1 //===- AArch64ErrataFix.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // This file implements Section Patching for the purpose of working around 9 // the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 10 // versions of the core. 11 // 12 // The general principle is that an erratum sequence of one or 13 // more instructions is detected in the instruction stream, one of the 14 // instructions in the sequence is replaced with a branch to a patch sequence 15 // of replacement instructions. At the end of the replacement sequence the 16 // patch branches back to the instruction stream. 17 18 // This technique is only suitable for fixing an erratum when: 19 // - There is a set of necessary conditions required to trigger the erratum that 20 // can be detected at static link time. 21 // - There is a set of replacement instructions that can be used to remove at 22 // least one of the necessary conditions that trigger the erratum. 23 // - We can overwrite an instruction in the erratum sequence with a branch to 24 // the replacement sequence. 25 // - We can place the replacement sequence within range of the branch. 26 //===----------------------------------------------------------------------===// 27 28 #include "AArch64ErrataFix.h" 29 #include "InputFiles.h" 30 #include "LinkerScript.h" 31 #include "OutputSections.h" 32 #include "Relocations.h" 33 #include "Symbols.h" 34 #include "SyntheticSections.h" 35 #include "Target.h" 36 #include "lld/Common/CommonLinkerContext.h" 37 #include "lld/Common/Strings.h" 38 #include "llvm/ADT/StringExtras.h" 39 #include "llvm/Support/Endian.h" 40 #include <algorithm> 41 42 using namespace llvm; 43 using namespace llvm::ELF; 44 using namespace llvm::object; 45 using namespace llvm::support; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 // Helper functions to identify instructions and conditions needed to trigger 51 // the Cortex-A53-843419 erratum. 52 53 // ADRP 54 // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) | 55 static bool isADRP(uint32_t instr) { 56 return (instr & 0x9f000000) == 0x90000000; 57 } 58 59 // Load and store bit patterns from ARMv8-A. 60 // Instructions appear in order of appearance starting from table in 61 // C4.1.3 Loads and Stores. 62 63 // All loads and stores have 1 (at bit position 27), (0 at bit position 25). 64 // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) | 65 static bool isLoadStoreClass(uint32_t instr) { 66 return (instr & 0x0a000000) == 0x08000000; 67 } 68 69 // LDN/STN multiple no offset 70 // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) | 71 // LDN/STN multiple post-indexed 72 // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) | 73 // L == 0 for stores. 74 75 // Utility routine to decode opcode field of LDN/STN multiple structure 76 // instructions to find the ST1 instructions. 77 // opcode == 0010 ST1 4 registers. 78 // opcode == 0110 ST1 3 registers. 79 // opcode == 0111 ST1 1 register. 80 // opcode == 1010 ST1 2 registers. 81 static bool isST1MultipleOpcode(uint32_t instr) { 82 return (instr & 0x0000f000) == 0x00002000 || 83 (instr & 0x0000f000) == 0x00006000 || 84 (instr & 0x0000f000) == 0x00007000 || 85 (instr & 0x0000f000) == 0x0000a000; 86 } 87 88 static bool isST1Multiple(uint32_t instr) { 89 return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr); 90 } 91 92 // Writes to Rn (writeback). 93 static bool isST1MultiplePost(uint32_t instr) { 94 return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr); 95 } 96 97 // LDN/STN single no offset 98 // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)| 99 // LDN/STN single post-indexed 100 // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)| 101 // L == 0 for stores 102 103 // Utility routine to decode opcode field of LDN/STN single structure 104 // instructions to find the ST1 instructions. 105 // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4. 106 // opcode == 000 ST1 8-bit. 107 // opcode == 010 ST1 16-bit. 108 // opcode == 100 ST1 32 or 64-bit (Size determines which). 109 static bool isST1SingleOpcode(uint32_t instr) { 110 return (instr & 0x0040e000) == 0x00000000 || 111 (instr & 0x0040e000) == 0x00004000 || 112 (instr & 0x0040e000) == 0x00008000; 113 } 114 115 static bool isST1Single(uint32_t instr) { 116 return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr); 117 } 118 119 // Writes to Rn (writeback). 120 static bool isST1SinglePost(uint32_t instr) { 121 return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr); 122 } 123 124 static bool isST1(uint32_t instr) { 125 return isST1Multiple(instr) || isST1MultiplePost(instr) || 126 isST1Single(instr) || isST1SinglePost(instr); 127 } 128 129 // Load/store exclusive 130 // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) | 131 // L == 0 for Stores. 132 static bool isLoadStoreExclusive(uint32_t instr) { 133 return (instr & 0x3f000000) == 0x08000000; 134 } 135 136 static bool isLoadExclusive(uint32_t instr) { 137 return (instr & 0x3f400000) == 0x08400000; 138 } 139 140 // Load register literal 141 // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) | 142 static bool isLoadLiteral(uint32_t instr) { 143 return (instr & 0x3b000000) == 0x18000000; 144 } 145 146 // Load/store no-allocate pair 147 // (offset) 148 // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | 149 // L == 0 for stores. 150 // Never writes to register 151 static bool isSTNP(uint32_t instr) { 152 return (instr & 0x3bc00000) == 0x28000000; 153 } 154 155 // Load/store register pair 156 // (post-indexed) 157 // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | 158 // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP 159 // Writes to Rn. 160 static bool isSTPPost(uint32_t instr) { 161 return (instr & 0x3bc00000) == 0x28800000; 162 } 163 164 // (offset) 165 // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | 166 static bool isSTPOffset(uint32_t instr) { 167 return (instr & 0x3bc00000) == 0x29000000; 168 } 169 170 // (pre-index) 171 // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | 172 // Writes to Rn. 173 static bool isSTPPre(uint32_t instr) { 174 return (instr & 0x3bc00000) == 0x29800000; 175 } 176 177 static bool isSTP(uint32_t instr) { 178 return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr); 179 } 180 181 // Load/store register (unscaled immediate) 182 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) | 183 // V == 0 for Scalar, V == 1 for Simd/FP. 184 static bool isLoadStoreUnscaled(uint32_t instr) { 185 return (instr & 0x3b000c00) == 0x38000000; 186 } 187 188 // Load/store register (immediate post-indexed) 189 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) | 190 static bool isLoadStoreImmediatePost(uint32_t instr) { 191 return (instr & 0x3b200c00) == 0x38000400; 192 } 193 194 // Load/store register (unprivileged) 195 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) | 196 static bool isLoadStoreUnpriv(uint32_t instr) { 197 return (instr & 0x3b200c00) == 0x38000800; 198 } 199 200 // Load/store register (immediate pre-indexed) 201 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) | 202 static bool isLoadStoreImmediatePre(uint32_t instr) { 203 return (instr & 0x3b200c00) == 0x38000c00; 204 } 205 206 // Load/store register (register offset) 207 // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt | 208 static bool isLoadStoreRegisterOff(uint32_t instr) { 209 return (instr & 0x3b200c00) == 0x38200800; 210 } 211 212 // Load/store register (unsigned immediate) 213 // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) | 214 static bool isLoadStoreRegisterUnsigned(uint32_t instr) { 215 return (instr & 0x3b000000) == 0x39000000; 216 } 217 218 // Rt is always in bit position 0 - 4. 219 static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); } 220 221 // Rn is always in bit position 5 - 9. 222 static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; } 223 224 // C4.1.2 Branches, Exception Generating and System instructions 225 // | op0 (3) 1 | 01 op1 (4) | x (22) | 226 // op0 == 010 101 op1 == 0xxx Conditional Branch. 227 // op0 == 110 101 op1 == 1xxx Unconditional Branch Register. 228 // op0 == x00 101 op1 == xxxx Unconditional Branch immediate. 229 // op0 == x01 101 op1 == 0xxx Compare and branch immediate. 230 // op0 == x01 101 op1 == 1xxx Test and branch immediate. 231 static bool isBranch(uint32_t instr) { 232 return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch. 233 ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg. 234 ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm. 235 ((instr & 0x7c000000) == 0x34000000); // Compare and test branch. 236 } 237 238 static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) { 239 return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) || 240 isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) || 241 isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr); 242 } 243 244 // Note that this function refers to v8.0 only and does not include the 245 // additional load and store instructions added for in later revisions of 246 // the architecture such as the Atomic memory operations introduced 247 // in v8.1. 248 static bool isV8NonStructureLoad(uint32_t instr) { 249 if (isLoadExclusive(instr)) 250 return true; 251 if (isLoadLiteral(instr)) 252 return true; 253 else if (isV8SingleRegisterNonStructureLoadStore(instr)) { 254 // For Load and Store single register, Loads are derived from a 255 // combination of the Size, V and Opc fields. 256 uint32_t size = (instr >> 30) & 0xff; 257 uint32_t v = (instr >> 26) & 0x1; 258 uint32_t opc = (instr >> 22) & 0x3; 259 // For the load and store instructions that we are decoding. 260 // Opc == 0 are all stores. 261 // Opc == 1 with a couple of exceptions are loads. The exceptions are: 262 // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and 263 // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch. 264 return opc != 0 && !(size == 0 && v == 1 && opc == 2) && 265 !(size == 3 && v == 0 && opc == 2); 266 } 267 return false; 268 } 269 270 // The following decode instructions are only complete up to the instructions 271 // needed for errata 843419. 272 273 // Instruction with writeback updates the index register after the load/store. 274 static bool hasWriteback(uint32_t instr) { 275 return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) || 276 isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) || 277 isST1MultiplePost(instr); 278 } 279 280 // For the load and store class of instructions, a load can write to the 281 // destination register, a load and a store can write to the base register when 282 // the instruction has writeback. 283 static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) { 284 return (isV8NonStructureLoad(instr) && getRt(instr) == reg) || 285 (hasWriteback(instr) && getRn(instr) == reg); 286 } 287 288 // Scanner for Cortex-A53 errata 843419 289 // Full details are available in the Cortex A53 MPCore revision 0 Software 290 // Developers Errata Notice (ARM-EPM-048406). 291 // 292 // The instruction sequence that triggers the erratum is common in compiled 293 // AArch64 code, however it is sensitive to the offset of the sequence within 294 // a 4k page. This means that by scanning and fixing the patch after we have 295 // assigned addresses we only need to disassemble and fix instances of the 296 // sequence in the range of affected offsets. 297 // 298 // In summary the erratum conditions are a series of 4 instructions: 299 // 1.) An ADRP instruction that writes to register Rn with low 12 bits of 300 // address of instruction either 0xff8 or 0xffc. 301 // 2.) A load or store instruction that can be: 302 // - A single register load or store, of either integer or vector registers. 303 // - An STP or STNP, of either integer or vector registers. 304 // - An Advanced SIMD ST1 store instruction. 305 // - Must not write to Rn, but may optionally read from it. 306 // 3.) An optional instruction that is not a branch and does not write to Rn. 307 // 4.) A load or store from the Load/store register (unsigned immediate) class 308 // that uses Rn as the base address register. 309 // 310 // Note that we do not attempt to scan for Sequence 2 as described in the 311 // Software Developers Errata Notice as this has been assessed to be extremely 312 // unlikely to occur in compiled code. This matches gold and ld.bfd behavior. 313 314 // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match 315 // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.), 316 // and 4.) in the Scanner for Cortex-A53 errata comment above. 317 static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2, 318 uint32_t instr4) { 319 if (!isADRP(instr1)) 320 return false; 321 322 uint32_t rn = getRt(instr1); 323 return isLoadStoreClass(instr2) && 324 (isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) || 325 isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) || 326 isSTNP(instr2) || isST1(instr2)) && 327 !doesLoadStoreWriteToReg(instr2, rn) && 328 isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn; 329 } 330 331 // Scan the instruction sequence starting at Offset Off from the base of 332 // InputSection isec. We update Off in this function rather than in the caller 333 // as we can skip ahead much further into the section when we know how many 334 // instructions we've scanned. 335 // Return the offset of the load or store instruction in isec that we want to 336 // patch or 0 if no patch required. 337 static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off, 338 uint64_t limit) { 339 uint64_t isecAddr = isec->getVA(0); 340 341 // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8. 342 uint64_t initialPageOff = (isecAddr + off) & 0xfff; 343 if (initialPageOff < 0xff8) 344 off += 0xff8 - initialPageOff; 345 346 bool optionalAllowed = limit - off > 12; 347 if (off >= limit || limit - off < 12) { 348 // Need at least 3 4-byte sized instructions to trigger erratum. 349 off = limit; 350 return 0; 351 } 352 353 uint64_t patchOff = 0; 354 const uint8_t *buf = isec->content().begin(); 355 const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off); 356 uint32_t instr1 = *instBuf++; 357 uint32_t instr2 = *instBuf++; 358 uint32_t instr3 = *instBuf++; 359 if (is843419ErratumSequence(instr1, instr2, instr3)) { 360 patchOff = off + 8; 361 } else if (optionalAllowed && !isBranch(instr3)) { 362 uint32_t instr4 = *instBuf++; 363 if (is843419ErratumSequence(instr1, instr2, instr4)) 364 patchOff = off + 12; 365 } 366 if (((isecAddr + off) & 0xfff) == 0xff8) 367 off += 4; 368 else 369 off += 0xffc; 370 return patchOff; 371 } 372 373 class elf::Patch843419Section final : public SyntheticSection { 374 public: 375 Patch843419Section(InputSection *p, uint64_t off); 376 377 void writeTo(uint8_t *buf) override; 378 379 size_t getSize() const override { return 8; } 380 381 uint64_t getLDSTAddr() const; 382 383 static bool classof(const SectionBase *d) { 384 return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch"; 385 } 386 387 // The Section we are patching. 388 const InputSection *patchee; 389 // The offset of the instruction in the patchee section we are patching. 390 uint64_t patcheeOffset; 391 // A label for the start of the Patch that we can use as a relocation target. 392 Symbol *patchSym; 393 }; 394 395 Patch843419Section::Patch843419Section(InputSection *p, uint64_t off) 396 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, 397 ".text.patch"), 398 patchee(p), patcheeOffset(off) { 399 this->parent = p->getParent(); 400 patchSym = addSyntheticLocal( 401 saver().save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 402 0, getSize(), *this); 403 addSyntheticLocal(saver().save("$x"), STT_NOTYPE, 0, 0, *this); 404 } 405 406 uint64_t Patch843419Section::getLDSTAddr() const { 407 return patchee->getVA(patcheeOffset); 408 } 409 410 void Patch843419Section::writeTo(uint8_t *buf) { 411 // Copy the instruction that we will be replacing with a branch in the 412 // patchee Section. 413 write32le(buf, read32le(patchee->content().begin() + patcheeOffset)); 414 415 // Apply any relocation transferred from the original patchee section. 416 target->relocateAlloc(*this, buf); 417 418 // Return address is the next instruction after the one we have just copied. 419 uint64_t s = getLDSTAddr() + 4; 420 uint64_t p = patchSym->getVA() + 4; 421 target->relocateNoSym(buf + 4, R_AARCH64_JUMP26, s - p); 422 } 423 424 void AArch64Err843419Patcher::init() { 425 // The AArch64 ABI permits data in executable sections. We must avoid scanning 426 // this data as if it were instructions to avoid false matches. We use the 427 // mapping symbols in the InputObjects to identify this data, caching the 428 // results in sectionMap so we don't have to recalculate it each pass. 429 430 // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe 431 // half open intervals [Symbol Value, Next Symbol Value) of code and data 432 // within sections. If there is no next symbol then the half open interval is 433 // [Symbol Value, End of section). The type, code or data, is determined by 434 // the mapping symbol name, $x for code, $d for data. 435 auto isCodeMapSymbol = [](const Symbol *b) { 436 return b->getName() == "$x" || b->getName().starts_with("$x."); 437 }; 438 auto isDataMapSymbol = [](const Symbol *b) { 439 return b->getName() == "$d" || b->getName().starts_with("$d."); 440 }; 441 442 // Collect mapping symbols for every executable InputSection. 443 for (ELFFileBase *file : ctx.objectFiles) { 444 for (Symbol *b : file->getLocalSymbols()) { 445 auto *def = dyn_cast<Defined>(b); 446 if (!def) 447 continue; 448 if (!isCodeMapSymbol(def) && !isDataMapSymbol(def)) 449 continue; 450 if (auto *sec = dyn_cast_or_null<InputSection>(def->section)) 451 if (sec->flags & SHF_EXECINSTR) 452 sectionMap[sec].push_back(def); 453 } 454 } 455 // For each InputSection make sure the mapping symbols are in sorted in 456 // ascending order and free from consecutive runs of mapping symbols with 457 // the same type. For example we must remove the redundant $d.1 from $x.0 458 // $d.0 $d.1 $x.1. 459 for (auto &kv : sectionMap) { 460 std::vector<const Defined *> &mapSyms = kv.second; 461 llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) { 462 return a->value < b->value; 463 }); 464 mapSyms.erase( 465 std::unique(mapSyms.begin(), mapSyms.end(), 466 [=](const Defined *a, const Defined *b) { 467 return isCodeMapSymbol(a) == isCodeMapSymbol(b); 468 }), 469 mapSyms.end()); 470 // Always start with a Code Mapping Symbol. 471 if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front())) 472 mapSyms.erase(mapSyms.begin()); 473 } 474 initialized = true; 475 } 476 477 // Insert the PatchSections we have created back into the 478 // InputSectionDescription. As inserting patches alters the addresses of 479 // InputSections that follow them, we try and place the patches after all the 480 // executable sections, although we may need to insert them earlier if the 481 // InputSectionDescription is larger than the maximum branch range. 482 void AArch64Err843419Patcher::insertPatches( 483 InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) { 484 uint64_t isecLimit; 485 uint64_t prevIsecLimit = isd.sections.front()->outSecOff; 486 uint64_t patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing(); 487 uint64_t outSecAddr = isd.sections.front()->getParent()->addr; 488 489 // Set the outSecOff of patches to the place where we want to insert them. 490 // We use a similar strategy to Thunk placement. Place patches roughly 491 // every multiple of maximum branch range. 492 auto patchIt = patches.begin(); 493 auto patchEnd = patches.end(); 494 for (const InputSection *isec : isd.sections) { 495 isecLimit = isec->outSecOff + isec->getSize(); 496 if (isecLimit > patchUpperBound) { 497 while (patchIt != patchEnd) { 498 if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit) 499 break; 500 (*patchIt)->outSecOff = prevIsecLimit; 501 ++patchIt; 502 } 503 patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing(); 504 } 505 prevIsecLimit = isecLimit; 506 } 507 for (; patchIt != patchEnd; ++patchIt) { 508 (*patchIt)->outSecOff = isecLimit; 509 } 510 511 // Merge all patch sections. We use the outSecOff assigned above to 512 // determine the insertion point. This is ok as we only merge into an 513 // InputSectionDescription once per pass, and at the end of the pass 514 // assignAddresses() will recalculate all the outSecOff values. 515 SmallVector<InputSection *, 0> tmp; 516 tmp.reserve(isd.sections.size() + patches.size()); 517 auto mergeCmp = [](const InputSection *a, const InputSection *b) { 518 if (a->outSecOff != b->outSecOff) 519 return a->outSecOff < b->outSecOff; 520 return isa<Patch843419Section>(a) && !isa<Patch843419Section>(b); 521 }; 522 std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(), 523 patches.end(), std::back_inserter(tmp), mergeCmp); 524 isd.sections = std::move(tmp); 525 } 526 527 // Given an erratum sequence that starts at address adrpAddr, with an 528 // instruction that we need to patch at patcheeOffset from the start of 529 // InputSection isec, create a Patch843419 Section and add it to the 530 // Patches that we need to insert. 531 static void implementPatch(uint64_t adrpAddr, uint64_t patcheeOffset, 532 InputSection *isec, 533 std::vector<Patch843419Section *> &patches) { 534 // There may be a relocation at the same offset that we are patching. There 535 // are four cases that we need to consider. 536 // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this 537 // instance of the erratum on a previous patch and altered the relocation. We 538 // have nothing more to do. 539 // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that 540 // we read will be transformed into a MOVZ later so we actually don't match 541 // the sequence and have nothing more to do. 542 // Case 3: A load/store register (unsigned immediate) class relocation. There 543 // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and 544 // they are both absolute. We need to add the same relocation to the patch, 545 // and replace the relocation with a R_AARCH_JUMP26 branch relocation. 546 // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch 547 // relocation at the offset. 548 auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) { 549 return r.offset == patcheeOffset; 550 }); 551 if (relIt != isec->relocs().end() && 552 (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE)) 553 return; 554 555 log("detected cortex-a53-843419 erratum sequence starting at " + 556 utohexstr(adrpAddr) + " in unpatched output."); 557 558 auto *ps = make<Patch843419Section>(isec, patcheeOffset); 559 patches.push_back(ps); 560 561 auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) { 562 return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym}; 563 }; 564 565 if (relIt != isec->relocs().end()) { 566 ps->addReloc({relIt->expr, relIt->type, 0, relIt->addend, relIt->sym}); 567 *relIt = makeRelToPatch(patcheeOffset, ps->patchSym); 568 } else 569 isec->addReloc(makeRelToPatch(patcheeOffset, ps->patchSym)); 570 } 571 572 // Scan all the instructions in InputSectionDescription, for each instance of 573 // the erratum sequence create a Patch843419Section. We return the list of 574 // Patch843419Sections that need to be applied to the InputSectionDescription. 575 std::vector<Patch843419Section *> 576 AArch64Err843419Patcher::patchInputSectionDescription( 577 InputSectionDescription &isd) { 578 std::vector<Patch843419Section *> patches; 579 for (InputSection *isec : isd.sections) { 580 // LLD doesn't use the erratum sequence in SyntheticSections. 581 if (isa<SyntheticSection>(isec)) 582 continue; 583 // Use sectionMap to make sure we only scan code and not inline data. 584 // We have already sorted MapSyms in ascending order and removed consecutive 585 // mapping symbols of the same type. Our range of executable instructions to 586 // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value, 587 // section size). 588 std::vector<const Defined *> &mapSyms = sectionMap[isec]; 589 590 auto codeSym = mapSyms.begin(); 591 while (codeSym != mapSyms.end()) { 592 auto dataSym = std::next(codeSym); 593 uint64_t off = (*codeSym)->value; 594 uint64_t limit = (dataSym == mapSyms.end()) ? isec->content().size() 595 : (*dataSym)->value; 596 597 while (off < limit) { 598 uint64_t startAddr = isec->getVA(off); 599 if (uint64_t patcheeOffset = 600 scanCortexA53Errata843419(isec, off, limit)) 601 implementPatch(startAddr, patcheeOffset, isec, patches); 602 } 603 if (dataSym == mapSyms.end()) 604 break; 605 codeSym = std::next(dataSym); 606 } 607 } 608 return patches; 609 } 610 611 // For each InputSectionDescription make one pass over the executable sections 612 // looking for the erratum sequence; creating a synthetic Patch843419Section 613 // for each instance found. We insert these synthetic patch sections after the 614 // executable code in each InputSectionDescription. 615 // 616 // PreConditions: 617 // The Output and Input Sections have had their final addresses assigned. 618 // 619 // PostConditions: 620 // Returns true if at least one patch was added. The addresses of the 621 // Output and Input Sections may have been changed. 622 // Returns false if no patches were required and no changes were made. 623 bool AArch64Err843419Patcher::createFixes() { 624 if (!initialized) 625 init(); 626 627 bool addressesChanged = false; 628 for (OutputSection *os : outputSections) { 629 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 630 continue; 631 for (SectionCommand *cmd : os->commands) 632 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 633 std::vector<Patch843419Section *> patches = 634 patchInputSectionDescription(*isd); 635 if (!patches.empty()) { 636 insertPatches(*isd, patches); 637 addressesChanged = true; 638 } 639 } 640 } 641 return addressesChanged; 642 } 643