1 //===- AArch64ErrataFix.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // This file implements Section Patching for the purpose of working around 9 // the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 10 // versions of the core. 11 // 12 // The general principle is that an erratum sequence of one or 13 // more instructions is detected in the instruction stream, one of the 14 // instructions in the sequence is replaced with a branch to a patch sequence 15 // of replacement instructions. At the end of the replacement sequence the 16 // patch branches back to the instruction stream. 17 18 // This technique is only suitable for fixing an erratum when: 19 // - There is a set of necessary conditions required to trigger the erratum that 20 // can be detected at static link time. 21 // - There is a set of replacement instructions that can be used to remove at 22 // least one of the necessary conditions that trigger the erratum. 23 // - We can overwrite an instruction in the erratum sequence with a branch to 24 // the replacement sequence. 25 // - We can place the replacement sequence within range of the branch. 26 //===----------------------------------------------------------------------===// 27 28 #include "AArch64ErrataFix.h" 29 #include "InputFiles.h" 30 #include "LinkerScript.h" 31 #include "OutputSections.h" 32 #include "Relocations.h" 33 #include "Symbols.h" 34 #include "SyntheticSections.h" 35 #include "Target.h" 36 #include "lld/Common/CommonLinkerContext.h" 37 #include "lld/Common/Strings.h" 38 #include "llvm/Support/Endian.h" 39 #include <algorithm> 40 41 using namespace llvm; 42 using namespace llvm::ELF; 43 using namespace llvm::object; 44 using namespace llvm::support; 45 using namespace llvm::support::endian; 46 using namespace lld; 47 using namespace lld::elf; 48 49 // Helper functions to identify instructions and conditions needed to trigger 50 // the Cortex-A53-843419 erratum. 51 52 // ADRP 53 // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) | 54 static bool isADRP(uint32_t instr) { 55 return (instr & 0x9f000000) == 0x90000000; 56 } 57 58 // Load and store bit patterns from ARMv8-A. 59 // Instructions appear in order of appearance starting from table in 60 // C4.1.3 Loads and Stores. 61 62 // All loads and stores have 1 (at bit position 27), (0 at bit position 25). 63 // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) | 64 static bool isLoadStoreClass(uint32_t instr) { 65 return (instr & 0x0a000000) == 0x08000000; 66 } 67 68 // LDN/STN multiple no offset 69 // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) | 70 // LDN/STN multiple post-indexed 71 // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) | 72 // L == 0 for stores. 73 74 // Utility routine to decode opcode field of LDN/STN multiple structure 75 // instructions to find the ST1 instructions. 76 // opcode == 0010 ST1 4 registers. 77 // opcode == 0110 ST1 3 registers. 78 // opcode == 0111 ST1 1 register. 79 // opcode == 1010 ST1 2 registers. 80 static bool isST1MultipleOpcode(uint32_t instr) { 81 return (instr & 0x0000f000) == 0x00002000 || 82 (instr & 0x0000f000) == 0x00006000 || 83 (instr & 0x0000f000) == 0x00007000 || 84 (instr & 0x0000f000) == 0x0000a000; 85 } 86 87 static bool isST1Multiple(uint32_t instr) { 88 return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr); 89 } 90 91 // Writes to Rn (writeback). 92 static bool isST1MultiplePost(uint32_t instr) { 93 return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr); 94 } 95 96 // LDN/STN single no offset 97 // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)| 98 // LDN/STN single post-indexed 99 // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)| 100 // L == 0 for stores 101 102 // Utility routine to decode opcode field of LDN/STN single structure 103 // instructions to find the ST1 instructions. 104 // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4. 105 // opcode == 000 ST1 8-bit. 106 // opcode == 010 ST1 16-bit. 107 // opcode == 100 ST1 32 or 64-bit (Size determines which). 108 static bool isST1SingleOpcode(uint32_t instr) { 109 return (instr & 0x0040e000) == 0x00000000 || 110 (instr & 0x0040e000) == 0x00004000 || 111 (instr & 0x0040e000) == 0x00008000; 112 } 113 114 static bool isST1Single(uint32_t instr) { 115 return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr); 116 } 117 118 // Writes to Rn (writeback). 119 static bool isST1SinglePost(uint32_t instr) { 120 return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr); 121 } 122 123 static bool isST1(uint32_t instr) { 124 return isST1Multiple(instr) || isST1MultiplePost(instr) || 125 isST1Single(instr) || isST1SinglePost(instr); 126 } 127 128 // Load/store exclusive 129 // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) | 130 // L == 0 for Stores. 131 static bool isLoadStoreExclusive(uint32_t instr) { 132 return (instr & 0x3f000000) == 0x08000000; 133 } 134 135 static bool isLoadExclusive(uint32_t instr) { 136 return (instr & 0x3f400000) == 0x08400000; 137 } 138 139 // Load register literal 140 // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) | 141 static bool isLoadLiteral(uint32_t instr) { 142 return (instr & 0x3b000000) == 0x18000000; 143 } 144 145 // Load/store no-allocate pair 146 // (offset) 147 // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | 148 // L == 0 for stores. 149 // Never writes to register 150 static bool isSTNP(uint32_t instr) { 151 return (instr & 0x3bc00000) == 0x28000000; 152 } 153 154 // Load/store register pair 155 // (post-indexed) 156 // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | 157 // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP 158 // Writes to Rn. 159 static bool isSTPPost(uint32_t instr) { 160 return (instr & 0x3bc00000) == 0x28800000; 161 } 162 163 // (offset) 164 // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | 165 static bool isSTPOffset(uint32_t instr) { 166 return (instr & 0x3bc00000) == 0x29000000; 167 } 168 169 // (pre-index) 170 // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | 171 // Writes to Rn. 172 static bool isSTPPre(uint32_t instr) { 173 return (instr & 0x3bc00000) == 0x29800000; 174 } 175 176 static bool isSTP(uint32_t instr) { 177 return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr); 178 } 179 180 // Load/store register (unscaled immediate) 181 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) | 182 // V == 0 for Scalar, V == 1 for Simd/FP. 183 static bool isLoadStoreUnscaled(uint32_t instr) { 184 return (instr & 0x3b000c00) == 0x38000000; 185 } 186 187 // Load/store register (immediate post-indexed) 188 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) | 189 static bool isLoadStoreImmediatePost(uint32_t instr) { 190 return (instr & 0x3b200c00) == 0x38000400; 191 } 192 193 // Load/store register (unprivileged) 194 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) | 195 static bool isLoadStoreUnpriv(uint32_t instr) { 196 return (instr & 0x3b200c00) == 0x38000800; 197 } 198 199 // Load/store register (immediate pre-indexed) 200 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) | 201 static bool isLoadStoreImmediatePre(uint32_t instr) { 202 return (instr & 0x3b200c00) == 0x38000c00; 203 } 204 205 // Load/store register (register offset) 206 // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt | 207 static bool isLoadStoreRegisterOff(uint32_t instr) { 208 return (instr & 0x3b200c00) == 0x38200800; 209 } 210 211 // Load/store register (unsigned immediate) 212 // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) | 213 static bool isLoadStoreRegisterUnsigned(uint32_t instr) { 214 return (instr & 0x3b000000) == 0x39000000; 215 } 216 217 // Rt is always in bit position 0 - 4. 218 static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); } 219 220 // Rn is always in bit position 5 - 9. 221 static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; } 222 223 // C4.1.2 Branches, Exception Generating and System instructions 224 // | op0 (3) 1 | 01 op1 (4) | x (22) | 225 // op0 == 010 101 op1 == 0xxx Conditional Branch. 226 // op0 == 110 101 op1 == 1xxx Unconditional Branch Register. 227 // op0 == x00 101 op1 == xxxx Unconditional Branch immediate. 228 // op0 == x01 101 op1 == 0xxx Compare and branch immediate. 229 // op0 == x01 101 op1 == 1xxx Test and branch immediate. 230 static bool isBranch(uint32_t instr) { 231 return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch. 232 ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg. 233 ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm. 234 ((instr & 0x7c000000) == 0x34000000); // Compare and test branch. 235 } 236 237 static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) { 238 return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) || 239 isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) || 240 isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr); 241 } 242 243 // Note that this function refers to v8.0 only and does not include the 244 // additional load and store instructions added for in later revisions of 245 // the architecture such as the Atomic memory operations introduced 246 // in v8.1. 247 static bool isV8NonStructureLoad(uint32_t instr) { 248 if (isLoadExclusive(instr)) 249 return true; 250 if (isLoadLiteral(instr)) 251 return true; 252 else if (isV8SingleRegisterNonStructureLoadStore(instr)) { 253 // For Load and Store single register, Loads are derived from a 254 // combination of the Size, V and Opc fields. 255 uint32_t size = (instr >> 30) & 0xff; 256 uint32_t v = (instr >> 26) & 0x1; 257 uint32_t opc = (instr >> 22) & 0x3; 258 // For the load and store instructions that we are decoding. 259 // Opc == 0 are all stores. 260 // Opc == 1 with a couple of exceptions are loads. The exceptions are: 261 // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and 262 // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch. 263 return opc != 0 && !(size == 0 && v == 1 && opc == 2) && 264 !(size == 3 && v == 0 && opc == 2); 265 } 266 return false; 267 } 268 269 // The following decode instructions are only complete up to the instructions 270 // needed for errata 843419. 271 272 // Instruction with writeback updates the index register after the load/store. 273 static bool hasWriteback(uint32_t instr) { 274 return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) || 275 isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) || 276 isST1MultiplePost(instr); 277 } 278 279 // For the load and store class of instructions, a load can write to the 280 // destination register, a load and a store can write to the base register when 281 // the instruction has writeback. 282 static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) { 283 return (isV8NonStructureLoad(instr) && getRt(instr) == reg) || 284 (hasWriteback(instr) && getRn(instr) == reg); 285 } 286 287 // Scanner for Cortex-A53 errata 843419 288 // Full details are available in the Cortex A53 MPCore revision 0 Software 289 // Developers Errata Notice (ARM-EPM-048406). 290 // 291 // The instruction sequence that triggers the erratum is common in compiled 292 // AArch64 code, however it is sensitive to the offset of the sequence within 293 // a 4k page. This means that by scanning and fixing the patch after we have 294 // assigned addresses we only need to disassemble and fix instances of the 295 // sequence in the range of affected offsets. 296 // 297 // In summary the erratum conditions are a series of 4 instructions: 298 // 1.) An ADRP instruction that writes to register Rn with low 12 bits of 299 // address of instruction either 0xff8 or 0xffc. 300 // 2.) A load or store instruction that can be: 301 // - A single register load or store, of either integer or vector registers. 302 // - An STP or STNP, of either integer or vector registers. 303 // - An Advanced SIMD ST1 store instruction. 304 // - Must not write to Rn, but may optionally read from it. 305 // 3.) An optional instruction that is not a branch and does not write to Rn. 306 // 4.) A load or store from the Load/store register (unsigned immediate) class 307 // that uses Rn as the base address register. 308 // 309 // Note that we do not attempt to scan for Sequence 2 as described in the 310 // Software Developers Errata Notice as this has been assessed to be extremely 311 // unlikely to occur in compiled code. This matches gold and ld.bfd behavior. 312 313 // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match 314 // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.), 315 // and 4.) in the Scanner for Cortex-A53 errata comment above. 316 static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2, 317 uint32_t instr4) { 318 if (!isADRP(instr1)) 319 return false; 320 321 uint32_t rn = getRt(instr1); 322 return isLoadStoreClass(instr2) && 323 (isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) || 324 isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) || 325 isSTNP(instr2) || isST1(instr2)) && 326 !doesLoadStoreWriteToReg(instr2, rn) && 327 isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn; 328 } 329 330 // Scan the instruction sequence starting at Offset Off from the base of 331 // InputSection isec. We update Off in this function rather than in the caller 332 // as we can skip ahead much further into the section when we know how many 333 // instructions we've scanned. 334 // Return the offset of the load or store instruction in isec that we want to 335 // patch or 0 if no patch required. 336 static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off, 337 uint64_t limit) { 338 uint64_t isecAddr = isec->getVA(0); 339 340 // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8. 341 uint64_t initialPageOff = (isecAddr + off) & 0xfff; 342 if (initialPageOff < 0xff8) 343 off += 0xff8 - initialPageOff; 344 345 bool optionalAllowed = limit - off > 12; 346 if (off >= limit || limit - off < 12) { 347 // Need at least 3 4-byte sized instructions to trigger erratum. 348 off = limit; 349 return 0; 350 } 351 352 uint64_t patchOff = 0; 353 const uint8_t *buf = isec->content().begin(); 354 const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off); 355 uint32_t instr1 = *instBuf++; 356 uint32_t instr2 = *instBuf++; 357 uint32_t instr3 = *instBuf++; 358 if (is843419ErratumSequence(instr1, instr2, instr3)) { 359 patchOff = off + 8; 360 } else if (optionalAllowed && !isBranch(instr3)) { 361 uint32_t instr4 = *instBuf++; 362 if (is843419ErratumSequence(instr1, instr2, instr4)) 363 patchOff = off + 12; 364 } 365 if (((isecAddr + off) & 0xfff) == 0xff8) 366 off += 4; 367 else 368 off += 0xffc; 369 return patchOff; 370 } 371 372 class elf::Patch843419Section final : public SyntheticSection { 373 public: 374 Patch843419Section(InputSection *p, uint64_t off); 375 376 void writeTo(uint8_t *buf) override; 377 378 size_t getSize() const override { return 8; } 379 380 uint64_t getLDSTAddr() const; 381 382 static bool classof(const SectionBase *d) { 383 return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch"; 384 } 385 386 // The Section we are patching. 387 const InputSection *patchee; 388 // The offset of the instruction in the patchee section we are patching. 389 uint64_t patcheeOffset; 390 // A label for the start of the Patch that we can use as a relocation target. 391 Symbol *patchSym; 392 }; 393 394 Patch843419Section::Patch843419Section(InputSection *p, uint64_t off) 395 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, 396 ".text.patch"), 397 patchee(p), patcheeOffset(off) { 398 this->parent = p->getParent(); 399 patchSym = addSyntheticLocal( 400 saver().save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 401 0, getSize(), *this); 402 addSyntheticLocal(saver().save("$x"), STT_NOTYPE, 0, 0, *this); 403 } 404 405 uint64_t Patch843419Section::getLDSTAddr() const { 406 return patchee->getVA(patcheeOffset); 407 } 408 409 void Patch843419Section::writeTo(uint8_t *buf) { 410 // Copy the instruction that we will be replacing with a branch in the 411 // patchee Section. 412 write32le(buf, read32le(patchee->content().begin() + patcheeOffset)); 413 414 // Apply any relocation transferred from the original patchee section. 415 target->relocateAlloc(*this, buf); 416 417 // Return address is the next instruction after the one we have just copied. 418 uint64_t s = getLDSTAddr() + 4; 419 uint64_t p = patchSym->getVA() + 4; 420 target->relocateNoSym(buf + 4, R_AARCH64_JUMP26, s - p); 421 } 422 423 void AArch64Err843419Patcher::init() { 424 // The AArch64 ABI permits data in executable sections. We must avoid scanning 425 // this data as if it were instructions to avoid false matches. We use the 426 // mapping symbols in the InputObjects to identify this data, caching the 427 // results in sectionMap so we don't have to recalculate it each pass. 428 429 // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe 430 // half open intervals [Symbol Value, Next Symbol Value) of code and data 431 // within sections. If there is no next symbol then the half open interval is 432 // [Symbol Value, End of section). The type, code or data, is determined by 433 // the mapping symbol name, $x for code, $d for data. 434 auto isCodeMapSymbol = [](const Symbol *b) { 435 return b->getName() == "$x" || b->getName().startswith("$x."); 436 }; 437 auto isDataMapSymbol = [](const Symbol *b) { 438 return b->getName() == "$d" || b->getName().startswith("$d."); 439 }; 440 441 // Collect mapping symbols for every executable InputSection. 442 for (ELFFileBase *file : ctx.objectFiles) { 443 for (Symbol *b : file->getLocalSymbols()) { 444 auto *def = dyn_cast<Defined>(b); 445 if (!def) 446 continue; 447 if (!isCodeMapSymbol(def) && !isDataMapSymbol(def)) 448 continue; 449 if (auto *sec = dyn_cast_or_null<InputSection>(def->section)) 450 if (sec->flags & SHF_EXECINSTR) 451 sectionMap[sec].push_back(def); 452 } 453 } 454 // For each InputSection make sure the mapping symbols are in sorted in 455 // ascending order and free from consecutive runs of mapping symbols with 456 // the same type. For example we must remove the redundant $d.1 from $x.0 457 // $d.0 $d.1 $x.1. 458 for (auto &kv : sectionMap) { 459 std::vector<const Defined *> &mapSyms = kv.second; 460 llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) { 461 return a->value < b->value; 462 }); 463 mapSyms.erase( 464 std::unique(mapSyms.begin(), mapSyms.end(), 465 [=](const Defined *a, const Defined *b) { 466 return isCodeMapSymbol(a) == isCodeMapSymbol(b); 467 }), 468 mapSyms.end()); 469 // Always start with a Code Mapping Symbol. 470 if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front())) 471 mapSyms.erase(mapSyms.begin()); 472 } 473 initialized = true; 474 } 475 476 // Insert the PatchSections we have created back into the 477 // InputSectionDescription. As inserting patches alters the addresses of 478 // InputSections that follow them, we try and place the patches after all the 479 // executable sections, although we may need to insert them earlier if the 480 // InputSectionDescription is larger than the maximum branch range. 481 void AArch64Err843419Patcher::insertPatches( 482 InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) { 483 uint64_t isecLimit; 484 uint64_t prevIsecLimit = isd.sections.front()->outSecOff; 485 uint64_t patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing(); 486 uint64_t outSecAddr = isd.sections.front()->getParent()->addr; 487 488 // Set the outSecOff of patches to the place where we want to insert them. 489 // We use a similar strategy to Thunk placement. Place patches roughly 490 // every multiple of maximum branch range. 491 auto patchIt = patches.begin(); 492 auto patchEnd = patches.end(); 493 for (const InputSection *isec : isd.sections) { 494 isecLimit = isec->outSecOff + isec->getSize(); 495 if (isecLimit > patchUpperBound) { 496 while (patchIt != patchEnd) { 497 if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit) 498 break; 499 (*patchIt)->outSecOff = prevIsecLimit; 500 ++patchIt; 501 } 502 patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing(); 503 } 504 prevIsecLimit = isecLimit; 505 } 506 for (; patchIt != patchEnd; ++patchIt) { 507 (*patchIt)->outSecOff = isecLimit; 508 } 509 510 // Merge all patch sections. We use the outSecOff assigned above to 511 // determine the insertion point. This is ok as we only merge into an 512 // InputSectionDescription once per pass, and at the end of the pass 513 // assignAddresses() will recalculate all the outSecOff values. 514 SmallVector<InputSection *, 0> tmp; 515 tmp.reserve(isd.sections.size() + patches.size()); 516 auto mergeCmp = [](const InputSection *a, const InputSection *b) { 517 if (a->outSecOff != b->outSecOff) 518 return a->outSecOff < b->outSecOff; 519 return isa<Patch843419Section>(a) && !isa<Patch843419Section>(b); 520 }; 521 std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(), 522 patches.end(), std::back_inserter(tmp), mergeCmp); 523 isd.sections = std::move(tmp); 524 } 525 526 // Given an erratum sequence that starts at address adrpAddr, with an 527 // instruction that we need to patch at patcheeOffset from the start of 528 // InputSection isec, create a Patch843419 Section and add it to the 529 // Patches that we need to insert. 530 static void implementPatch(uint64_t adrpAddr, uint64_t patcheeOffset, 531 InputSection *isec, 532 std::vector<Patch843419Section *> &patches) { 533 // There may be a relocation at the same offset that we are patching. There 534 // are four cases that we need to consider. 535 // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this 536 // instance of the erratum on a previous patch and altered the relocation. We 537 // have nothing more to do. 538 // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that 539 // we read will be transformed into a MOVZ later so we actually don't match 540 // the sequence and have nothing more to do. 541 // Case 3: A load/store register (unsigned immediate) class relocation. There 542 // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and 543 // they are both absolute. We need to add the same relocation to the patch, 544 // and replace the relocation with a R_AARCH_JUMP26 branch relocation. 545 // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch 546 // relocation at the offset. 547 auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) { 548 return r.offset == patcheeOffset; 549 }); 550 if (relIt != isec->relocs().end() && 551 (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE)) 552 return; 553 554 log("detected cortex-a53-843419 erratum sequence starting at " + 555 utohexstr(adrpAddr) + " in unpatched output."); 556 557 auto *ps = make<Patch843419Section>(isec, patcheeOffset); 558 patches.push_back(ps); 559 560 auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) { 561 return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym}; 562 }; 563 564 if (relIt != isec->relocs().end()) { 565 ps->addReloc({relIt->expr, relIt->type, 0, relIt->addend, relIt->sym}); 566 *relIt = makeRelToPatch(patcheeOffset, ps->patchSym); 567 } else 568 isec->addReloc(makeRelToPatch(patcheeOffset, ps->patchSym)); 569 } 570 571 // Scan all the instructions in InputSectionDescription, for each instance of 572 // the erratum sequence create a Patch843419Section. We return the list of 573 // Patch843419Sections that need to be applied to the InputSectionDescription. 574 std::vector<Patch843419Section *> 575 AArch64Err843419Patcher::patchInputSectionDescription( 576 InputSectionDescription &isd) { 577 std::vector<Patch843419Section *> patches; 578 for (InputSection *isec : isd.sections) { 579 // LLD doesn't use the erratum sequence in SyntheticSections. 580 if (isa<SyntheticSection>(isec)) 581 continue; 582 // Use sectionMap to make sure we only scan code and not inline data. 583 // We have already sorted MapSyms in ascending order and removed consecutive 584 // mapping symbols of the same type. Our range of executable instructions to 585 // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value, 586 // section size). 587 std::vector<const Defined *> &mapSyms = sectionMap[isec]; 588 589 auto codeSym = mapSyms.begin(); 590 while (codeSym != mapSyms.end()) { 591 auto dataSym = std::next(codeSym); 592 uint64_t off = (*codeSym)->value; 593 uint64_t limit = (dataSym == mapSyms.end()) ? isec->content().size() 594 : (*dataSym)->value; 595 596 while (off < limit) { 597 uint64_t startAddr = isec->getVA(off); 598 if (uint64_t patcheeOffset = 599 scanCortexA53Errata843419(isec, off, limit)) 600 implementPatch(startAddr, patcheeOffset, isec, patches); 601 } 602 if (dataSym == mapSyms.end()) 603 break; 604 codeSym = std::next(dataSym); 605 } 606 } 607 return patches; 608 } 609 610 // For each InputSectionDescription make one pass over the executable sections 611 // looking for the erratum sequence; creating a synthetic Patch843419Section 612 // for each instance found. We insert these synthetic patch sections after the 613 // executable code in each InputSectionDescription. 614 // 615 // PreConditions: 616 // The Output and Input Sections have had their final addresses assigned. 617 // 618 // PostConditions: 619 // Returns true if at least one patch was added. The addresses of the 620 // Output and Input Sections may have been changed. 621 // Returns false if no patches were required and no changes were made. 622 bool AArch64Err843419Patcher::createFixes() { 623 if (!initialized) 624 init(); 625 626 bool addressesChanged = false; 627 for (OutputSection *os : outputSections) { 628 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 629 continue; 630 for (SectionCommand *cmd : os->commands) 631 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 632 std::vector<Patch843419Section *> patches = 633 patchInputSectionDescription(*isd); 634 if (!patches.empty()) { 635 insertPatches(*isd, patches); 636 addressesChanged = true; 637 } 638 } 639 } 640 return addressesChanged; 641 } 642