 // Given a branch instruction described by ScanRes redirect it to a patch
409 // section containing an unconditional branch instruction to the target.
410 // Ensure that this patch section is 4-byte aligned so that the branch cannot
411 // span two 4 KiB regions. Place the patch section so that it is always after
412 // isec so the branch we are patching always goes forwards.
413 static void implementPatch(ScanResult sr, InputSection *isec,
414                            std::vector<Patch657417Section *> &patches) {
415 
416   log("detected cortex-a8-657419 erratum sequence starting at " +
417       utohexstr(isec->getVA(sr.off)) + " in unpatched output.");
418   Patch657417Section *psec;
419   // We have two cases to deal with.
420   // Case 1. There is a relocation at patcheeOffset to a symbol. The
421   // unconditional branch in the patch must have a relocation so that any
422   // further redirection via the PLT or a Thunk happens as normal. At
423   // patcheeOffset we redirect the existing relocation to a Symbol defined at
424   // the start of the patch section.
425   //
426   // Case 2. There is no relocation at patcheeOffset. We are unlikely to have
427   // a symbol that we can use as a target for a relocation in the patch section.
428   // Luckily we know that the destination cannot be indirected via the PLT or
429   // a Thunk so we can just write the destination directly.
430   if (sr.rel) {
431     // Case 1. We have an existing relocation to redirect to patch and a
432     // Symbol target.
433 
434     // Create a branch relocation for the unconditional branch in the patch.
435     // This can be redirected via the PLT or Thunks.
436     RelType patchRelType = R_ARM_THM_JUMP24;
437     int64_t patchRelAddend = sr.rel->addend;
438     bool destIsARM = false;
439     if (isBL(sr.instr) || isBLX(sr.instr)) {
440       // The final target of the branch may be ARM or Thumb, if the target
441       // is ARM then we write the patch in ARM state to avoid a state change
442       // Thunk from the patch to the target.
443       uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA()
444                                                        : sr.rel->sym->getVA();
445       destIsARM = (dstSymAddr & 1) == 0;
446     }
447     psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM);
448     if (destIsARM) {
449       // The patch will be in ARM state. Use an ARM relocation and account for
450       // the larger ARM PC-bias of 8 rather than Thumb's 4.
451       patchRelType = R_ARM_JUMP24;
452       patchRelAddend -= 4;
453     }
454     psec->addReloc(
455         Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
456     // Redirect the existing branch relocation to the patch.
457     sr.rel->expr = R_PC;
458     sr.rel->addend = -4;
459     sr.rel->sym = psec->patchSym;
460   } else {
461     // Case 2. We do not have a relocation to the patch. Add a relocation of the
462     // appropriate type to the patch at patcheeOffset.
463 
464     // The destination is ARM if we have a BLX.
465     psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr));
466     RelType type;
467     if (isBcc(sr.instr))
468       type = R_ARM_THM_JUMP19;
469     else if (isB(sr.instr))
470       type = R_ARM_THM_JUMP24;
471     else
472       type = R_ARM_THM_CALL;
473     isec->addReloc(Relocation{R_PC, type, sr.off, -4, psec->patchSym});
474   }
475   patches.push_back(psec);
476 }
477 
478 // Scan all the instructions in InputSectionDescription, for each instance of
479 // the erratum sequence create a Patch657417Section. We return the list of
480 // Patch657417Sections that need to be applied to the InputSectionDescription.
481 std::vector<Patch657417Section *>
482 ARMErr657417Patcher::patchInputSectionDescription(
483     InputSectionDescription &isd) {
484   std::vector<Patch657417Section *> patches;
485   for (InputSection *isec : isd.sections) {
486     // LLD doesn't use the erratum sequence in SyntheticSections.
487     if (isa<SyntheticSection>(isec))
488       continue;
489     // Use sectionMap to make sure we only scan Thumb code and not Arm or inline
490     // data. We have already sorted mapSyms in ascending order and removed
491     // consecutive mapping symbols of the same type. Our range of executable
492     // instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
493     // or [thumbSym->value, section size).
494     std::vector<const Defined *> &mapSyms = sectionMap[isec];
495 
496     auto thumbSym = mapSyms.begin();
497     while (thumbSym != mapSyms.end()) {
498       auto nonThumbSym = std::next(thumbSym);
499       uint64_t off = (*thumbSym)->value;
500       uint64_t limit = nonThumbSym == mapSyms.end() ? isec->content().size()
501                                                     : (*nonThumbSym)->value;
502 
503       while (off < limit) {
504         ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
505         if (sr.off)
506           implementPatch(sr, isec, patches);
507       }
508       if (nonThumbSym == mapSyms.end())
509         break;
510       thumbSym = std::next(nonThumbSym);
511     }
512   }
513   return patches;
514 }
515 
516 bool ARMErr657417Patcher::createFixes() {
517   if (!initialized)
518     init();
519 
520   bool addressesChanged = false;
521   for (OutputSection *os : outputSections) {
522     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
523       continue;
524     for (SectionCommand *cmd : os->commands)
525       if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
526         std::vector<Patch657417Section *> patches =
527             patchInputSectionDescription(*isd);
528         if (!patches.empty()) {
529           insertPatches(*isd, patches);
530           addressesChanged = true;
531         }
532       }
533   }
534   return addressesChanged;
535 }
536