xref: /freebsd/contrib/llvm-project/lld/COFF/Writer.cpp (revision d7d962ead0b6e5e8a39202d0590022082bf5bfb6)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "CallGraphSort.h"
11 #include "Config.h"
12 #include "DLL.h"
13 #include "InputFiles.h"
14 #include "LLDMapFile.h"
15 #include "MapFile.h"
16 #include "PDB.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "lld/Common/ErrorHandler.h"
20 #include "lld/Common/Memory.h"
21 #include "lld/Common/Timer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/Support/BinaryStreamReader.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/FileOutputBuffer.h"
30 #include "llvm/Support/Parallel.h"
31 #include "llvm/Support/Path.h"
32 #include "llvm/Support/RandomNumberGenerator.h"
33 #include "llvm/Support/xxhash.h"
34 #include <algorithm>
35 #include <cstdio>
36 #include <map>
37 #include <memory>
38 #include <utility>
39 
40 using namespace llvm;
41 using namespace llvm::COFF;
42 using namespace llvm::object;
43 using namespace llvm::support;
44 using namespace llvm::support::endian;
45 using namespace lld;
46 using namespace lld::coff;
47 
48 /* To re-generate DOSProgram:
49 $ cat > /tmp/DOSProgram.asm
50 org 0
51         ; Copy cs to ds.
52         push cs
53         pop ds
54         ; Point ds:dx at the $-terminated string.
55         mov dx, str
56         ; Int 21/AH=09h: Write string to standard output.
57         mov ah, 0x9
58         int 0x21
59         ; Int 21/AH=4Ch: Exit with return code (in AL).
60         mov ax, 0x4C01
61         int 0x21
62 str:
63         db 'This program cannot be run in DOS mode.$'
64 align 8, db 0
65 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
66 $ xxd -i /tmp/DOSProgram.bin
67 */
68 static unsigned char dosProgram[] = {
69   0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
70   0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
71   0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
72   0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
73   0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
74 };
75 static_assert(sizeof(dosProgram) % 8 == 0,
76               "DOSProgram size must be multiple of 8");
77 
78 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
79 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
80 
81 static const int numberOfDataDirectory = 16;
82 
83 // Global vector of all output sections. After output sections are finalized,
84 // this can be indexed by Chunk::getOutputSection.
85 static std::vector<OutputSection *> outputSections;
86 
87 OutputSection *Chunk::getOutputSection() const {
88   return osidx == 0 ? nullptr : outputSections[osidx - 1];
89 }
90 
91 void OutputSection::clear() { outputSections.clear(); }
92 
93 namespace {
94 
95 class DebugDirectoryChunk : public NonSectionChunk {
96 public:
97   DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
98                       bool writeRepro)
99       : records(r), writeRepro(writeRepro) {}
100 
101   size_t getSize() const override {
102     return (records.size() + int(writeRepro)) * sizeof(debug_directory);
103   }
104 
105   void writeTo(uint8_t *b) const override {
106     auto *d = reinterpret_cast<debug_directory *>(b);
107 
108     for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
109       Chunk *c = record.second;
110       OutputSection *os = c->getOutputSection();
111       uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
112       fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
113       ++d;
114     }
115 
116     if (writeRepro) {
117       // FIXME: The COFF spec allows either a 0-sized entry to just say
118       // "the timestamp field is really a hash", or a 4-byte size field
119       // followed by that many bytes containing a longer hash (with the
120       // lowest 4 bytes usually being the timestamp in little-endian order).
121       // Consider storing the full 8 bytes computed by xxHash64 here.
122       fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
123     }
124   }
125 
126   void setTimeDateStamp(uint32_t timeDateStamp) {
127     for (support::ulittle32_t *tds : timeDateStamps)
128       *tds = timeDateStamp;
129   }
130 
131 private:
132   void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
133                  uint64_t rva, uint64_t offs) const {
134     d->Characteristics = 0;
135     d->TimeDateStamp = 0;
136     d->MajorVersion = 0;
137     d->MinorVersion = 0;
138     d->Type = debugType;
139     d->SizeOfData = size;
140     d->AddressOfRawData = rva;
141     d->PointerToRawData = offs;
142 
143     timeDateStamps.push_back(&d->TimeDateStamp);
144   }
145 
146   mutable std::vector<support::ulittle32_t *> timeDateStamps;
147   const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
148   bool writeRepro;
149 };
150 
151 class CVDebugRecordChunk : public NonSectionChunk {
152 public:
153   size_t getSize() const override {
154     return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1;
155   }
156 
157   void writeTo(uint8_t *b) const override {
158     // Save off the DebugInfo entry to backfill the file signature (build id)
159     // in Writer::writeBuildId
160     buildId = reinterpret_cast<codeview::DebugInfo *>(b);
161 
162     // variable sized field (PDB Path)
163     char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
164     if (!config->pdbAltPath.empty())
165       memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size());
166     p[config->pdbAltPath.size()] = '\0';
167   }
168 
169   mutable codeview::DebugInfo *buildId = nullptr;
170 };
171 
172 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
173 public:
174   ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
175 
176   size_t getSize() const override { return 4; }
177 
178   void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
179 
180   uint32_t characteristics = 0;
181 };
182 
183 // PartialSection represents a group of chunks that contribute to an
184 // OutputSection. Collating a collection of PartialSections of same name and
185 // characteristics constitutes the OutputSection.
186 class PartialSectionKey {
187 public:
188   StringRef name;
189   unsigned characteristics;
190 
191   bool operator<(const PartialSectionKey &other) const {
192     int c = name.compare(other.name);
193     if (c == 1)
194       return false;
195     if (c == 0)
196       return characteristics < other.characteristics;
197     return true;
198   }
199 };
200 
201 // The writer writes a SymbolTable result to a file.
202 class Writer {
203 public:
204   Writer() : buffer(errorHandler().outputBuffer) {}
205   void run();
206 
207 private:
208   void createSections();
209   void createMiscChunks();
210   void createImportTables();
211   void appendImportThunks();
212   void locateImportTables();
213   void createExportTable();
214   void mergeSections();
215   void removeUnusedSections();
216   void assignAddresses();
217   void finalizeAddresses();
218   void removeEmptySections();
219   void assignOutputSectionIndices();
220   void createSymbolAndStringTable();
221   void openFile(StringRef outputPath);
222   template <typename PEHeaderTy> void writeHeader();
223   void createSEHTable();
224   void createRuntimePseudoRelocs();
225   void insertCtorDtorSymbols();
226   void createGuardCFTables();
227   void markSymbolsForRVATable(ObjFile *file,
228                               ArrayRef<SectionChunk *> symIdxChunks,
229                               SymbolRVASet &tableSymbols);
230   void getSymbolsFromSections(ObjFile *file,
231                               ArrayRef<SectionChunk *> symIdxChunks,
232                               std::vector<Symbol *> &symbols);
233   void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
234                         StringRef countSym);
235   void setSectionPermissions();
236   void writeSections();
237   void writeBuildId();
238   void sortSections();
239   void sortExceptionTable();
240   void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
241   void addSyntheticIdata();
242   void fixPartialSectionChars(StringRef name, uint32_t chars);
243   bool fixGnuImportChunks();
244   void fixTlsAlignment();
245   PartialSection *createPartialSection(StringRef name, uint32_t outChars);
246   PartialSection *findPartialSection(StringRef name, uint32_t outChars);
247 
248   llvm::Optional<coff_symbol16> createSymbol(Defined *d);
249   size_t addEntryToStringTable(StringRef str);
250 
251   OutputSection *findSection(StringRef name);
252   void addBaserels();
253   void addBaserelBlocks(std::vector<Baserel> &v);
254 
255   uint32_t getSizeOfInitializedData();
256 
257   std::unique_ptr<FileOutputBuffer> &buffer;
258   std::map<PartialSectionKey, PartialSection *> partialSections;
259   std::vector<char> strtab;
260   std::vector<llvm::object::coff_symbol16> outputSymtab;
261   IdataContents idata;
262   Chunk *importTableStart = nullptr;
263   uint64_t importTableSize = 0;
264   Chunk *edataStart = nullptr;
265   Chunk *edataEnd = nullptr;
266   Chunk *iatStart = nullptr;
267   uint64_t iatSize = 0;
268   DelayLoadContents delayIdata;
269   EdataContents edata;
270   bool setNoSEHCharacteristic = false;
271   uint32_t tlsAlignment = 0;
272 
273   DebugDirectoryChunk *debugDirectory = nullptr;
274   std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
275   CVDebugRecordChunk *buildId = nullptr;
276   ArrayRef<uint8_t> sectionTable;
277 
278   uint64_t fileSize;
279   uint32_t pointerToSymbolTable = 0;
280   uint64_t sizeOfImage;
281   uint64_t sizeOfHeaders;
282 
283   OutputSection *textSec;
284   OutputSection *rdataSec;
285   OutputSection *buildidSec;
286   OutputSection *dataSec;
287   OutputSection *pdataSec;
288   OutputSection *idataSec;
289   OutputSection *edataSec;
290   OutputSection *didatSec;
291   OutputSection *rsrcSec;
292   OutputSection *relocSec;
293   OutputSection *ctorsSec;
294   OutputSection *dtorsSec;
295 
296   // The first and last .pdata sections in the output file.
297   //
298   // We need to keep track of the location of .pdata in whichever section it
299   // gets merged into so that we can sort its contents and emit a correct data
300   // directory entry for the exception table. This is also the case for some
301   // other sections (such as .edata) but because the contents of those sections
302   // are entirely linker-generated we can keep track of their locations using
303   // the chunks that the linker creates. All .pdata chunks come from input
304   // files, so we need to keep track of them separately.
305   Chunk *firstPdata = nullptr;
306   Chunk *lastPdata;
307 };
308 } // anonymous namespace
309 
310 static Timer codeLayoutTimer("Code Layout", Timer::root());
311 static Timer diskCommitTimer("Commit Output File", Timer::root());
312 
313 void lld::coff::writeResult() { Writer().run(); }
314 
315 void OutputSection::addChunk(Chunk *c) {
316   chunks.push_back(c);
317 }
318 
319 void OutputSection::insertChunkAtStart(Chunk *c) {
320   chunks.insert(chunks.begin(), c);
321 }
322 
323 void OutputSection::setPermissions(uint32_t c) {
324   header.Characteristics &= ~permMask;
325   header.Characteristics |= c;
326 }
327 
328 void OutputSection::merge(OutputSection *other) {
329   chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
330   other->chunks.clear();
331   contribSections.insert(contribSections.end(), other->contribSections.begin(),
332                          other->contribSections.end());
333   other->contribSections.clear();
334 }
335 
336 // Write the section header to a given buffer.
337 void OutputSection::writeHeaderTo(uint8_t *buf) {
338   auto *hdr = reinterpret_cast<coff_section *>(buf);
339   *hdr = header;
340   if (stringTableOff) {
341     // If name is too long, write offset into the string table as a name.
342     sprintf(hdr->Name, "/%d", stringTableOff);
343   } else {
344     assert(!config->debug || name.size() <= COFF::NameSize ||
345            (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
346     strncpy(hdr->Name, name.data(),
347             std::min(name.size(), (size_t)COFF::NameSize));
348   }
349 }
350 
351 void OutputSection::addContributingPartialSection(PartialSection *sec) {
352   contribSections.push_back(sec);
353 }
354 
355 // Check whether the target address S is in range from a relocation
356 // of type relType at address P.
357 static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
358   if (config->machine == ARMNT) {
359     int64_t diff = AbsoluteDifference(s, p + 4) + margin;
360     switch (relType) {
361     case IMAGE_REL_ARM_BRANCH20T:
362       return isInt<21>(diff);
363     case IMAGE_REL_ARM_BRANCH24T:
364     case IMAGE_REL_ARM_BLX23T:
365       return isInt<25>(diff);
366     default:
367       return true;
368     }
369   } else if (config->machine == ARM64) {
370     int64_t diff = AbsoluteDifference(s, p) + margin;
371     switch (relType) {
372     case IMAGE_REL_ARM64_BRANCH26:
373       return isInt<28>(diff);
374     case IMAGE_REL_ARM64_BRANCH19:
375       return isInt<21>(diff);
376     case IMAGE_REL_ARM64_BRANCH14:
377       return isInt<16>(diff);
378     default:
379       return true;
380     }
381   } else {
382     llvm_unreachable("Unexpected architecture");
383   }
384 }
385 
386 // Return the last thunk for the given target if it is in range,
387 // or create a new one.
388 static std::pair<Defined *, bool>
389 getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p,
390          uint16_t type, int margin) {
391   Defined *&lastThunk = lastThunks[target->getRVA()];
392   if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
393     return {lastThunk, false};
394   Chunk *c;
395   switch (config->machine) {
396   case ARMNT:
397     c = make<RangeExtensionThunkARM>(target);
398     break;
399   case ARM64:
400     c = make<RangeExtensionThunkARM64>(target);
401     break;
402   default:
403     llvm_unreachable("Unexpected architecture");
404   }
405   Defined *d = make<DefinedSynthetic>("", c);
406   lastThunk = d;
407   return {d, true};
408 }
409 
410 // This checks all relocations, and for any relocation which isn't in range
411 // it adds a thunk after the section chunk that contains the relocation.
412 // If the latest thunk for the specific target is in range, that is used
413 // instead of creating a new thunk. All range checks are done with the
414 // specified margin, to make sure that relocations that originally are in
415 // range, but only barely, also get thunks - in case other added thunks makes
416 // the target go out of range.
417 //
418 // After adding thunks, we verify that all relocations are in range (with
419 // no extra margin requirements). If this failed, we restart (throwing away
420 // the previously created thunks) and retry with a wider margin.
421 static bool createThunks(OutputSection *os, int margin) {
422   bool addressesChanged = false;
423   DenseMap<uint64_t, Defined *> lastThunks;
424   DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
425   size_t thunksSize = 0;
426   // Recheck Chunks.size() each iteration, since we can insert more
427   // elements into it.
428   for (size_t i = 0; i != os->chunks.size(); ++i) {
429     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
430     if (!sc)
431       continue;
432     size_t thunkInsertionSpot = i + 1;
433 
434     // Try to get a good enough estimate of where new thunks will be placed.
435     // Offset this by the size of the new thunks added so far, to make the
436     // estimate slightly better.
437     size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
438     ObjFile *file = sc->file;
439     std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
440     ArrayRef<coff_relocation> originalRelocs =
441         file->getCOFFObj()->getRelocations(sc->header);
442     for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
443       const coff_relocation &rel = originalRelocs[j];
444       Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
445 
446       // The estimate of the source address P should be pretty accurate,
447       // but we don't know whether the target Symbol address should be
448       // offset by thunksSize or not (or by some of thunksSize but not all of
449       // it), giving us some uncertainty once we have added one thunk.
450       uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
451 
452       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
453       if (!sym)
454         continue;
455 
456       uint64_t s = sym->getRVA();
457 
458       if (isInRange(rel.Type, s, p, margin))
459         continue;
460 
461       // If the target isn't in range, hook it up to an existing or new
462       // thunk.
463       Defined *thunk;
464       bool wasNew;
465       std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin);
466       if (wasNew) {
467         Chunk *thunkChunk = thunk->getChunk();
468         thunkChunk->setRVA(
469             thunkInsertionRVA); // Estimate of where it will be located.
470         os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
471         thunkInsertionSpot++;
472         thunksSize += thunkChunk->getSize();
473         thunkInsertionRVA += thunkChunk->getSize();
474         addressesChanged = true;
475       }
476 
477       // To redirect the relocation, add a symbol to the parent object file's
478       // symbol table, and replace the relocation symbol table index with the
479       // new index.
480       auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
481       uint32_t &thunkSymbolIndex = insertion.first->second;
482       if (insertion.second)
483         thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
484       relocReplacements.push_back({j, thunkSymbolIndex});
485     }
486 
487     // Get a writable copy of this section's relocations so they can be
488     // modified. If the relocations point into the object file, allocate new
489     // memory. Otherwise, this must be previously allocated memory that can be
490     // modified in place.
491     ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
492     MutableArrayRef<coff_relocation> newRelocs;
493     if (originalRelocs.data() == curRelocs.data()) {
494       newRelocs = makeMutableArrayRef(
495           bAlloc.Allocate<coff_relocation>(originalRelocs.size()),
496           originalRelocs.size());
497     } else {
498       newRelocs = makeMutableArrayRef(
499           const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
500     }
501 
502     // Copy each relocation, but replace the symbol table indices which need
503     // thunks.
504     auto nextReplacement = relocReplacements.begin();
505     auto endReplacement = relocReplacements.end();
506     for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
507       newRelocs[i] = originalRelocs[i];
508       if (nextReplacement != endReplacement && nextReplacement->first == i) {
509         newRelocs[i].SymbolTableIndex = nextReplacement->second;
510         ++nextReplacement;
511       }
512     }
513 
514     sc->setRelocs(newRelocs);
515   }
516   return addressesChanged;
517 }
518 
519 // Verify that all relocations are in range, with no extra margin requirements.
520 static bool verifyRanges(const std::vector<Chunk *> chunks) {
521   for (Chunk *c : chunks) {
522     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
523     if (!sc)
524       continue;
525 
526     ArrayRef<coff_relocation> relocs = sc->getRelocs();
527     for (size_t j = 0, e = relocs.size(); j < e; ++j) {
528       const coff_relocation &rel = relocs[j];
529       Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
530 
531       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
532       if (!sym)
533         continue;
534 
535       uint64_t p = sc->getRVA() + rel.VirtualAddress;
536       uint64_t s = sym->getRVA();
537 
538       if (!isInRange(rel.Type, s, p, 0))
539         return false;
540     }
541   }
542   return true;
543 }
544 
545 // Assign addresses and add thunks if necessary.
546 void Writer::finalizeAddresses() {
547   assignAddresses();
548   if (config->machine != ARMNT && config->machine != ARM64)
549     return;
550 
551   size_t origNumChunks = 0;
552   for (OutputSection *sec : outputSections) {
553     sec->origChunks = sec->chunks;
554     origNumChunks += sec->chunks.size();
555   }
556 
557   int pass = 0;
558   int margin = 1024 * 100;
559   while (true) {
560     // First check whether we need thunks at all, or if the previous pass of
561     // adding them turned out ok.
562     bool rangesOk = true;
563     size_t numChunks = 0;
564     for (OutputSection *sec : outputSections) {
565       if (!verifyRanges(sec->chunks)) {
566         rangesOk = false;
567         break;
568       }
569       numChunks += sec->chunks.size();
570     }
571     if (rangesOk) {
572       if (pass > 0)
573         log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
574             "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
575       return;
576     }
577 
578     if (pass >= 10)
579       fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
580 
581     if (pass > 0) {
582       // If the previous pass didn't work out, reset everything back to the
583       // original conditions before retrying with a wider margin. This should
584       // ideally never happen under real circumstances.
585       for (OutputSection *sec : outputSections)
586         sec->chunks = sec->origChunks;
587       margin *= 2;
588     }
589 
590     // Try adding thunks everywhere where it is needed, with a margin
591     // to avoid things going out of range due to the added thunks.
592     bool addressesChanged = false;
593     for (OutputSection *sec : outputSections)
594       addressesChanged |= createThunks(sec, margin);
595     // If the verification above thought we needed thunks, we should have
596     // added some.
597     assert(addressesChanged);
598 
599     // Recalculate the layout for the whole image (and verify the ranges at
600     // the start of the next round).
601     assignAddresses();
602 
603     pass++;
604   }
605 }
606 
607 // The main function of the writer.
608 void Writer::run() {
609   ScopedTimer t1(codeLayoutTimer);
610 
611   // First, clear the output sections from previous runs
612   outputSections.clear();
613 
614   createImportTables();
615   createSections();
616   appendImportThunks();
617   // Import thunks must be added before the Control Flow Guard tables are added.
618   createMiscChunks();
619   createExportTable();
620   mergeSections();
621   removeUnusedSections();
622   finalizeAddresses();
623   removeEmptySections();
624   assignOutputSectionIndices();
625   setSectionPermissions();
626   createSymbolAndStringTable();
627 
628   if (fileSize > UINT32_MAX)
629     fatal("image size (" + Twine(fileSize) + ") " +
630         "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
631 
632   openFile(config->outputFile);
633   if (config->is64()) {
634     writeHeader<pe32plus_header>();
635   } else {
636     writeHeader<pe32_header>();
637   }
638   writeSections();
639   sortExceptionTable();
640 
641   // Fix up the alignment in the TLS Directory's characteristic field,
642   // if a specific alignment value is needed
643   if (tlsAlignment)
644     fixTlsAlignment();
645 
646   t1.stop();
647 
648   if (!config->pdbPath.empty() && config->debug) {
649     assert(buildId);
650     createPDB(symtab, outputSections, sectionTable, buildId->buildId);
651   }
652   writeBuildId();
653 
654   writeLLDMapFile(outputSections);
655   writeMapFile(outputSections);
656 
657   if (errorCount())
658     return;
659 
660   ScopedTimer t2(diskCommitTimer);
661   if (auto e = buffer->commit())
662     fatal("failed to write the output file: " + toString(std::move(e)));
663 }
664 
665 static StringRef getOutputSectionName(StringRef name) {
666   StringRef s = name.split('$').first;
667 
668   // Treat a later period as a separator for MinGW, for sections like
669   // ".ctors.01234".
670   return s.substr(0, s.find('.', 1));
671 }
672 
673 // For /order.
674 static void sortBySectionOrder(std::vector<Chunk *> &chunks) {
675   auto getPriority = [](const Chunk *c) {
676     if (auto *sec = dyn_cast<SectionChunk>(c))
677       if (sec->sym)
678         return config->order.lookup(sec->sym->getName());
679     return 0;
680   };
681 
682   llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
683     return getPriority(a) < getPriority(b);
684   });
685 }
686 
687 // Change the characteristics of existing PartialSections that belong to the
688 // section Name to Chars.
689 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
690   for (auto it : partialSections) {
691     PartialSection *pSec = it.second;
692     StringRef curName = pSec->name;
693     if (!curName.consume_front(name) ||
694         (!curName.empty() && !curName.startswith("$")))
695       continue;
696     if (pSec->characteristics == chars)
697       continue;
698     PartialSection *destSec = createPartialSection(pSec->name, chars);
699     destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
700                            pSec->chunks.end());
701     pSec->chunks.clear();
702   }
703 }
704 
705 // Sort concrete section chunks from GNU import libraries.
706 //
707 // GNU binutils doesn't use short import files, but instead produces import
708 // libraries that consist of object files, with section chunks for the .idata$*
709 // sections. These are linked just as regular static libraries. Each import
710 // library consists of one header object, one object file for every imported
711 // symbol, and one trailer object. In order for the .idata tables/lists to
712 // be formed correctly, the section chunks within each .idata$* section need
713 // to be grouped by library, and sorted alphabetically within each library
714 // (which makes sure the header comes first and the trailer last).
715 bool Writer::fixGnuImportChunks() {
716   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
717 
718   // Make sure all .idata$* section chunks are mapped as RDATA in order to
719   // be sorted into the same sections as our own synthesized .idata chunks.
720   fixPartialSectionChars(".idata", rdata);
721 
722   bool hasIdata = false;
723   // Sort all .idata$* chunks, grouping chunks from the same library,
724   // with alphabetical ordering of the object fils within a library.
725   for (auto it : partialSections) {
726     PartialSection *pSec = it.second;
727     if (!pSec->name.startswith(".idata"))
728       continue;
729 
730     if (!pSec->chunks.empty())
731       hasIdata = true;
732     llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
733       SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
734       SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
735       if (!sc1 || !sc2) {
736         // if SC1, order them ascending. If SC2 or both null,
737         // S is not less than T.
738         return sc1 != nullptr;
739       }
740       // Make a string with "libraryname/objectfile" for sorting, achieving
741       // both grouping by library and sorting of objects within a library,
742       // at once.
743       std::string key1 =
744           (sc1->file->parentName + "/" + sc1->file->getName()).str();
745       std::string key2 =
746           (sc2->file->parentName + "/" + sc2->file->getName()).str();
747       return key1 < key2;
748     });
749   }
750   return hasIdata;
751 }
752 
753 // Add generated idata chunks, for imported symbols and DLLs, and a
754 // terminator in .idata$2.
755 void Writer::addSyntheticIdata() {
756   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
757   idata.create();
758 
759   // Add the .idata content in the right section groups, to allow
760   // chunks from other linked in object files to be grouped together.
761   // See Microsoft PE/COFF spec 5.4 for details.
762   auto add = [&](StringRef n, std::vector<Chunk *> &v) {
763     PartialSection *pSec = createPartialSection(n, rdata);
764     pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
765   };
766 
767   // The loader assumes a specific order of data.
768   // Add each type in the correct order.
769   add(".idata$2", idata.dirs);
770   add(".idata$4", idata.lookups);
771   add(".idata$5", idata.addresses);
772   if (!idata.hints.empty())
773     add(".idata$6", idata.hints);
774   add(".idata$7", idata.dllNames);
775 }
776 
777 // Locate the first Chunk and size of the import directory list and the
778 // IAT.
779 void Writer::locateImportTables() {
780   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
781 
782   if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
783     if (!importDirs->chunks.empty())
784       importTableStart = importDirs->chunks.front();
785     for (Chunk *c : importDirs->chunks)
786       importTableSize += c->getSize();
787   }
788 
789   if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
790     if (!importAddresses->chunks.empty())
791       iatStart = importAddresses->chunks.front();
792     for (Chunk *c : importAddresses->chunks)
793       iatSize += c->getSize();
794   }
795 }
796 
797 // Return whether a SectionChunk's suffix (the dollar and any trailing
798 // suffix) should be removed and sorted into the main suffixless
799 // PartialSection.
800 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) {
801   // On MinGW, comdat groups are formed by putting the comdat group name
802   // after the '$' in the section name. For .eh_frame$<symbol>, that must
803   // still be sorted before the .eh_frame trailer from crtend.o, thus just
804   // strip the section name trailer. For other sections, such as
805   // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
806   // ".tls$"), they must be strictly sorted after .tls. And for the
807   // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
808   // suffix for sorting. Thus, to play it safe, only strip the suffix for
809   // the standard sections.
810   if (!config->mingw)
811     return false;
812   if (!sc || !sc->isCOMDAT())
813     return false;
814   return name.startswith(".text$") || name.startswith(".data$") ||
815          name.startswith(".rdata$") || name.startswith(".pdata$") ||
816          name.startswith(".xdata$") || name.startswith(".eh_frame$");
817 }
818 
819 void Writer::sortSections() {
820   if (!config->callGraphProfile.empty()) {
821     DenseMap<const SectionChunk *, int> order = computeCallGraphProfileOrder();
822     for (auto it : order) {
823       if (DefinedRegular *sym = it.first->sym)
824         config->order[sym->getName()] = it.second;
825     }
826   }
827   if (!config->order.empty())
828     for (auto it : partialSections)
829       sortBySectionOrder(it.second->chunks);
830 }
831 
832 // Create output section objects and add them to OutputSections.
833 void Writer::createSections() {
834   // First, create the builtin sections.
835   const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
836   const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
837   const uint32_t code = IMAGE_SCN_CNT_CODE;
838   const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
839   const uint32_t r = IMAGE_SCN_MEM_READ;
840   const uint32_t w = IMAGE_SCN_MEM_WRITE;
841   const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
842 
843   SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
844   auto createSection = [&](StringRef name, uint32_t outChars) {
845     OutputSection *&sec = sections[{name, outChars}];
846     if (!sec) {
847       sec = make<OutputSection>(name, outChars);
848       outputSections.push_back(sec);
849     }
850     return sec;
851   };
852 
853   // Try to match the section order used by link.exe.
854   textSec = createSection(".text", code | r | x);
855   createSection(".bss", bss | r | w);
856   rdataSec = createSection(".rdata", data | r);
857   buildidSec = createSection(".buildid", data | r);
858   dataSec = createSection(".data", data | r | w);
859   pdataSec = createSection(".pdata", data | r);
860   idataSec = createSection(".idata", data | r);
861   edataSec = createSection(".edata", data | r);
862   didatSec = createSection(".didat", data | r);
863   rsrcSec = createSection(".rsrc", data | r);
864   relocSec = createSection(".reloc", data | discardable | r);
865   ctorsSec = createSection(".ctors", data | r | w);
866   dtorsSec = createSection(".dtors", data | r | w);
867 
868   // Then bin chunks by name and output characteristics.
869   for (Chunk *c : symtab->getChunks()) {
870     auto *sc = dyn_cast<SectionChunk>(c);
871     if (sc && !sc->live) {
872       if (config->verbose)
873         sc->printDiscardedMessage();
874       continue;
875     }
876     StringRef name = c->getSectionName();
877     if (shouldStripSectionSuffix(sc, name))
878       name = name.split('$').first;
879 
880     if (name.startswith(".tls"))
881       tlsAlignment = std::max(tlsAlignment, c->getAlignment());
882 
883     PartialSection *pSec = createPartialSection(name,
884                                                 c->getOutputCharacteristics());
885     pSec->chunks.push_back(c);
886   }
887 
888   fixPartialSectionChars(".rsrc", data | r);
889   fixPartialSectionChars(".edata", data | r);
890   // Even in non MinGW cases, we might need to link against GNU import
891   // libraries.
892   bool hasIdata = fixGnuImportChunks();
893   if (!idata.empty())
894     hasIdata = true;
895 
896   if (hasIdata)
897     addSyntheticIdata();
898 
899   sortSections();
900 
901   if (hasIdata)
902     locateImportTables();
903 
904   // Then create an OutputSection for each section.
905   // '$' and all following characters in input section names are
906   // discarded when determining output section. So, .text$foo
907   // contributes to .text, for example. See PE/COFF spec 3.2.
908   for (auto it : partialSections) {
909     PartialSection *pSec = it.second;
910     StringRef name = getOutputSectionName(pSec->name);
911     uint32_t outChars = pSec->characteristics;
912 
913     if (name == ".CRT") {
914       // In link.exe, there is a special case for the I386 target where .CRT
915       // sections are treated as if they have output characteristics DATA | R if
916       // their characteristics are DATA | R | W. This implements the same
917       // special case for all architectures.
918       outChars = data | r;
919 
920       log("Processing section " + pSec->name + " -> " + name);
921 
922       sortCRTSectionChunks(pSec->chunks);
923     }
924 
925     OutputSection *sec = createSection(name, outChars);
926     for (Chunk *c : pSec->chunks)
927       sec->addChunk(c);
928 
929     sec->addContributingPartialSection(pSec);
930   }
931 
932   // Finally, move some output sections to the end.
933   auto sectionOrder = [&](const OutputSection *s) {
934     // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
935     // because the loader cannot handle holes. Stripping can remove other
936     // discardable ones than .reloc, which is first of them (created early).
937     if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
938       return 2;
939     // .rsrc should come at the end of the non-discardable sections because its
940     // size may change by the Win32 UpdateResources() function, causing
941     // subsequent sections to move (see https://crbug.com/827082).
942     if (s == rsrcSec)
943       return 1;
944     return 0;
945   };
946   llvm::stable_sort(outputSections,
947                     [&](const OutputSection *s, const OutputSection *t) {
948                       return sectionOrder(s) < sectionOrder(t);
949                     });
950 }
951 
952 void Writer::createMiscChunks() {
953   for (MergeChunk *p : MergeChunk::instances) {
954     if (p) {
955       p->finalizeContents();
956       rdataSec->addChunk(p);
957     }
958   }
959 
960   // Create thunks for locally-dllimported symbols.
961   if (!symtab->localImportChunks.empty()) {
962     for (Chunk *c : symtab->localImportChunks)
963       rdataSec->addChunk(c);
964   }
965 
966   // Create Debug Information Chunks
967   OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
968   if (config->debug || config->repro || config->cetCompat) {
969     debugDirectory = make<DebugDirectoryChunk>(debugRecords, config->repro);
970     debugDirectory->setAlignment(4);
971     debugInfoSec->addChunk(debugDirectory);
972   }
973 
974   if (config->debug) {
975     // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified.  We
976     // output a PDB no matter what, and this chunk provides the only means of
977     // allowing a debugger to match a PDB and an executable.  So we need it even
978     // if we're ultimately not going to write CodeView data to the PDB.
979     buildId = make<CVDebugRecordChunk>();
980     debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId});
981   }
982 
983   if (config->cetCompat) {
984     debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
985                             make<ExtendedDllCharacteristicsChunk>(
986                                 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)});
987   }
988 
989   // Align and add each chunk referenced by the debug data directory.
990   for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
991     r.second->setAlignment(4);
992     debugInfoSec->addChunk(r.second);
993   }
994 
995   // Create SEH table. x86-only.
996   if (config->safeSEH)
997     createSEHTable();
998 
999   // Create /guard:cf tables if requested.
1000   if (config->guardCF != GuardCFLevel::Off)
1001     createGuardCFTables();
1002 
1003   if (config->autoImport)
1004     createRuntimePseudoRelocs();
1005 
1006   if (config->mingw)
1007     insertCtorDtorSymbols();
1008 }
1009 
1010 // Create .idata section for the DLL-imported symbol table.
1011 // The format of this section is inherently Windows-specific.
1012 // IdataContents class abstracted away the details for us,
1013 // so we just let it create chunks and add them to the section.
1014 void Writer::createImportTables() {
1015   // Initialize DLLOrder so that import entries are ordered in
1016   // the same order as in the command line. (That affects DLL
1017   // initialization order, and this ordering is MSVC-compatible.)
1018   for (ImportFile *file : ImportFile::instances) {
1019     if (!file->live)
1020       continue;
1021 
1022     std::string dll = StringRef(file->dllName).lower();
1023     if (config->dllOrder.count(dll) == 0)
1024       config->dllOrder[dll] = config->dllOrder.size();
1025 
1026     if (file->impSym && !isa<DefinedImportData>(file->impSym))
1027       fatal(toString(*file->impSym) + " was replaced");
1028     DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1029     if (config->delayLoads.count(StringRef(file->dllName).lower())) {
1030       if (!file->thunkSym)
1031         fatal("cannot delay-load " + toString(file) +
1032               " due to import of data: " + toString(*impSym));
1033       delayIdata.add(impSym);
1034     } else {
1035       idata.add(impSym);
1036     }
1037   }
1038 }
1039 
1040 void Writer::appendImportThunks() {
1041   if (ImportFile::instances.empty())
1042     return;
1043 
1044   for (ImportFile *file : ImportFile::instances) {
1045     if (!file->live)
1046       continue;
1047 
1048     if (!file->thunkSym)
1049       continue;
1050 
1051     if (!isa<DefinedImportThunk>(file->thunkSym))
1052       fatal(toString(*file->thunkSym) + " was replaced");
1053     DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1054     if (file->thunkLive)
1055       textSec->addChunk(thunk->getChunk());
1056   }
1057 
1058   if (!delayIdata.empty()) {
1059     Defined *helper = cast<Defined>(config->delayLoadHelper);
1060     delayIdata.create(helper);
1061     for (Chunk *c : delayIdata.getChunks())
1062       didatSec->addChunk(c);
1063     for (Chunk *c : delayIdata.getDataChunks())
1064       dataSec->addChunk(c);
1065     for (Chunk *c : delayIdata.getCodeChunks())
1066       textSec->addChunk(c);
1067   }
1068 }
1069 
1070 void Writer::createExportTable() {
1071   if (!edataSec->chunks.empty()) {
1072     // Allow using a custom built export table from input object files, instead
1073     // of having the linker synthesize the tables.
1074     if (config->hadExplicitExports)
1075       warn("literal .edata sections override exports");
1076   } else if (!config->exports.empty()) {
1077     for (Chunk *c : edata.chunks)
1078       edataSec->addChunk(c);
1079   }
1080   if (!edataSec->chunks.empty()) {
1081     edataStart = edataSec->chunks.front();
1082     edataEnd = edataSec->chunks.back();
1083   }
1084 }
1085 
1086 void Writer::removeUnusedSections() {
1087   // Remove sections that we can be sure won't get content, to avoid
1088   // allocating space for their section headers.
1089   auto isUnused = [this](OutputSection *s) {
1090     if (s == relocSec)
1091       return false; // This section is populated later.
1092     // MergeChunks have zero size at this point, as their size is finalized
1093     // later. Only remove sections that have no Chunks at all.
1094     return s->chunks.empty();
1095   };
1096   outputSections.erase(
1097       std::remove_if(outputSections.begin(), outputSections.end(), isUnused),
1098       outputSections.end());
1099 }
1100 
1101 // The Windows loader doesn't seem to like empty sections,
1102 // so we remove them if any.
1103 void Writer::removeEmptySections() {
1104   auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1105   outputSections.erase(
1106       std::remove_if(outputSections.begin(), outputSections.end(), isEmpty),
1107       outputSections.end());
1108 }
1109 
1110 void Writer::assignOutputSectionIndices() {
1111   // Assign final output section indices, and assign each chunk to its output
1112   // section.
1113   uint32_t idx = 1;
1114   for (OutputSection *os : outputSections) {
1115     os->sectionIndex = idx;
1116     for (Chunk *c : os->chunks)
1117       c->setOutputSectionIdx(idx);
1118     ++idx;
1119   }
1120 
1121   // Merge chunks are containers of chunks, so assign those an output section
1122   // too.
1123   for (MergeChunk *mc : MergeChunk::instances)
1124     if (mc)
1125       for (SectionChunk *sc : mc->sections)
1126         if (sc && sc->live)
1127           sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1128 }
1129 
1130 size_t Writer::addEntryToStringTable(StringRef str) {
1131   assert(str.size() > COFF::NameSize);
1132   size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1133   strtab.insert(strtab.end(), str.begin(), str.end());
1134   strtab.push_back('\0');
1135   return offsetOfEntry;
1136 }
1137 
1138 Optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1139   coff_symbol16 sym;
1140   switch (def->kind()) {
1141   case Symbol::DefinedAbsoluteKind:
1142     sym.Value = def->getRVA();
1143     sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1144     break;
1145   case Symbol::DefinedSyntheticKind:
1146     // Relative symbols are unrepresentable in a COFF symbol table.
1147     return None;
1148   default: {
1149     // Don't write symbols that won't be written to the output to the symbol
1150     // table.
1151     Chunk *c = def->getChunk();
1152     if (!c)
1153       return None;
1154     OutputSection *os = c->getOutputSection();
1155     if (!os)
1156       return None;
1157 
1158     sym.Value = def->getRVA() - os->getRVA();
1159     sym.SectionNumber = os->sectionIndex;
1160     break;
1161   }
1162   }
1163 
1164   // Symbols that are runtime pseudo relocations don't point to the actual
1165   // symbol data itself (as they are imported), but points to the IAT entry
1166   // instead. Avoid emitting them to the symbol table, as they can confuse
1167   // debuggers.
1168   if (def->isRuntimePseudoReloc)
1169     return None;
1170 
1171   StringRef name = def->getName();
1172   if (name.size() > COFF::NameSize) {
1173     sym.Name.Offset.Zeroes = 0;
1174     sym.Name.Offset.Offset = addEntryToStringTable(name);
1175   } else {
1176     memset(sym.Name.ShortName, 0, COFF::NameSize);
1177     memcpy(sym.Name.ShortName, name.data(), name.size());
1178   }
1179 
1180   if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1181     COFFSymbolRef ref = d->getCOFFSymbol();
1182     sym.Type = ref.getType();
1183     sym.StorageClass = ref.getStorageClass();
1184   } else {
1185     sym.Type = IMAGE_SYM_TYPE_NULL;
1186     sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1187   }
1188   sym.NumberOfAuxSymbols = 0;
1189   return sym;
1190 }
1191 
1192 void Writer::createSymbolAndStringTable() {
1193   // PE/COFF images are limited to 8 byte section names. Longer names can be
1194   // supported by writing a non-standard string table, but this string table is
1195   // not mapped at runtime and the long names will therefore be inaccessible.
1196   // link.exe always truncates section names to 8 bytes, whereas binutils always
1197   // preserves long section names via the string table. LLD adopts a hybrid
1198   // solution where discardable sections have long names preserved and
1199   // non-discardable sections have their names truncated, to ensure that any
1200   // section which is mapped at runtime also has its name mapped at runtime.
1201   for (OutputSection *sec : outputSections) {
1202     if (sec->name.size() <= COFF::NameSize)
1203       continue;
1204     if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1205       continue;
1206     if (config->warnLongSectionNames) {
1207       warn("section name " + sec->name +
1208            " is longer than 8 characters and will use a non-standard string "
1209            "table");
1210     }
1211     sec->setStringTableOff(addEntryToStringTable(sec->name));
1212   }
1213 
1214   if (config->debugDwarf || config->debugSymtab) {
1215     for (ObjFile *file : ObjFile::instances) {
1216       for (Symbol *b : file->getSymbols()) {
1217         auto *d = dyn_cast_or_null<Defined>(b);
1218         if (!d || d->writtenToSymtab)
1219           continue;
1220         d->writtenToSymtab = true;
1221 
1222         if (Optional<coff_symbol16> sym = createSymbol(d))
1223           outputSymtab.push_back(*sym);
1224       }
1225     }
1226   }
1227 
1228   if (outputSymtab.empty() && strtab.empty())
1229     return;
1230 
1231   // We position the symbol table to be adjacent to the end of the last section.
1232   uint64_t fileOff = fileSize;
1233   pointerToSymbolTable = fileOff;
1234   fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1235   fileOff += 4 + strtab.size();
1236   fileSize = alignTo(fileOff, config->fileAlign);
1237 }
1238 
1239 void Writer::mergeSections() {
1240   if (!pdataSec->chunks.empty()) {
1241     firstPdata = pdataSec->chunks.front();
1242     lastPdata = pdataSec->chunks.back();
1243   }
1244 
1245   for (auto &p : config->merge) {
1246     StringRef toName = p.second;
1247     if (p.first == toName)
1248       continue;
1249     StringSet<> names;
1250     while (1) {
1251       if (!names.insert(toName).second)
1252         fatal("/merge: cycle found for section '" + p.first + "'");
1253       auto i = config->merge.find(toName);
1254       if (i == config->merge.end())
1255         break;
1256       toName = i->second;
1257     }
1258     OutputSection *from = findSection(p.first);
1259     OutputSection *to = findSection(toName);
1260     if (!from)
1261       continue;
1262     if (!to) {
1263       from->name = toName;
1264       continue;
1265     }
1266     to->merge(from);
1267   }
1268 }
1269 
1270 // Visits all sections to assign incremental, non-overlapping RVAs and
1271 // file offsets.
1272 void Writer::assignAddresses() {
1273   sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1274                   sizeof(data_directory) * numberOfDataDirectory +
1275                   sizeof(coff_section) * outputSections.size();
1276   sizeOfHeaders +=
1277       config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1278   sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1279   fileSize = sizeOfHeaders;
1280 
1281   // The first page is kept unmapped.
1282   uint64_t rva = alignTo(sizeOfHeaders, config->align);
1283 
1284   for (OutputSection *sec : outputSections) {
1285     if (sec == relocSec)
1286       addBaserels();
1287     uint64_t rawSize = 0, virtualSize = 0;
1288     sec->header.VirtualAddress = rva;
1289 
1290     // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1291     // hotpatchable image.
1292     const bool isCodeSection =
1293         (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
1294         (sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
1295         (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
1296     uint32_t padding = isCodeSection ? config->functionPadMin : 0;
1297 
1298     for (Chunk *c : sec->chunks) {
1299       if (padding && c->isHotPatchable())
1300         virtualSize += padding;
1301       virtualSize = alignTo(virtualSize, c->getAlignment());
1302       c->setRVA(rva + virtualSize);
1303       virtualSize += c->getSize();
1304       if (c->hasData)
1305         rawSize = alignTo(virtualSize, config->fileAlign);
1306     }
1307     if (virtualSize > UINT32_MAX)
1308       error("section larger than 4 GiB: " + sec->name);
1309     sec->header.VirtualSize = virtualSize;
1310     sec->header.SizeOfRawData = rawSize;
1311     if (rawSize != 0)
1312       sec->header.PointerToRawData = fileSize;
1313     rva += alignTo(virtualSize, config->align);
1314     fileSize += alignTo(rawSize, config->fileAlign);
1315   }
1316   sizeOfImage = alignTo(rva, config->align);
1317 
1318   // Assign addresses to sections in MergeChunks.
1319   for (MergeChunk *mc : MergeChunk::instances)
1320     if (mc)
1321       mc->assignSubsectionRVAs();
1322 }
1323 
1324 template <typename PEHeaderTy> void Writer::writeHeader() {
1325   // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1326   // executable consists of an MS-DOS MZ executable. If the executable is run
1327   // under DOS, that program gets run (usually to just print an error message).
1328   // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1329   // the PE header instead.
1330   uint8_t *buf = buffer->getBufferStart();
1331   auto *dos = reinterpret_cast<dos_header *>(buf);
1332   buf += sizeof(dos_header);
1333   dos->Magic[0] = 'M';
1334   dos->Magic[1] = 'Z';
1335   dos->UsedBytesInTheLastPage = dosStubSize % 512;
1336   dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1337   dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1338 
1339   dos->AddressOfRelocationTable = sizeof(dos_header);
1340   dos->AddressOfNewExeHeader = dosStubSize;
1341 
1342   // Write DOS program.
1343   memcpy(buf, dosProgram, sizeof(dosProgram));
1344   buf += sizeof(dosProgram);
1345 
1346   // Write PE magic
1347   memcpy(buf, PEMagic, sizeof(PEMagic));
1348   buf += sizeof(PEMagic);
1349 
1350   // Write COFF header
1351   auto *coff = reinterpret_cast<coff_file_header *>(buf);
1352   buf += sizeof(*coff);
1353   coff->Machine = config->machine;
1354   coff->NumberOfSections = outputSections.size();
1355   coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1356   if (config->largeAddressAware)
1357     coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1358   if (!config->is64())
1359     coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1360   if (config->dll)
1361     coff->Characteristics |= IMAGE_FILE_DLL;
1362   if (config->driverUponly)
1363     coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1364   if (!config->relocatable)
1365     coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1366   if (config->swaprunCD)
1367     coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1368   if (config->swaprunNet)
1369     coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1370   coff->SizeOfOptionalHeader =
1371       sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1372 
1373   // Write PE header
1374   auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1375   buf += sizeof(*pe);
1376   pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1377 
1378   // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1379   // reason signing the resulting PE file with Authenticode produces a
1380   // signature that fails to validate on Windows 7 (but is OK on 10).
1381   // Set it to 14.0, which is what VS2015 outputs, and which avoids
1382   // that problem.
1383   pe->MajorLinkerVersion = 14;
1384   pe->MinorLinkerVersion = 0;
1385 
1386   pe->ImageBase = config->imageBase;
1387   pe->SectionAlignment = config->align;
1388   pe->FileAlignment = config->fileAlign;
1389   pe->MajorImageVersion = config->majorImageVersion;
1390   pe->MinorImageVersion = config->minorImageVersion;
1391   pe->MajorOperatingSystemVersion = config->majorOSVersion;
1392   pe->MinorOperatingSystemVersion = config->minorOSVersion;
1393   pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1394   pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1395   pe->Subsystem = config->subsystem;
1396   pe->SizeOfImage = sizeOfImage;
1397   pe->SizeOfHeaders = sizeOfHeaders;
1398   if (!config->noEntry) {
1399     Defined *entry = cast<Defined>(config->entry);
1400     pe->AddressOfEntryPoint = entry->getRVA();
1401     // Pointer to thumb code must have the LSB set, so adjust it.
1402     if (config->machine == ARMNT)
1403       pe->AddressOfEntryPoint |= 1;
1404   }
1405   pe->SizeOfStackReserve = config->stackReserve;
1406   pe->SizeOfStackCommit = config->stackCommit;
1407   pe->SizeOfHeapReserve = config->heapReserve;
1408   pe->SizeOfHeapCommit = config->heapCommit;
1409   if (config->appContainer)
1410     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1411   if (config->driverWdm)
1412     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1413   if (config->dynamicBase)
1414     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1415   if (config->highEntropyVA)
1416     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1417   if (!config->allowBind)
1418     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1419   if (config->nxCompat)
1420     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1421   if (!config->allowIsolation)
1422     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1423   if (config->guardCF != GuardCFLevel::Off)
1424     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1425   if (config->integrityCheck)
1426     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1427   if (setNoSEHCharacteristic || config->noSEH)
1428     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1429   if (config->terminalServerAware)
1430     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1431   pe->NumberOfRvaAndSize = numberOfDataDirectory;
1432   if (textSec->getVirtualSize()) {
1433     pe->BaseOfCode = textSec->getRVA();
1434     pe->SizeOfCode = textSec->getRawSize();
1435   }
1436   pe->SizeOfInitializedData = getSizeOfInitializedData();
1437 
1438   // Write data directory
1439   auto *dir = reinterpret_cast<data_directory *>(buf);
1440   buf += sizeof(*dir) * numberOfDataDirectory;
1441   if (edataStart) {
1442     dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1443     dir[EXPORT_TABLE].Size =
1444         edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1445   }
1446   if (importTableStart) {
1447     dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1448     dir[IMPORT_TABLE].Size = importTableSize;
1449   }
1450   if (iatStart) {
1451     dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1452     dir[IAT].Size = iatSize;
1453   }
1454   if (rsrcSec->getVirtualSize()) {
1455     dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1456     dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1457   }
1458   if (firstPdata) {
1459     dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
1460     dir[EXCEPTION_TABLE].Size =
1461         lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
1462   }
1463   if (relocSec->getVirtualSize()) {
1464     dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1465     dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1466   }
1467   if (Symbol *sym = symtab->findUnderscore("_tls_used")) {
1468     if (Defined *b = dyn_cast<Defined>(sym)) {
1469       dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1470       dir[TLS_TABLE].Size = config->is64()
1471                                 ? sizeof(object::coff_tls_directory64)
1472                                 : sizeof(object::coff_tls_directory32);
1473     }
1474   }
1475   if (debugDirectory) {
1476     dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1477     dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1478   }
1479   if (Symbol *sym = symtab->findUnderscore("_load_config_used")) {
1480     if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1481       SectionChunk *sc = b->getChunk();
1482       assert(b->getRVA() >= sc->getRVA());
1483       uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1484       if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1485         fatal("_load_config_used is malformed");
1486 
1487       ArrayRef<uint8_t> secContents = sc->getContents();
1488       uint32_t loadConfigSize =
1489           *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1490       if (offsetInChunk + loadConfigSize > sc->getSize())
1491         fatal("_load_config_used is too large");
1492       dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1493       dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1494     }
1495   }
1496   if (!delayIdata.empty()) {
1497     dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1498         delayIdata.getDirRVA();
1499     dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1500   }
1501 
1502   // Write section table
1503   for (OutputSection *sec : outputSections) {
1504     sec->writeHeaderTo(buf);
1505     buf += sizeof(coff_section);
1506   }
1507   sectionTable = ArrayRef<uint8_t>(
1508       buf - outputSections.size() * sizeof(coff_section), buf);
1509 
1510   if (outputSymtab.empty() && strtab.empty())
1511     return;
1512 
1513   coff->PointerToSymbolTable = pointerToSymbolTable;
1514   uint32_t numberOfSymbols = outputSymtab.size();
1515   coff->NumberOfSymbols = numberOfSymbols;
1516   auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1517       buffer->getBufferStart() + coff->PointerToSymbolTable);
1518   for (size_t i = 0; i != numberOfSymbols; ++i)
1519     symbolTable[i] = outputSymtab[i];
1520   // Create the string table, it follows immediately after the symbol table.
1521   // The first 4 bytes is length including itself.
1522   buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1523   write32le(buf, strtab.size() + 4);
1524   if (!strtab.empty())
1525     memcpy(buf + 4, strtab.data(), strtab.size());
1526 }
1527 
1528 void Writer::openFile(StringRef path) {
1529   buffer = CHECK(
1530       FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1531       "failed to open " + path);
1532 }
1533 
1534 void Writer::createSEHTable() {
1535   SymbolRVASet handlers;
1536   for (ObjFile *file : ObjFile::instances) {
1537     if (!file->hasSafeSEH())
1538       error("/safeseh: " + file->getName() + " is not compatible with SEH");
1539     markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1540   }
1541 
1542   // Set the "no SEH" characteristic if there really were no handlers, or if
1543   // there is no load config object to point to the table of handlers.
1544   setNoSEHCharacteristic =
1545       handlers.empty() || !symtab->findUnderscore("_load_config_used");
1546 
1547   maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1548                    "__safe_se_handler_count");
1549 }
1550 
1551 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1552 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1553 // symbol's offset into that Chunk.
1554 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1555   Chunk *c = s->getChunk();
1556   if (auto *sc = dyn_cast<SectionChunk>(c))
1557     c = sc->repl; // Look through ICF replacement.
1558   uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1559   rvaSet.insert({c, off});
1560 }
1561 
1562 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1563 // symbol in an executable section.
1564 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1565                                          Symbol *s) {
1566   if (!s)
1567     return;
1568 
1569   switch (s->kind()) {
1570   case Symbol::DefinedLocalImportKind:
1571   case Symbol::DefinedImportDataKind:
1572     // Defines an __imp_ pointer, so it is data, so it is ignored.
1573     break;
1574   case Symbol::DefinedCommonKind:
1575     // Common is always data, so it is ignored.
1576     break;
1577   case Symbol::DefinedAbsoluteKind:
1578   case Symbol::DefinedSyntheticKind:
1579     // Absolute is never code, synthetic generally isn't and usually isn't
1580     // determinable.
1581     break;
1582   case Symbol::LazyArchiveKind:
1583   case Symbol::LazyObjectKind:
1584   case Symbol::UndefinedKind:
1585     // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1586     // symbols shouldn't have relocations.
1587     break;
1588 
1589   case Symbol::DefinedImportThunkKind:
1590     // Thunks are always code, include them.
1591     addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1592     break;
1593 
1594   case Symbol::DefinedRegularKind: {
1595     // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1596     // address taken if the symbol type is function and it's in an executable
1597     // section.
1598     auto *d = cast<DefinedRegular>(s);
1599     if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1600       SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1601       if (sc && sc->live &&
1602           sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1603         addSymbolToRVASet(addressTakenSyms, d);
1604     }
1605     break;
1606   }
1607   }
1608 }
1609 
1610 // Visit all relocations from all section contributions of this object file and
1611 // mark the relocation target as address-taken.
1612 static void markSymbolsWithRelocations(ObjFile *file,
1613                                        SymbolRVASet &usedSymbols) {
1614   for (Chunk *c : file->getChunks()) {
1615     // We only care about live section chunks. Common chunks and other chunks
1616     // don't generally contain relocations.
1617     SectionChunk *sc = dyn_cast<SectionChunk>(c);
1618     if (!sc || !sc->live)
1619       continue;
1620 
1621     for (const coff_relocation &reloc : sc->getRelocs()) {
1622       if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32)
1623         // Ignore relative relocations on x86. On x86_64 they can't be ignored
1624         // since they're also used to compute absolute addresses.
1625         continue;
1626 
1627       Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1628       maybeAddAddressTakenFunction(usedSymbols, ref);
1629     }
1630   }
1631 }
1632 
1633 // Create the guard function id table. This is a table of RVAs of all
1634 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1635 // table.
1636 void Writer::createGuardCFTables() {
1637   SymbolRVASet addressTakenSyms;
1638   SymbolRVASet giatsRVASet;
1639   std::vector<Symbol *> giatsSymbols;
1640   SymbolRVASet longJmpTargets;
1641   for (ObjFile *file : ObjFile::instances) {
1642     // If the object was compiled with /guard:cf, the address taken symbols
1643     // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
1644     // sections. If the object was not compiled with /guard:cf, we assume there
1645     // were no setjmp targets, and that all code symbols with relocations are
1646     // possibly address-taken.
1647     if (file->hasGuardCF()) {
1648       markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1649       markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
1650       getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
1651       markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1652     } else {
1653       markSymbolsWithRelocations(file, addressTakenSyms);
1654     }
1655   }
1656 
1657   // Mark the image entry as address-taken.
1658   if (config->entry)
1659     maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1660 
1661   // Mark exported symbols in executable sections as address-taken.
1662   for (Export &e : config->exports)
1663     maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1664 
1665   // For each entry in the .giats table, check if it has a corresponding load
1666   // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1667   // so, add the load thunk to the address taken (.gfids) table.
1668   for (Symbol *s : giatsSymbols) {
1669     if (auto *di = dyn_cast<DefinedImportData>(s)) {
1670       if (di->loadThunkSym)
1671         addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
1672     }
1673   }
1674 
1675   // Ensure sections referenced in the gfid table are 16-byte aligned.
1676   for (const ChunkAndOffset &c : addressTakenSyms)
1677     if (c.inputChunk->getAlignment() < 16)
1678       c.inputChunk->setAlignment(16);
1679 
1680   maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1681                    "__guard_fids_count");
1682 
1683   // Add the Guard Address Taken IAT Entry Table (.giats).
1684   maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
1685                    "__guard_iat_count");
1686 
1687   // Add the longjmp target table unless the user told us not to.
1688   if (config->guardCF == GuardCFLevel::Full)
1689     maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1690                      "__guard_longjmp_count");
1691 
1692   // Set __guard_flags, which will be used in the load config to indicate that
1693   // /guard:cf was enabled.
1694   uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
1695                         uint32_t(coff_guard_flags::HasFidTable);
1696   if (config->guardCF == GuardCFLevel::Full)
1697     guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
1698   Symbol *flagSym = symtab->findUnderscore("__guard_flags");
1699   cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1700 }
1701 
1702 // Take a list of input sections containing symbol table indices and add those
1703 // symbols to a vector. The challenge is that symbol RVAs are not known and
1704 // depend on the table size, so we can't directly build a set of integers.
1705 void Writer::getSymbolsFromSections(ObjFile *file,
1706                                     ArrayRef<SectionChunk *> symIdxChunks,
1707                                     std::vector<Symbol *> &symbols) {
1708   for (SectionChunk *c : symIdxChunks) {
1709     // Skip sections discarded by linker GC. This comes up when a .gfids section
1710     // is associated with something like a vtable and the vtable is discarded.
1711     // In this case, the associated gfids section is discarded, and we don't
1712     // mark the virtual member functions as address-taken by the vtable.
1713     if (!c->live)
1714       continue;
1715 
1716     // Validate that the contents look like symbol table indices.
1717     ArrayRef<uint8_t> data = c->getContents();
1718     if (data.size() % 4 != 0) {
1719       warn("ignoring " + c->getSectionName() +
1720            " symbol table index section in object " + toString(file));
1721       continue;
1722     }
1723 
1724     // Read each symbol table index and check if that symbol was included in the
1725     // final link. If so, add it to the vector of symbols.
1726     ArrayRef<ulittle32_t> symIndices(
1727         reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1728     ArrayRef<Symbol *> objSymbols = file->getSymbols();
1729     for (uint32_t symIndex : symIndices) {
1730       if (symIndex >= objSymbols.size()) {
1731         warn("ignoring invalid symbol table index in section " +
1732              c->getSectionName() + " in object " + toString(file));
1733         continue;
1734       }
1735       if (Symbol *s = objSymbols[symIndex]) {
1736         if (s->isLive())
1737           symbols.push_back(cast<Symbol>(s));
1738       }
1739     }
1740   }
1741 }
1742 
1743 // Take a list of input sections containing symbol table indices and add those
1744 // symbols to an RVA table.
1745 void Writer::markSymbolsForRVATable(ObjFile *file,
1746                                     ArrayRef<SectionChunk *> symIdxChunks,
1747                                     SymbolRVASet &tableSymbols) {
1748   std::vector<Symbol *> syms;
1749   getSymbolsFromSections(file, symIdxChunks, syms);
1750 
1751   for (Symbol *s : syms)
1752     addSymbolToRVASet(tableSymbols, cast<Defined>(s));
1753 }
1754 
1755 // Replace the absolute table symbol with a synthetic symbol pointing to
1756 // tableChunk so that we can emit base relocations for it and resolve section
1757 // relative relocations.
1758 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
1759                               StringRef countSym) {
1760   if (tableSymbols.empty())
1761     return;
1762 
1763   RVATableChunk *tableChunk = make<RVATableChunk>(std::move(tableSymbols));
1764   rdataSec->addChunk(tableChunk);
1765 
1766   Symbol *t = symtab->findUnderscore(tableSym);
1767   Symbol *c = symtab->findUnderscore(countSym);
1768   replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
1769   cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / 4);
1770 }
1771 
1772 // MinGW specific. Gather all relocations that are imported from a DLL even
1773 // though the code didn't expect it to, produce the table that the runtime
1774 // uses for fixing them up, and provide the synthetic symbols that the
1775 // runtime uses for finding the table.
1776 void Writer::createRuntimePseudoRelocs() {
1777   std::vector<RuntimePseudoReloc> rels;
1778 
1779   for (Chunk *c : symtab->getChunks()) {
1780     auto *sc = dyn_cast<SectionChunk>(c);
1781     if (!sc || !sc->live)
1782       continue;
1783     sc->getRuntimePseudoRelocs(rels);
1784   }
1785 
1786   if (!config->pseudoRelocs) {
1787     // Not writing any pseudo relocs; if some were needed, error out and
1788     // indicate what required them.
1789     for (const RuntimePseudoReloc &rpr : rels)
1790       error("automatic dllimport of " + rpr.sym->getName() + " in " +
1791             toString(rpr.target->file) + " requires pseudo relocations");
1792     return;
1793   }
1794 
1795   if (!rels.empty())
1796     log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
1797   PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
1798   rdataSec->addChunk(table);
1799   EmptyChunk *endOfList = make<EmptyChunk>();
1800   rdataSec->addChunk(endOfList);
1801 
1802   Symbol *headSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1803   Symbol *endSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1804   replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
1805   replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
1806 }
1807 
1808 // MinGW specific.
1809 // The MinGW .ctors and .dtors lists have sentinels at each end;
1810 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1811 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1812 // and __DTOR_LIST__ respectively.
1813 void Writer::insertCtorDtorSymbols() {
1814   AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1);
1815   AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0);
1816   AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1);
1817   AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0);
1818   ctorsSec->insertChunkAtStart(ctorListHead);
1819   ctorsSec->addChunk(ctorListEnd);
1820   dtorsSec->insertChunkAtStart(dtorListHead);
1821   dtorsSec->addChunk(dtorListEnd);
1822 
1823   Symbol *ctorListSym = symtab->findUnderscore("__CTOR_LIST__");
1824   Symbol *dtorListSym = symtab->findUnderscore("__DTOR_LIST__");
1825   replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
1826                                   ctorListHead);
1827   replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
1828                                   dtorListHead);
1829 }
1830 
1831 // Handles /section options to allow users to overwrite
1832 // section attributes.
1833 void Writer::setSectionPermissions() {
1834   for (auto &p : config->section) {
1835     StringRef name = p.first;
1836     uint32_t perm = p.second;
1837     for (OutputSection *sec : outputSections)
1838       if (sec->name == name)
1839         sec->setPermissions(perm);
1840   }
1841 }
1842 
1843 // Write section contents to a mmap'ed file.
1844 void Writer::writeSections() {
1845   // Record the number of sections to apply section index relocations
1846   // against absolute symbols. See applySecIdx in Chunks.cpp..
1847   DefinedAbsolute::numOutputSections = outputSections.size();
1848 
1849   uint8_t *buf = buffer->getBufferStart();
1850   for (OutputSection *sec : outputSections) {
1851     uint8_t *secBuf = buf + sec->getFileOff();
1852     // Fill gaps between functions in .text with INT3 instructions
1853     // instead of leaving as NUL bytes (which can be interpreted as
1854     // ADD instructions).
1855     if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE)
1856       memset(secBuf, 0xCC, sec->getRawSize());
1857     parallelForEach(sec->chunks, [&](Chunk *c) {
1858       c->writeTo(secBuf + c->getRVA() - sec->getRVA());
1859     });
1860   }
1861 }
1862 
1863 void Writer::writeBuildId() {
1864   // There are two important parts to the build ID.
1865   // 1) If building with debug info, the COFF debug directory contains a
1866   //    timestamp as well as a Guid and Age of the PDB.
1867   // 2) In all cases, the PE COFF file header also contains a timestamp.
1868   // For reproducibility, instead of a timestamp we want to use a hash of the
1869   // PE contents.
1870   if (config->debug) {
1871     assert(buildId && "BuildId is not set!");
1872     // BuildId->BuildId was filled in when the PDB was written.
1873   }
1874 
1875   // At this point the only fields in the COFF file which remain unset are the
1876   // "timestamp" in the COFF file header, and the ones in the coff debug
1877   // directory.  Now we can hash the file and write that hash to the various
1878   // timestamp fields in the file.
1879   StringRef outputFileData(
1880       reinterpret_cast<const char *>(buffer->getBufferStart()),
1881       buffer->getBufferSize());
1882 
1883   uint32_t timestamp = config->timestamp;
1884   uint64_t hash = 0;
1885   bool generateSyntheticBuildId =
1886       config->mingw && config->debug && config->pdbPath.empty();
1887 
1888   if (config->repro || generateSyntheticBuildId)
1889     hash = xxHash64(outputFileData);
1890 
1891   if (config->repro)
1892     timestamp = static_cast<uint32_t>(hash);
1893 
1894   if (generateSyntheticBuildId) {
1895     // For MinGW builds without a PDB file, we still generate a build id
1896     // to allow associating a crash dump to the executable.
1897     buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
1898     buildId->buildId->PDB70.Age = 1;
1899     memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
1900     // xxhash only gives us 8 bytes, so put some fixed data in the other half.
1901     memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
1902   }
1903 
1904   if (debugDirectory)
1905     debugDirectory->setTimeDateStamp(timestamp);
1906 
1907   uint8_t *buf = buffer->getBufferStart();
1908   buf += dosStubSize + sizeof(PEMagic);
1909   object::coff_file_header *coffHeader =
1910       reinterpret_cast<coff_file_header *>(buf);
1911   coffHeader->TimeDateStamp = timestamp;
1912 }
1913 
1914 // Sort .pdata section contents according to PE/COFF spec 5.5.
1915 void Writer::sortExceptionTable() {
1916   if (!firstPdata)
1917     return;
1918   // We assume .pdata contains function table entries only.
1919   auto bufAddr = [&](Chunk *c) {
1920     OutputSection *os = c->getOutputSection();
1921     return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
1922            os->getRVA();
1923   };
1924   uint8_t *begin = bufAddr(firstPdata);
1925   uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
1926   if (config->machine == AMD64) {
1927     struct Entry { ulittle32_t begin, end, unwind; };
1928     if ((end - begin) % sizeof(Entry) != 0) {
1929       fatal("unexpected .pdata size: " + Twine(end - begin) +
1930             " is not a multiple of " + Twine(sizeof(Entry)));
1931     }
1932     parallelSort(
1933         MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1934         [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1935     return;
1936   }
1937   if (config->machine == ARMNT || config->machine == ARM64) {
1938     struct Entry { ulittle32_t begin, unwind; };
1939     if ((end - begin) % sizeof(Entry) != 0) {
1940       fatal("unexpected .pdata size: " + Twine(end - begin) +
1941             " is not a multiple of " + Twine(sizeof(Entry)));
1942     }
1943     parallelSort(
1944         MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1945         [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1946     return;
1947   }
1948   lld::errs() << "warning: don't know how to handle .pdata.\n";
1949 }
1950 
1951 // The CRT section contains, among other things, the array of function
1952 // pointers that initialize every global variable that is not trivially
1953 // constructed. The CRT calls them one after the other prior to invoking
1954 // main().
1955 //
1956 // As per C++ spec, 3.6.2/2.3,
1957 // "Variables with ordered initialization defined within a single
1958 // translation unit shall be initialized in the order of their definitions
1959 // in the translation unit"
1960 //
1961 // It is therefore critical to sort the chunks containing the function
1962 // pointers in the order that they are listed in the object file (top to
1963 // bottom), otherwise global objects might not be initialized in the
1964 // correct order.
1965 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
1966   auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
1967     auto sa = dyn_cast<SectionChunk>(a);
1968     auto sb = dyn_cast<SectionChunk>(b);
1969     assert(sa && sb && "Non-section chunks in CRT section!");
1970 
1971     StringRef sAObj = sa->file->mb.getBufferIdentifier();
1972     StringRef sBObj = sb->file->mb.getBufferIdentifier();
1973 
1974     return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
1975   };
1976   llvm::stable_sort(chunks, sectionChunkOrder);
1977 
1978   if (config->verbose) {
1979     for (auto &c : chunks) {
1980       auto sc = dyn_cast<SectionChunk>(c);
1981       log("  " + sc->file->mb.getBufferIdentifier().str() +
1982           ", SectionID: " + Twine(sc->getSectionNumber()));
1983     }
1984   }
1985 }
1986 
1987 OutputSection *Writer::findSection(StringRef name) {
1988   for (OutputSection *sec : outputSections)
1989     if (sec->name == name)
1990       return sec;
1991   return nullptr;
1992 }
1993 
1994 uint32_t Writer::getSizeOfInitializedData() {
1995   uint32_t res = 0;
1996   for (OutputSection *s : outputSections)
1997     if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
1998       res += s->getRawSize();
1999   return res;
2000 }
2001 
2002 // Add base relocations to .reloc section.
2003 void Writer::addBaserels() {
2004   if (!config->relocatable)
2005     return;
2006   relocSec->chunks.clear();
2007   std::vector<Baserel> v;
2008   for (OutputSection *sec : outputSections) {
2009     if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2010       continue;
2011     // Collect all locations for base relocations.
2012     for (Chunk *c : sec->chunks)
2013       c->getBaserels(&v);
2014     // Add the addresses to .reloc section.
2015     if (!v.empty())
2016       addBaserelBlocks(v);
2017     v.clear();
2018   }
2019 }
2020 
2021 // Add addresses to .reloc section. Note that addresses are grouped by page.
2022 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2023   const uint32_t mask = ~uint32_t(pageSize - 1);
2024   uint32_t page = v[0].rva & mask;
2025   size_t i = 0, j = 1;
2026   for (size_t e = v.size(); j < e; ++j) {
2027     uint32_t p = v[j].rva & mask;
2028     if (p == page)
2029       continue;
2030     relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2031     i = j;
2032     page = p;
2033   }
2034   if (i == j)
2035     return;
2036   relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2037 }
2038 
2039 PartialSection *Writer::createPartialSection(StringRef name,
2040                                              uint32_t outChars) {
2041   PartialSection *&pSec = partialSections[{name, outChars}];
2042   if (pSec)
2043     return pSec;
2044   pSec = make<PartialSection>(name, outChars);
2045   return pSec;
2046 }
2047 
2048 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2049   auto it = partialSections.find({name, outChars});
2050   if (it != partialSections.end())
2051     return it->second;
2052   return nullptr;
2053 }
2054 
2055 void Writer::fixTlsAlignment() {
2056   Defined *tlsSym =
2057       dyn_cast_or_null<Defined>(symtab->findUnderscore("_tls_used"));
2058   if (!tlsSym)
2059     return;
2060 
2061   OutputSection *sec = tlsSym->getChunk()->getOutputSection();
2062   assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2063          "no output section for _tls_used");
2064 
2065   uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2066   uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2067   uint64_t directorySize = config->is64()
2068                                ? sizeof(object::coff_tls_directory64)
2069                                : sizeof(object::coff_tls_directory32);
2070 
2071   if (tlsOffset + directorySize > sec->getRawSize())
2072     fatal("_tls_used sym is malformed");
2073 
2074   if (config->is64()) {
2075     object::coff_tls_directory64 *tlsDir =
2076         reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2077     tlsDir->setAlignment(tlsAlignment);
2078   } else {
2079     object::coff_tls_directory32 *tlsDir =
2080         reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2081     tlsDir->setAlignment(tlsAlignment);
2082   }
2083 }
2084