xref: /freebsd/contrib/llvm-project/lld/ELF/AArch64ErrataFix.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===- AArch64ErrataFix.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file implements Section Patching for the purpose of working around
9 // errata in CPUs. The general principle is that an erratum sequence of one or
10 // more instructions is detected in the instruction stream, one of the
11 // instructions in the sequence is replaced with a branch to a patch sequence
12 // of replacement instructions. At the end of the replacement sequence the
13 // patch branches back to the instruction stream.
14 
15 // This technique is only suitable for fixing an erratum when:
16 // - There is a set of necessary conditions required to trigger the erratum that
17 // can be detected at static link time.
18 // - There is a set of replacement instructions that can be used to remove at
19 // least one of the necessary conditions that trigger the erratum.
20 // - We can overwrite an instruction in the erratum sequence with a branch to
21 // the replacement sequence.
22 // - We can place the replacement sequence within range of the branch.
23 
24 // FIXME:
25 // - The implementation here only supports one patch, the AArch64 Cortex-53
26 // errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 versions of the core.
27 // To keep the initial version simple there is no support for multiple
28 // architectures or selection of different patches.
29 //===----------------------------------------------------------------------===//
30 
31 #include "AArch64ErrataFix.h"
32 #include "Config.h"
33 #include "LinkerScript.h"
34 #include "OutputSections.h"
35 #include "Relocations.h"
36 #include "Symbols.h"
37 #include "SyntheticSections.h"
38 #include "Target.h"
39 #include "lld/Common/Memory.h"
40 #include "lld/Common/Strings.h"
41 #include "llvm/Support/Endian.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 
45 using namespace llvm;
46 using namespace llvm::ELF;
47 using namespace llvm::object;
48 using namespace llvm::support;
49 using namespace llvm::support::endian;
50 
51 using namespace lld;
52 using namespace lld::elf;
53 
54 // Helper functions to identify instructions and conditions needed to trigger
55 // the Cortex-A53-843419 erratum.
56 
57 // ADRP
58 // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
59 static bool isADRP(uint32_t instr) {
60   return (instr & 0x9f000000) == 0x90000000;
61 }
62 
63 // Load and store bit patterns from ARMv8-A ARM ARM.
64 // Instructions appear in order of appearance starting from table in
65 // C4.1.3 Loads and Stores.
66 
67 // All loads and stores have 1 (at bit postion 27), (0 at bit position 25).
68 // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
69 static bool isLoadStoreClass(uint32_t instr) {
70   return (instr & 0x0a000000) == 0x08000000;
71 }
72 
73 // LDN/STN multiple no offset
74 // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
75 // LDN/STN multiple post-indexed
76 // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
77 // L == 0 for stores.
78 
79 // Utility routine to decode opcode field of LDN/STN multiple structure
80 // instructions to find the ST1 instructions.
81 // opcode == 0010 ST1 4 registers.
82 // opcode == 0110 ST1 3 registers.
83 // opcode == 0111 ST1 1 register.
84 // opcode == 1010 ST1 2 registers.
85 static bool isST1MultipleOpcode(uint32_t instr) {
86   return (instr & 0x0000f000) == 0x00002000 ||
87          (instr & 0x0000f000) == 0x00006000 ||
88          (instr & 0x0000f000) == 0x00007000 ||
89          (instr & 0x0000f000) == 0x0000a000;
90 }
91 
92 static bool isST1Multiple(uint32_t instr) {
93   return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr);
94 }
95 
96 // Writes to Rn (writeback).
97 static bool isST1MultiplePost(uint32_t instr) {
98   return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr);
99 }
100 
101 // LDN/STN single no offset
102 // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
103 // LDN/STN single post-indexed
104 // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
105 // L == 0 for stores
106 
107 // Utility routine to decode opcode field of LDN/STN single structure
108 // instructions to find the ST1 instructions.
109 // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
110 // opcode == 000 ST1 8-bit.
111 // opcode == 010 ST1 16-bit.
112 // opcode == 100 ST1 32 or 64-bit (Size determines which).
113 static bool isST1SingleOpcode(uint32_t instr) {
114   return (instr & 0x0040e000) == 0x00000000 ||
115          (instr & 0x0040e000) == 0x00004000 ||
116          (instr & 0x0040e000) == 0x00008000;
117 }
118 
119 static bool isST1Single(uint32_t instr) {
120   return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr);
121 }
122 
123 // Writes to Rn (writeback).
124 static bool isST1SinglePost(uint32_t instr) {
125   return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr);
126 }
127 
128 static bool isST1(uint32_t instr) {
129   return isST1Multiple(instr) || isST1MultiplePost(instr) ||
130          isST1Single(instr) || isST1SinglePost(instr);
131 }
132 
133 // Load/store exclusive
134 // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
135 // L == 0 for Stores.
136 static bool isLoadStoreExclusive(uint32_t instr) {
137   return (instr & 0x3f000000) == 0x08000000;
138 }
139 
140 static bool isLoadExclusive(uint32_t instr) {
141   return (instr & 0x3f400000) == 0x08400000;
142 }
143 
144 // Load register literal
145 // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
146 static bool isLoadLiteral(uint32_t instr) {
147   return (instr & 0x3b000000) == 0x18000000;
148 }
149 
150 // Load/store no-allocate pair
151 // (offset)
152 // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
153 // L == 0 for stores.
154 // Never writes to register
155 static bool isSTNP(uint32_t instr) {
156   return (instr & 0x3bc00000) == 0x28000000;
157 }
158 
159 // Load/store register pair
160 // (post-indexed)
161 // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
162 // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
163 // Writes to Rn.
164 static bool isSTPPost(uint32_t instr) {
165   return (instr & 0x3bc00000) == 0x28800000;
166 }
167 
168 // (offset)
169 // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
170 static bool isSTPOffset(uint32_t instr) {
171   return (instr & 0x3bc00000) == 0x29000000;
172 }
173 
174 // (pre-index)
175 // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
176 // Writes to Rn.
177 static bool isSTPPre(uint32_t instr) {
178   return (instr & 0x3bc00000) == 0x29800000;
179 }
180 
181 static bool isSTP(uint32_t instr) {
182   return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr);
183 }
184 
185 // Load/store register (unscaled immediate)
186 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
187 // V == 0 for Scalar, V == 1 for Simd/FP.
188 static bool isLoadStoreUnscaled(uint32_t instr) {
189   return (instr & 0x3b000c00) == 0x38000000;
190 }
191 
192 // Load/store register (immediate post-indexed)
193 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
194 static bool isLoadStoreImmediatePost(uint32_t instr) {
195   return (instr & 0x3b200c00) == 0x38000400;
196 }
197 
198 // Load/store register (unprivileged)
199 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
200 static bool isLoadStoreUnpriv(uint32_t instr) {
201   return (instr & 0x3b200c00) == 0x38000800;
202 }
203 
204 // Load/store register (immediate pre-indexed)
205 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
206 static bool isLoadStoreImmediatePre(uint32_t instr) {
207   return (instr & 0x3b200c00) == 0x38000c00;
208 }
209 
210 // Load/store register (register offset)
211 // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
212 static bool isLoadStoreRegisterOff(uint32_t instr) {
213   return (instr & 0x3b200c00) == 0x38200800;
214 }
215 
216 // Load/store register (unsigned immediate)
217 // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
218 static bool isLoadStoreRegisterUnsigned(uint32_t instr) {
219   return (instr & 0x3b000000) == 0x39000000;
220 }
221 
222 // Rt is always in bit position 0 - 4.
223 static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); }
224 
225 // Rn is always in bit position 5 - 9.
226 static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; }
227 
228 // C4.1.2 Branches, Exception Generating and System instructions
229 // | op0 (3) 1 | 01 op1 (4) | x (22) |
230 // op0 == 010 101 op1 == 0xxx Conditional Branch.
231 // op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
232 // op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
233 // op0 == x01 101 op1 == 0xxx Compare and branch immediate.
234 // op0 == x01 101 op1 == 1xxx Test and branch immediate.
235 static bool isBranch(uint32_t instr) {
236   return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch.
237          ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
238          ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
239          ((instr & 0x7c000000) == 0x34000000);   // Compare and test branch.
240 }
241 
242 static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) {
243   return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) ||
244          isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) ||
245          isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr);
246 }
247 
248 // Note that this function refers to v8.0 only and does not include the
249 // additional load and store instructions added for in later revisions of
250 // the architecture such as the Atomic memory operations introduced
251 // in v8.1.
252 static bool isV8NonStructureLoad(uint32_t instr) {
253   if (isLoadExclusive(instr))
254     return true;
255   if (isLoadLiteral(instr))
256     return true;
257   else if (isV8SingleRegisterNonStructureLoadStore(instr)) {
258     // For Load and Store single register, Loads are derived from a
259     // combination of the Size, V and Opc fields.
260     uint32_t size = (instr >> 30) & 0xff;
261     uint32_t v = (instr >> 26) & 0x1;
262     uint32_t opc = (instr >> 22) & 0x3;
263     // For the load and store instructions that we are decoding.
264     // Opc == 0 are all stores.
265     // Opc == 1 with a couple of exceptions are loads. The exceptions are:
266     // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
267     // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
268     return opc != 0 && !(size == 0 && v == 1 && opc == 2) &&
269            !(size == 3 && v == 0 && opc == 2);
270   }
271   return false;
272 }
273 
274 // The following decode instructions are only complete up to the instructions
275 // needed for errata 843419.
276 
277 // Instruction with writeback updates the index register after the load/store.
278 static bool hasWriteback(uint32_t instr) {
279   return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) ||
280          isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) ||
281          isST1MultiplePost(instr);
282 }
283 
284 // For the load and store class of instructions, a load can write to the
285 // destination register, a load and a store can write to the base register when
286 // the instruction has writeback.
287 static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) {
288   return (isV8NonStructureLoad(instr) && getRt(instr) == reg) ||
289          (hasWriteback(instr) && getRn(instr) == reg);
290 }
291 
292 // Scanner for Cortex-A53 errata 843419
293 // Full details are available in the Cortex A53 MPCore revision 0 Software
294 // Developers Errata Notice (ARM-EPM-048406).
295 //
296 // The instruction sequence that triggers the erratum is common in compiled
297 // AArch64 code, however it is sensitive to the offset of the sequence within
298 // a 4k page. This means that by scanning and fixing the patch after we have
299 // assigned addresses we only need to disassemble and fix instances of the
300 // sequence in the range of affected offsets.
301 //
302 // In summary the erratum conditions are a series of 4 instructions:
303 // 1.) An ADRP instruction that writes to register Rn with low 12 bits of
304 //     address of instruction either 0xff8 or 0xffc.
305 // 2.) A load or store instruction that can be:
306 // - A single register load or store, of either integer or vector registers.
307 // - An STP or STNP, of either integer or vector registers.
308 // - An Advanced SIMD ST1 store instruction.
309 // - Must not write to Rn, but may optionally read from it.
310 // 3.) An optional instruction that is not a branch and does not write to Rn.
311 // 4.) A load or store from the  Load/store register (unsigned immediate) class
312 //     that uses Rn as the base address register.
313 //
314 // Note that we do not attempt to scan for Sequence 2 as described in the
315 // Software Developers Errata Notice as this has been assessed to be extremely
316 // unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
317 
318 // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
319 // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
320 // and 4.) in the Scanner for Cortex-A53 errata comment above.
321 static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2,
322                                     uint32_t instr4) {
323   if (!isADRP(instr1))
324     return false;
325 
326   uint32_t rn = getRt(instr1);
327   return isLoadStoreClass(instr2) &&
328          (isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) ||
329           isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) ||
330           isSTNP(instr2) || isST1(instr2)) &&
331          !doesLoadStoreWriteToReg(instr2, rn) &&
332          isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn;
333 }
334 
335 // Scan the instruction sequence starting at Offset Off from the base of
336 // InputSection IS. We update Off in this function rather than in the caller as
337 // we can skip ahead much further into the section when we know how many
338 // instructions we've scanned.
339 // Return the offset of the load or store instruction in IS that we want to
340 // patch or 0 if no patch required.
341 static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off,
342                                           uint64_t limit) {
343   uint64_t isecAddr = isec->getVA(0);
344 
345   // Advance Off so that (ISAddr + Off) modulo 0x1000 is at least 0xff8.
346   uint64_t initialPageOff = (isecAddr + off) & 0xfff;
347   if (initialPageOff < 0xff8)
348     off += 0xff8 - initialPageOff;
349 
350   bool optionalAllowed = limit - off > 12;
351   if (off >= limit || limit - off < 12) {
352     // Need at least 3 4-byte sized instructions to trigger erratum.
353     off = limit;
354     return 0;
355   }
356 
357   uint64_t patchOff = 0;
358   const uint8_t *buf = isec->data().begin();
359   const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off);
360   uint32_t instr1 = *instBuf++;
361   uint32_t instr2 = *instBuf++;
362   uint32_t instr3 = *instBuf++;
363   if (is843419ErratumSequence(instr1, instr2, instr3)) {
364     patchOff = off + 8;
365   } else if (optionalAllowed && !isBranch(instr3)) {
366     uint32_t instr4 = *instBuf++;
367     if (is843419ErratumSequence(instr1, instr2, instr4))
368       patchOff = off + 12;
369   }
370   if (((isecAddr + off) & 0xfff) == 0xff8)
371     off += 4;
372   else
373     off += 0xffc;
374   return patchOff;
375 }
376 
377 class lld::elf::Patch843419Section : public SyntheticSection {
378 public:
379   Patch843419Section(InputSection *p, uint64_t off);
380 
381   void writeTo(uint8_t *buf) override;
382 
383   size_t getSize() const override { return 8; }
384 
385   uint64_t getLDSTAddr() const;
386 
387   // The Section we are patching.
388   const InputSection *patchee;
389   // The offset of the instruction in the Patchee section we are patching.
390   uint64_t patcheeOffset;
391   // A label for the start of the Patch that we can use as a relocation target.
392   Symbol *patchSym;
393 };
394 
395 lld::elf::Patch843419Section::Patch843419Section(InputSection *p, uint64_t off)
396     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
397                        ".text.patch"),
398       patchee(p), patcheeOffset(off) {
399   this->parent = p->getParent();
400   patchSym = addSyntheticLocal(
401       saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0,
402       getSize(), *this);
403   addSyntheticLocal(saver.save("$x"), STT_NOTYPE, 0, 0, *this);
404 }
405 
406 uint64_t lld::elf::Patch843419Section::getLDSTAddr() const {
407   return patchee->getVA(patcheeOffset);
408 }
409 
410 void lld::elf::Patch843419Section::writeTo(uint8_t *buf) {
411   // Copy the instruction that we will be replacing with a branch in the
412   // Patchee Section.
413   write32le(buf, read32le(patchee->data().begin() + patcheeOffset));
414 
415   // Apply any relocation transferred from the original PatcheeSection.
416   // For a SyntheticSection Buf already has outSecOff added, but relocateAlloc
417   // also adds outSecOff so we need to subtract to avoid double counting.
418   this->relocateAlloc(buf - outSecOff, buf - outSecOff + getSize());
419 
420   // Return address is the next instruction after the one we have just copied.
421   uint64_t s = getLDSTAddr() + 4;
422   uint64_t p = patchSym->getVA() + 4;
423   target->relocateOne(buf + 4, R_AARCH64_JUMP26, s - p);
424 }
425 
426 void AArch64Err843419Patcher::init() {
427   // The AArch64 ABI permits data in executable sections. We must avoid scanning
428   // this data as if it were instructions to avoid false matches. We use the
429   // mapping symbols in the InputObjects to identify this data, caching the
430   // results in sectionMap so we don't have to recalculate it each pass.
431 
432   // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
433   // half open intervals [Symbol Value, Next Symbol Value) of code and data
434   // within sections. If there is no next symbol then the half open interval is
435   // [Symbol Value, End of section). The type, code or data, is determined by
436   // the mapping symbol name, $x for code, $d for data.
437   auto isCodeMapSymbol = [](const Symbol *b) {
438     return b->getName() == "$x" || b->getName().startswith("$x.");
439   };
440   auto isDataMapSymbol = [](const Symbol *b) {
441     return b->getName() == "$d" || b->getName().startswith("$d.");
442   };
443 
444   // Collect mapping symbols for every executable InputSection.
445   for (InputFile *file : objectFiles) {
446     auto *f = cast<ObjFile<ELF64LE>>(file);
447     for (Symbol *b : f->getLocalSymbols()) {
448       auto *def = dyn_cast<Defined>(b);
449       if (!def)
450         continue;
451       if (!isCodeMapSymbol(def) && !isDataMapSymbol(def))
452         continue;
453       if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
454         if (sec->flags & SHF_EXECINSTR)
455           sectionMap[sec].push_back(def);
456     }
457   }
458   // For each InputSection make sure the mapping symbols are in sorted in
459   // ascending order and free from consecutive runs of mapping symbols with
460   // the same type. For example we must remove the redundant $d.1 from $x.0
461   // $d.0 $d.1 $x.1.
462   for (auto &kv : sectionMap) {
463     std::vector<const Defined *> &mapSyms = kv.second;
464     if (mapSyms.size() <= 1)
465       continue;
466     llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
467       return a->value < b->value;
468     });
469     mapSyms.erase(
470         std::unique(mapSyms.begin(), mapSyms.end(),
471                     [=](const Defined *a, const Defined *b) {
472                       return (isCodeMapSymbol(a) && isCodeMapSymbol(b)) ||
473                              (isDataMapSymbol(a) && isDataMapSymbol(b));
474                     }),
475         mapSyms.end());
476   }
477   initialized = true;
478 }
479 
480 // Insert the PatchSections we have created back into the
481 // InputSectionDescription. As inserting patches alters the addresses of
482 // InputSections that follow them, we try and place the patches after all the
483 // executable sections, although we may need to insert them earlier if the
484 // InputSectionDescription is larger than the maximum branch range.
485 void AArch64Err843419Patcher::insertPatches(
486     InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) {
487   uint64_t isecLimit;
488   uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
489   uint64_t patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
490   uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
491 
492   // Set the outSecOff of patches to the place where we want to insert them.
493   // We use a similar strategy to Thunk placement. Place patches roughly
494   // every multiple of maximum branch range.
495   auto patchIt = patches.begin();
496   auto patchEnd = patches.end();
497   for (const InputSection *isec : isd.sections) {
498     isecLimit = isec->outSecOff + isec->getSize();
499     if (isecLimit > patchUpperBound) {
500       while (patchIt != patchEnd) {
501         if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit)
502           break;
503         (*patchIt)->outSecOff = prevIsecLimit;
504         ++patchIt;
505       }
506       patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
507     }
508     prevIsecLimit = isecLimit;
509   }
510   for (; patchIt != patchEnd; ++patchIt) {
511     (*patchIt)->outSecOff = isecLimit;
512   }
513 
514   // merge all patch sections. We use the outSecOff assigned above to
515   // determine the insertion point. This is ok as we only merge into an
516   // InputSectionDescription once per pass, and at the end of the pass
517   // assignAddresses() will recalculate all the outSecOff values.
518   std::vector<InputSection *> tmp;
519   tmp.reserve(isd.sections.size() + patches.size());
520   auto mergeCmp = [](const InputSection *a, const InputSection *b) {
521     if (a->outSecOff < b->outSecOff)
522       return true;
523     if (a->outSecOff == b->outSecOff && isa<Patch843419Section>(a) &&
524         !isa<Patch843419Section>(b))
525       return true;
526     return false;
527   };
528   std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
529              patches.end(), std::back_inserter(tmp), mergeCmp);
530   isd.sections = std::move(tmp);
531 }
532 
533 // Given an erratum sequence that starts at address adrpAddr, with an
534 // instruction that we need to patch at patcheeOffset from the start of
535 // InputSection IS, create a Patch843419 Section and add it to the
536 // Patches that we need to insert.
537 static void implementPatch(uint64_t adrpAddr, uint64_t patcheeOffset,
538                            InputSection *isec,
539                            std::vector<Patch843419Section *> &patches) {
540   // There may be a relocation at the same offset that we are patching. There
541   // are four cases that we need to consider.
542   // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this
543   // instance of the erratum on a previous patch and altered the relocation. We
544   // have nothing more to do.
545   // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that
546   // we read will be transformed into a MOVZ later so we actually don't match
547   // the sequence and have nothing more to do.
548   // Case 3: A load/store register (unsigned immediate) class relocation. There
549   // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and
550   // they are both absolute. We need to add the same relocation to the patch,
551   // and replace the relocation with a R_AARCH_JUMP26 branch relocation.
552   // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch
553   // relocation at the offset.
554   auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
555     return r.offset == patcheeOffset;
556   });
557   if (relIt != isec->relocations.end() &&
558       (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE))
559     return;
560 
561   log("detected cortex-a53-843419 erratum sequence starting at " +
562       utohexstr(adrpAddr) + " in unpatched output.");
563 
564   auto *ps = make<Patch843419Section>(isec, patcheeOffset);
565   patches.push_back(ps);
566 
567   auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) {
568     return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym};
569   };
570 
571   if (relIt != isec->relocations.end()) {
572     ps->relocations.push_back(
573         {relIt->expr, relIt->type, 0, relIt->addend, relIt->sym});
574     *relIt = makeRelToPatch(patcheeOffset, ps->patchSym);
575   } else
576     isec->relocations.push_back(makeRelToPatch(patcheeOffset, ps->patchSym));
577 }
578 
579 // Scan all the instructions in InputSectionDescription, for each instance of
580 // the erratum sequence create a Patch843419Section. We return the list of
581 // Patch843419Sections that need to be applied to ISD.
582 std::vector<Patch843419Section *>
583 AArch64Err843419Patcher::patchInputSectionDescription(
584     InputSectionDescription &isd) {
585   std::vector<Patch843419Section *> patches;
586   for (InputSection *isec : isd.sections) {
587     //  LLD doesn't use the erratum sequence in SyntheticSections.
588     if (isa<SyntheticSection>(isec))
589       continue;
590     // Use sectionMap to make sure we only scan code and not inline data.
591     // We have already sorted MapSyms in ascending order and removed consecutive
592     // mapping symbols of the same type. Our range of executable instructions to
593     // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value,
594     // section size).
595     std::vector<const Defined *> &mapSyms = sectionMap[isec];
596 
597     auto codeSym = llvm::find_if(mapSyms, [&](const Defined *ms) {
598       return ms->getName().startswith("$x");
599     });
600 
601     while (codeSym != mapSyms.end()) {
602       auto dataSym = std::next(codeSym);
603       uint64_t off = (*codeSym)->value;
604       uint64_t limit =
605           (dataSym == mapSyms.end()) ? isec->data().size() : (*dataSym)->value;
606 
607       while (off < limit) {
608         uint64_t startAddr = isec->getVA(off);
609         if (uint64_t patcheeOffset = scanCortexA53Errata843419(isec, off, limit))
610           implementPatch(startAddr, patcheeOffset, isec, patches);
611       }
612       if (dataSym == mapSyms.end())
613         break;
614       codeSym = std::next(dataSym);
615     }
616   }
617   return patches;
618 }
619 
620 // For each InputSectionDescription make one pass over the executable sections
621 // looking for the erratum sequence; creating a synthetic Patch843419Section
622 // for each instance found. We insert these synthetic patch sections after the
623 // executable code in each InputSectionDescription.
624 //
625 // PreConditions:
626 // The Output and Input Sections have had their final addresses assigned.
627 //
628 // PostConditions:
629 // Returns true if at least one patch was added. The addresses of the
630 // Ouptut and Input Sections may have been changed.
631 // Returns false if no patches were required and no changes were made.
632 bool AArch64Err843419Patcher::createFixes() {
633   if (initialized == false)
634     init();
635 
636   bool addressesChanged = false;
637   for (OutputSection *os : outputSections) {
638     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
639       continue;
640     for (BaseCommand *bc : os->sectionCommands)
641       if (auto *isd = dyn_cast<InputSectionDescription>(bc)) {
642         std::vector<Patch843419Section *> patches =
643             patchInputSectionDescription(*isd);
644         if (!patches.empty()) {
645           insertPatches(*isd, patches);
646           addressesChanged = true;
647         }
648       }
649   }
650   return addressesChanged;
651 }
652