1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "Config.h" 11 #include "DLL.h" 12 #include "InputFiles.h" 13 #include "LLDMapFile.h" 14 #include "MapFile.h" 15 #include "PDB.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "lld/Common/ErrorHandler.h" 19 #include "lld/Common/Memory.h" 20 #include "lld/Common/Timer.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/Support/BinaryStreamReader.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/Endian.h" 28 #include "llvm/Support/FileOutputBuffer.h" 29 #include "llvm/Support/Parallel.h" 30 #include "llvm/Support/Path.h" 31 #include "llvm/Support/RandomNumberGenerator.h" 32 #include "llvm/Support/xxhash.h" 33 #include <algorithm> 34 #include <cstdio> 35 #include <map> 36 #include <memory> 37 #include <utility> 38 39 using namespace llvm; 40 using namespace llvm::COFF; 41 using namespace llvm::object; 42 using namespace llvm::support; 43 using namespace llvm::support::endian; 44 using namespace lld; 45 using namespace lld::coff; 46 47 /* To re-generate DOSProgram: 48 $ cat > /tmp/DOSProgram.asm 49 org 0 50 ; Copy cs to ds. 51 push cs 52 pop ds 53 ; Point ds:dx at the $-terminated string. 54 mov dx, str 55 ; Int 21/AH=09h: Write string to standard output. 56 mov ah, 0x9 57 int 0x21 58 ; Int 21/AH=4Ch: Exit with return code (in AL). 59 mov ax, 0x4C01 60 int 0x21 61 str: 62 db 'This program cannot be run in DOS mode.$' 63 align 8, db 0 64 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin 65 $ xxd -i /tmp/DOSProgram.bin 66 */ 67 static unsigned char dosProgram[] = { 68 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c, 69 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72, 70 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65, 71 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20, 72 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00 73 }; 74 static_assert(sizeof(dosProgram) % 8 == 0, 75 "DOSProgram size must be multiple of 8"); 76 77 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram); 78 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8"); 79 80 static const int numberOfDataDirectory = 16; 81 82 // Global vector of all output sections. After output sections are finalized, 83 // this can be indexed by Chunk::getOutputSection. 84 static std::vector<OutputSection *> outputSections; 85 86 OutputSection *Chunk::getOutputSection() const { 87 return osidx == 0 ? nullptr : outputSections[osidx - 1]; 88 } 89 90 namespace { 91 92 class DebugDirectoryChunk : public NonSectionChunk { 93 public: 94 DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType, Chunk *>> &r, 95 bool writeRepro) 96 : records(r), writeRepro(writeRepro) {} 97 98 size_t getSize() const override { 99 return (records.size() + int(writeRepro)) * sizeof(debug_directory); 100 } 101 102 void writeTo(uint8_t *b) const override { 103 auto *d = reinterpret_cast<debug_directory *>(b); 104 105 for (const std::pair<COFF::DebugType, Chunk *>& record : records) { 106 Chunk *c = record.second; 107 OutputSection *os = c->getOutputSection(); 108 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA()); 109 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs); 110 ++d; 111 } 112 113 if (writeRepro) { 114 // FIXME: The COFF spec allows either a 0-sized entry to just say 115 // "the timestamp field is really a hash", or a 4-byte size field 116 // followed by that many bytes containing a longer hash (with the 117 // lowest 4 bytes usually being the timestamp in little-endian order). 118 // Consider storing the full 8 bytes computed by xxHash64 here. 119 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0); 120 } 121 } 122 123 void setTimeDateStamp(uint32_t timeDateStamp) { 124 for (support::ulittle32_t *tds : timeDateStamps) 125 *tds = timeDateStamp; 126 } 127 128 private: 129 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size, 130 uint64_t rva, uint64_t offs) const { 131 d->Characteristics = 0; 132 d->TimeDateStamp = 0; 133 d->MajorVersion = 0; 134 d->MinorVersion = 0; 135 d->Type = debugType; 136 d->SizeOfData = size; 137 d->AddressOfRawData = rva; 138 d->PointerToRawData = offs; 139 140 timeDateStamps.push_back(&d->TimeDateStamp); 141 } 142 143 mutable std::vector<support::ulittle32_t *> timeDateStamps; 144 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records; 145 bool writeRepro; 146 }; 147 148 class CVDebugRecordChunk : public NonSectionChunk { 149 public: 150 size_t getSize() const override { 151 return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1; 152 } 153 154 void writeTo(uint8_t *b) const override { 155 // Save off the DebugInfo entry to backfill the file signature (build id) 156 // in Writer::writeBuildId 157 buildId = reinterpret_cast<codeview::DebugInfo *>(b); 158 159 // variable sized field (PDB Path) 160 char *p = reinterpret_cast<char *>(b + sizeof(*buildId)); 161 if (!config->pdbAltPath.empty()) 162 memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size()); 163 p[config->pdbAltPath.size()] = '\0'; 164 } 165 166 mutable codeview::DebugInfo *buildId = nullptr; 167 }; 168 169 class ExtendedDllCharacteristicsChunk : public NonSectionChunk { 170 public: 171 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {} 172 173 size_t getSize() const override { return 4; } 174 175 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); } 176 177 uint32_t characteristics = 0; 178 }; 179 180 // PartialSection represents a group of chunks that contribute to an 181 // OutputSection. Collating a collection of PartialSections of same name and 182 // characteristics constitutes the OutputSection. 183 class PartialSectionKey { 184 public: 185 StringRef name; 186 unsigned characteristics; 187 188 bool operator<(const PartialSectionKey &other) const { 189 int c = name.compare(other.name); 190 if (c == 1) 191 return false; 192 if (c == 0) 193 return characteristics < other.characteristics; 194 return true; 195 } 196 }; 197 198 // The writer writes a SymbolTable result to a file. 199 class Writer { 200 public: 201 Writer() : buffer(errorHandler().outputBuffer) {} 202 void run(); 203 204 private: 205 void createSections(); 206 void createMiscChunks(); 207 void createImportTables(); 208 void appendImportThunks(); 209 void locateImportTables(); 210 void createExportTable(); 211 void mergeSections(); 212 void removeUnusedSections(); 213 void assignAddresses(); 214 void finalizeAddresses(); 215 void removeEmptySections(); 216 void assignOutputSectionIndices(); 217 void createSymbolAndStringTable(); 218 void openFile(StringRef outputPath); 219 template <typename PEHeaderTy> void writeHeader(); 220 void createSEHTable(); 221 void createRuntimePseudoRelocs(); 222 void insertCtorDtorSymbols(); 223 void createGuardCFTables(); 224 void markSymbolsForRVATable(ObjFile *file, 225 ArrayRef<SectionChunk *> symIdxChunks, 226 SymbolRVASet &tableSymbols); 227 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, 228 StringRef countSym); 229 void setSectionPermissions(); 230 void writeSections(); 231 void writeBuildId(); 232 void sortExceptionTable(); 233 void sortCRTSectionChunks(std::vector<Chunk *> &chunks); 234 void addSyntheticIdata(); 235 void fixPartialSectionChars(StringRef name, uint32_t chars); 236 bool fixGnuImportChunks(); 237 PartialSection *createPartialSection(StringRef name, uint32_t outChars); 238 PartialSection *findPartialSection(StringRef name, uint32_t outChars); 239 240 llvm::Optional<coff_symbol16> createSymbol(Defined *d); 241 size_t addEntryToStringTable(StringRef str); 242 243 OutputSection *findSection(StringRef name); 244 void addBaserels(); 245 void addBaserelBlocks(std::vector<Baserel> &v); 246 247 uint32_t getSizeOfInitializedData(); 248 249 std::unique_ptr<FileOutputBuffer> &buffer; 250 std::map<PartialSectionKey, PartialSection *> partialSections; 251 std::vector<char> strtab; 252 std::vector<llvm::object::coff_symbol16> outputSymtab; 253 IdataContents idata; 254 Chunk *importTableStart = nullptr; 255 uint64_t importTableSize = 0; 256 Chunk *edataStart = nullptr; 257 Chunk *edataEnd = nullptr; 258 Chunk *iatStart = nullptr; 259 uint64_t iatSize = 0; 260 DelayLoadContents delayIdata; 261 EdataContents edata; 262 bool setNoSEHCharacteristic = false; 263 264 DebugDirectoryChunk *debugDirectory = nullptr; 265 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords; 266 CVDebugRecordChunk *buildId = nullptr; 267 ArrayRef<uint8_t> sectionTable; 268 269 uint64_t fileSize; 270 uint32_t pointerToSymbolTable = 0; 271 uint64_t sizeOfImage; 272 uint64_t sizeOfHeaders; 273 274 OutputSection *textSec; 275 OutputSection *rdataSec; 276 OutputSection *buildidSec; 277 OutputSection *dataSec; 278 OutputSection *pdataSec; 279 OutputSection *idataSec; 280 OutputSection *edataSec; 281 OutputSection *didatSec; 282 OutputSection *rsrcSec; 283 OutputSection *relocSec; 284 OutputSection *ctorsSec; 285 OutputSection *dtorsSec; 286 287 // The first and last .pdata sections in the output file. 288 // 289 // We need to keep track of the location of .pdata in whichever section it 290 // gets merged into so that we can sort its contents and emit a correct data 291 // directory entry for the exception table. This is also the case for some 292 // other sections (such as .edata) but because the contents of those sections 293 // are entirely linker-generated we can keep track of their locations using 294 // the chunks that the linker creates. All .pdata chunks come from input 295 // files, so we need to keep track of them separately. 296 Chunk *firstPdata = nullptr; 297 Chunk *lastPdata; 298 }; 299 } // anonymous namespace 300 301 static Timer codeLayoutTimer("Code Layout", Timer::root()); 302 static Timer diskCommitTimer("Commit Output File", Timer::root()); 303 304 void lld::coff::writeResult() { Writer().run(); } 305 306 void OutputSection::addChunk(Chunk *c) { 307 chunks.push_back(c); 308 } 309 310 void OutputSection::insertChunkAtStart(Chunk *c) { 311 chunks.insert(chunks.begin(), c); 312 } 313 314 void OutputSection::setPermissions(uint32_t c) { 315 header.Characteristics &= ~permMask; 316 header.Characteristics |= c; 317 } 318 319 void OutputSection::merge(OutputSection *other) { 320 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end()); 321 other->chunks.clear(); 322 contribSections.insert(contribSections.end(), other->contribSections.begin(), 323 other->contribSections.end()); 324 other->contribSections.clear(); 325 } 326 327 // Write the section header to a given buffer. 328 void OutputSection::writeHeaderTo(uint8_t *buf) { 329 auto *hdr = reinterpret_cast<coff_section *>(buf); 330 *hdr = header; 331 if (stringTableOff) { 332 // If name is too long, write offset into the string table as a name. 333 sprintf(hdr->Name, "/%d", stringTableOff); 334 } else { 335 assert(!config->debug || name.size() <= COFF::NameSize || 336 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0); 337 strncpy(hdr->Name, name.data(), 338 std::min(name.size(), (size_t)COFF::NameSize)); 339 } 340 } 341 342 void OutputSection::addContributingPartialSection(PartialSection *sec) { 343 contribSections.push_back(sec); 344 } 345 346 // Check whether the target address S is in range from a relocation 347 // of type relType at address P. 348 static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) { 349 if (config->machine == ARMNT) { 350 int64_t diff = AbsoluteDifference(s, p + 4) + margin; 351 switch (relType) { 352 case IMAGE_REL_ARM_BRANCH20T: 353 return isInt<21>(diff); 354 case IMAGE_REL_ARM_BRANCH24T: 355 case IMAGE_REL_ARM_BLX23T: 356 return isInt<25>(diff); 357 default: 358 return true; 359 } 360 } else if (config->machine == ARM64) { 361 int64_t diff = AbsoluteDifference(s, p) + margin; 362 switch (relType) { 363 case IMAGE_REL_ARM64_BRANCH26: 364 return isInt<28>(diff); 365 case IMAGE_REL_ARM64_BRANCH19: 366 return isInt<21>(diff); 367 case IMAGE_REL_ARM64_BRANCH14: 368 return isInt<16>(diff); 369 default: 370 return true; 371 } 372 } else { 373 llvm_unreachable("Unexpected architecture"); 374 } 375 } 376 377 // Return the last thunk for the given target if it is in range, 378 // or create a new one. 379 static std::pair<Defined *, bool> 380 getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p, 381 uint16_t type, int margin) { 382 Defined *&lastThunk = lastThunks[target->getRVA()]; 383 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin)) 384 return {lastThunk, false}; 385 Chunk *c; 386 switch (config->machine) { 387 case ARMNT: 388 c = make<RangeExtensionThunkARM>(target); 389 break; 390 case ARM64: 391 c = make<RangeExtensionThunkARM64>(target); 392 break; 393 default: 394 llvm_unreachable("Unexpected architecture"); 395 } 396 Defined *d = make<DefinedSynthetic>("", c); 397 lastThunk = d; 398 return {d, true}; 399 } 400 401 // This checks all relocations, and for any relocation which isn't in range 402 // it adds a thunk after the section chunk that contains the relocation. 403 // If the latest thunk for the specific target is in range, that is used 404 // instead of creating a new thunk. All range checks are done with the 405 // specified margin, to make sure that relocations that originally are in 406 // range, but only barely, also get thunks - in case other added thunks makes 407 // the target go out of range. 408 // 409 // After adding thunks, we verify that all relocations are in range (with 410 // no extra margin requirements). If this failed, we restart (throwing away 411 // the previously created thunks) and retry with a wider margin. 412 static bool createThunks(OutputSection *os, int margin) { 413 bool addressesChanged = false; 414 DenseMap<uint64_t, Defined *> lastThunks; 415 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices; 416 size_t thunksSize = 0; 417 // Recheck Chunks.size() each iteration, since we can insert more 418 // elements into it. 419 for (size_t i = 0; i != os->chunks.size(); ++i) { 420 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]); 421 if (!sc) 422 continue; 423 size_t thunkInsertionSpot = i + 1; 424 425 // Try to get a good enough estimate of where new thunks will be placed. 426 // Offset this by the size of the new thunks added so far, to make the 427 // estimate slightly better. 428 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize; 429 ObjFile *file = sc->file; 430 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements; 431 ArrayRef<coff_relocation> originalRelocs = 432 file->getCOFFObj()->getRelocations(sc->header); 433 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) { 434 const coff_relocation &rel = originalRelocs[j]; 435 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex); 436 437 // The estimate of the source address P should be pretty accurate, 438 // but we don't know whether the target Symbol address should be 439 // offset by thunksSize or not (or by some of thunksSize but not all of 440 // it), giving us some uncertainty once we have added one thunk. 441 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize; 442 443 Defined *sym = dyn_cast_or_null<Defined>(relocTarget); 444 if (!sym) 445 continue; 446 447 uint64_t s = sym->getRVA(); 448 449 if (isInRange(rel.Type, s, p, margin)) 450 continue; 451 452 // If the target isn't in range, hook it up to an existing or new 453 // thunk. 454 Defined *thunk; 455 bool wasNew; 456 std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin); 457 if (wasNew) { 458 Chunk *thunkChunk = thunk->getChunk(); 459 thunkChunk->setRVA( 460 thunkInsertionRVA); // Estimate of where it will be located. 461 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk); 462 thunkInsertionSpot++; 463 thunksSize += thunkChunk->getSize(); 464 thunkInsertionRVA += thunkChunk->getSize(); 465 addressesChanged = true; 466 } 467 468 // To redirect the relocation, add a symbol to the parent object file's 469 // symbol table, and replace the relocation symbol table index with the 470 // new index. 471 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U}); 472 uint32_t &thunkSymbolIndex = insertion.first->second; 473 if (insertion.second) 474 thunkSymbolIndex = file->addRangeThunkSymbol(thunk); 475 relocReplacements.push_back({j, thunkSymbolIndex}); 476 } 477 478 // Get a writable copy of this section's relocations so they can be 479 // modified. If the relocations point into the object file, allocate new 480 // memory. Otherwise, this must be previously allocated memory that can be 481 // modified in place. 482 ArrayRef<coff_relocation> curRelocs = sc->getRelocs(); 483 MutableArrayRef<coff_relocation> newRelocs; 484 if (originalRelocs.data() == curRelocs.data()) { 485 newRelocs = makeMutableArrayRef( 486 bAlloc.Allocate<coff_relocation>(originalRelocs.size()), 487 originalRelocs.size()); 488 } else { 489 newRelocs = makeMutableArrayRef( 490 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size()); 491 } 492 493 // Copy each relocation, but replace the symbol table indices which need 494 // thunks. 495 auto nextReplacement = relocReplacements.begin(); 496 auto endReplacement = relocReplacements.end(); 497 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) { 498 newRelocs[i] = originalRelocs[i]; 499 if (nextReplacement != endReplacement && nextReplacement->first == i) { 500 newRelocs[i].SymbolTableIndex = nextReplacement->second; 501 ++nextReplacement; 502 } 503 } 504 505 sc->setRelocs(newRelocs); 506 } 507 return addressesChanged; 508 } 509 510 // Verify that all relocations are in range, with no extra margin requirements. 511 static bool verifyRanges(const std::vector<Chunk *> chunks) { 512 for (Chunk *c : chunks) { 513 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c); 514 if (!sc) 515 continue; 516 517 ArrayRef<coff_relocation> relocs = sc->getRelocs(); 518 for (size_t j = 0, e = relocs.size(); j < e; ++j) { 519 const coff_relocation &rel = relocs[j]; 520 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex); 521 522 Defined *sym = dyn_cast_or_null<Defined>(relocTarget); 523 if (!sym) 524 continue; 525 526 uint64_t p = sc->getRVA() + rel.VirtualAddress; 527 uint64_t s = sym->getRVA(); 528 529 if (!isInRange(rel.Type, s, p, 0)) 530 return false; 531 } 532 } 533 return true; 534 } 535 536 // Assign addresses and add thunks if necessary. 537 void Writer::finalizeAddresses() { 538 assignAddresses(); 539 if (config->machine != ARMNT && config->machine != ARM64) 540 return; 541 542 size_t origNumChunks = 0; 543 for (OutputSection *sec : outputSections) { 544 sec->origChunks = sec->chunks; 545 origNumChunks += sec->chunks.size(); 546 } 547 548 int pass = 0; 549 int margin = 1024 * 100; 550 while (true) { 551 // First check whether we need thunks at all, or if the previous pass of 552 // adding them turned out ok. 553 bool rangesOk = true; 554 size_t numChunks = 0; 555 for (OutputSection *sec : outputSections) { 556 if (!verifyRanges(sec->chunks)) { 557 rangesOk = false; 558 break; 559 } 560 numChunks += sec->chunks.size(); 561 } 562 if (rangesOk) { 563 if (pass > 0) 564 log("Added " + Twine(numChunks - origNumChunks) + " thunks with " + 565 "margin " + Twine(margin) + " in " + Twine(pass) + " passes"); 566 return; 567 } 568 569 if (pass >= 10) 570 fatal("adding thunks hasn't converged after " + Twine(pass) + " passes"); 571 572 if (pass > 0) { 573 // If the previous pass didn't work out, reset everything back to the 574 // original conditions before retrying with a wider margin. This should 575 // ideally never happen under real circumstances. 576 for (OutputSection *sec : outputSections) 577 sec->chunks = sec->origChunks; 578 margin *= 2; 579 } 580 581 // Try adding thunks everywhere where it is needed, with a margin 582 // to avoid things going out of range due to the added thunks. 583 bool addressesChanged = false; 584 for (OutputSection *sec : outputSections) 585 addressesChanged |= createThunks(sec, margin); 586 // If the verification above thought we needed thunks, we should have 587 // added some. 588 assert(addressesChanged); 589 590 // Recalculate the layout for the whole image (and verify the ranges at 591 // the start of the next round). 592 assignAddresses(); 593 594 pass++; 595 } 596 } 597 598 // The main function of the writer. 599 void Writer::run() { 600 ScopedTimer t1(codeLayoutTimer); 601 602 // First, clear the output sections from previous runs 603 outputSections.clear(); 604 605 createImportTables(); 606 createSections(); 607 createMiscChunks(); 608 appendImportThunks(); 609 createExportTable(); 610 mergeSections(); 611 removeUnusedSections(); 612 finalizeAddresses(); 613 removeEmptySections(); 614 assignOutputSectionIndices(); 615 setSectionPermissions(); 616 createSymbolAndStringTable(); 617 618 if (fileSize > UINT32_MAX) 619 fatal("image size (" + Twine(fileSize) + ") " + 620 "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")"); 621 622 openFile(config->outputFile); 623 if (config->is64()) { 624 writeHeader<pe32plus_header>(); 625 } else { 626 writeHeader<pe32_header>(); 627 } 628 writeSections(); 629 sortExceptionTable(); 630 631 t1.stop(); 632 633 if (!config->pdbPath.empty() && config->debug) { 634 assert(buildId); 635 createPDB(symtab, outputSections, sectionTable, buildId->buildId); 636 } 637 writeBuildId(); 638 639 writeLLDMapFile(outputSections); 640 writeMapFile(outputSections); 641 642 if (errorCount()) 643 return; 644 645 ScopedTimer t2(diskCommitTimer); 646 if (auto e = buffer->commit()) 647 fatal("failed to write the output file: " + toString(std::move(e))); 648 } 649 650 static StringRef getOutputSectionName(StringRef name) { 651 StringRef s = name.split('$').first; 652 653 // Treat a later period as a separator for MinGW, for sections like 654 // ".ctors.01234". 655 return s.substr(0, s.find('.', 1)); 656 } 657 658 // For /order. 659 static void sortBySectionOrder(std::vector<Chunk *> &chunks) { 660 auto getPriority = [](const Chunk *c) { 661 if (auto *sec = dyn_cast<SectionChunk>(c)) 662 if (sec->sym) 663 return config->order.lookup(sec->sym->getName()); 664 return 0; 665 }; 666 667 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) { 668 return getPriority(a) < getPriority(b); 669 }); 670 } 671 672 // Change the characteristics of existing PartialSections that belong to the 673 // section Name to Chars. 674 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) { 675 for (auto it : partialSections) { 676 PartialSection *pSec = it.second; 677 StringRef curName = pSec->name; 678 if (!curName.consume_front(name) || 679 (!curName.empty() && !curName.startswith("$"))) 680 continue; 681 if (pSec->characteristics == chars) 682 continue; 683 PartialSection *destSec = createPartialSection(pSec->name, chars); 684 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(), 685 pSec->chunks.end()); 686 pSec->chunks.clear(); 687 } 688 } 689 690 // Sort concrete section chunks from GNU import libraries. 691 // 692 // GNU binutils doesn't use short import files, but instead produces import 693 // libraries that consist of object files, with section chunks for the .idata$* 694 // sections. These are linked just as regular static libraries. Each import 695 // library consists of one header object, one object file for every imported 696 // symbol, and one trailer object. In order for the .idata tables/lists to 697 // be formed correctly, the section chunks within each .idata$* section need 698 // to be grouped by library, and sorted alphabetically within each library 699 // (which makes sure the header comes first and the trailer last). 700 bool Writer::fixGnuImportChunks() { 701 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 702 703 // Make sure all .idata$* section chunks are mapped as RDATA in order to 704 // be sorted into the same sections as our own synthesized .idata chunks. 705 fixPartialSectionChars(".idata", rdata); 706 707 bool hasIdata = false; 708 // Sort all .idata$* chunks, grouping chunks from the same library, 709 // with alphabetical ordering of the object fils within a library. 710 for (auto it : partialSections) { 711 PartialSection *pSec = it.second; 712 if (!pSec->name.startswith(".idata")) 713 continue; 714 715 if (!pSec->chunks.empty()) 716 hasIdata = true; 717 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) { 718 SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s); 719 SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t); 720 if (!sc1 || !sc2) { 721 // if SC1, order them ascending. If SC2 or both null, 722 // S is not less than T. 723 return sc1 != nullptr; 724 } 725 // Make a string with "libraryname/objectfile" for sorting, achieving 726 // both grouping by library and sorting of objects within a library, 727 // at once. 728 std::string key1 = 729 (sc1->file->parentName + "/" + sc1->file->getName()).str(); 730 std::string key2 = 731 (sc2->file->parentName + "/" + sc2->file->getName()).str(); 732 return key1 < key2; 733 }); 734 } 735 return hasIdata; 736 } 737 738 // Add generated idata chunks, for imported symbols and DLLs, and a 739 // terminator in .idata$2. 740 void Writer::addSyntheticIdata() { 741 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 742 idata.create(); 743 744 // Add the .idata content in the right section groups, to allow 745 // chunks from other linked in object files to be grouped together. 746 // See Microsoft PE/COFF spec 5.4 for details. 747 auto add = [&](StringRef n, std::vector<Chunk *> &v) { 748 PartialSection *pSec = createPartialSection(n, rdata); 749 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end()); 750 }; 751 752 // The loader assumes a specific order of data. 753 // Add each type in the correct order. 754 add(".idata$2", idata.dirs); 755 add(".idata$4", idata.lookups); 756 add(".idata$5", idata.addresses); 757 if (!idata.hints.empty()) 758 add(".idata$6", idata.hints); 759 add(".idata$7", idata.dllNames); 760 } 761 762 // Locate the first Chunk and size of the import directory list and the 763 // IAT. 764 void Writer::locateImportTables() { 765 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 766 767 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) { 768 if (!importDirs->chunks.empty()) 769 importTableStart = importDirs->chunks.front(); 770 for (Chunk *c : importDirs->chunks) 771 importTableSize += c->getSize(); 772 } 773 774 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) { 775 if (!importAddresses->chunks.empty()) 776 iatStart = importAddresses->chunks.front(); 777 for (Chunk *c : importAddresses->chunks) 778 iatSize += c->getSize(); 779 } 780 } 781 782 // Return whether a SectionChunk's suffix (the dollar and any trailing 783 // suffix) should be removed and sorted into the main suffixless 784 // PartialSection. 785 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) { 786 // On MinGW, comdat groups are formed by putting the comdat group name 787 // after the '$' in the section name. For .eh_frame$<symbol>, that must 788 // still be sorted before the .eh_frame trailer from crtend.o, thus just 789 // strip the section name trailer. For other sections, such as 790 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in 791 // ".tls$"), they must be strictly sorted after .tls. And for the 792 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the 793 // suffix for sorting. Thus, to play it safe, only strip the suffix for 794 // the standard sections. 795 if (!config->mingw) 796 return false; 797 if (!sc || !sc->isCOMDAT()) 798 return false; 799 return name.startswith(".text$") || name.startswith(".data$") || 800 name.startswith(".rdata$") || name.startswith(".pdata$") || 801 name.startswith(".xdata$") || name.startswith(".eh_frame$"); 802 } 803 804 // Create output section objects and add them to OutputSections. 805 void Writer::createSections() { 806 // First, create the builtin sections. 807 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA; 808 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA; 809 const uint32_t code = IMAGE_SCN_CNT_CODE; 810 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE; 811 const uint32_t r = IMAGE_SCN_MEM_READ; 812 const uint32_t w = IMAGE_SCN_MEM_WRITE; 813 const uint32_t x = IMAGE_SCN_MEM_EXECUTE; 814 815 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections; 816 auto createSection = [&](StringRef name, uint32_t outChars) { 817 OutputSection *&sec = sections[{name, outChars}]; 818 if (!sec) { 819 sec = make<OutputSection>(name, outChars); 820 outputSections.push_back(sec); 821 } 822 return sec; 823 }; 824 825 // Try to match the section order used by link.exe. 826 textSec = createSection(".text", code | r | x); 827 createSection(".bss", bss | r | w); 828 rdataSec = createSection(".rdata", data | r); 829 buildidSec = createSection(".buildid", data | r); 830 dataSec = createSection(".data", data | r | w); 831 pdataSec = createSection(".pdata", data | r); 832 idataSec = createSection(".idata", data | r); 833 edataSec = createSection(".edata", data | r); 834 didatSec = createSection(".didat", data | r); 835 rsrcSec = createSection(".rsrc", data | r); 836 relocSec = createSection(".reloc", data | discardable | r); 837 ctorsSec = createSection(".ctors", data | r | w); 838 dtorsSec = createSection(".dtors", data | r | w); 839 840 // Then bin chunks by name and output characteristics. 841 for (Chunk *c : symtab->getChunks()) { 842 auto *sc = dyn_cast<SectionChunk>(c); 843 if (sc && !sc->live) { 844 if (config->verbose) 845 sc->printDiscardedMessage(); 846 continue; 847 } 848 StringRef name = c->getSectionName(); 849 if (shouldStripSectionSuffix(sc, name)) 850 name = name.split('$').first; 851 PartialSection *pSec = createPartialSection(name, 852 c->getOutputCharacteristics()); 853 pSec->chunks.push_back(c); 854 } 855 856 fixPartialSectionChars(".rsrc", data | r); 857 fixPartialSectionChars(".edata", data | r); 858 // Even in non MinGW cases, we might need to link against GNU import 859 // libraries. 860 bool hasIdata = fixGnuImportChunks(); 861 if (!idata.empty()) 862 hasIdata = true; 863 864 if (hasIdata) 865 addSyntheticIdata(); 866 867 // Process an /order option. 868 if (!config->order.empty()) 869 for (auto it : partialSections) 870 sortBySectionOrder(it.second->chunks); 871 872 if (hasIdata) 873 locateImportTables(); 874 875 // Then create an OutputSection for each section. 876 // '$' and all following characters in input section names are 877 // discarded when determining output section. So, .text$foo 878 // contributes to .text, for example. See PE/COFF spec 3.2. 879 for (auto it : partialSections) { 880 PartialSection *pSec = it.second; 881 StringRef name = getOutputSectionName(pSec->name); 882 uint32_t outChars = pSec->characteristics; 883 884 if (name == ".CRT") { 885 // In link.exe, there is a special case for the I386 target where .CRT 886 // sections are treated as if they have output characteristics DATA | R if 887 // their characteristics are DATA | R | W. This implements the same 888 // special case for all architectures. 889 outChars = data | r; 890 891 log("Processing section " + pSec->name + " -> " + name); 892 893 sortCRTSectionChunks(pSec->chunks); 894 } 895 896 OutputSection *sec = createSection(name, outChars); 897 for (Chunk *c : pSec->chunks) 898 sec->addChunk(c); 899 900 sec->addContributingPartialSection(pSec); 901 } 902 903 // Finally, move some output sections to the end. 904 auto sectionOrder = [&](const OutputSection *s) { 905 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file 906 // because the loader cannot handle holes. Stripping can remove other 907 // discardable ones than .reloc, which is first of them (created early). 908 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) 909 return 2; 910 // .rsrc should come at the end of the non-discardable sections because its 911 // size may change by the Win32 UpdateResources() function, causing 912 // subsequent sections to move (see https://crbug.com/827082). 913 if (s == rsrcSec) 914 return 1; 915 return 0; 916 }; 917 llvm::stable_sort(outputSections, 918 [&](const OutputSection *s, const OutputSection *t) { 919 return sectionOrder(s) < sectionOrder(t); 920 }); 921 } 922 923 void Writer::createMiscChunks() { 924 for (MergeChunk *p : MergeChunk::instances) { 925 if (p) { 926 p->finalizeContents(); 927 rdataSec->addChunk(p); 928 } 929 } 930 931 // Create thunks for locally-dllimported symbols. 932 if (!symtab->localImportChunks.empty()) { 933 for (Chunk *c : symtab->localImportChunks) 934 rdataSec->addChunk(c); 935 } 936 937 // Create Debug Information Chunks 938 OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec; 939 if (config->debug || config->repro || config->cetCompat) { 940 debugDirectory = make<DebugDirectoryChunk>(debugRecords, config->repro); 941 debugDirectory->setAlignment(4); 942 debugInfoSec->addChunk(debugDirectory); 943 } 944 945 if (config->debug) { 946 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We 947 // output a PDB no matter what, and this chunk provides the only means of 948 // allowing a debugger to match a PDB and an executable. So we need it even 949 // if we're ultimately not going to write CodeView data to the PDB. 950 buildId = make<CVDebugRecordChunk>(); 951 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId}); 952 } 953 954 if (config->cetCompat) { 955 ExtendedDllCharacteristicsChunk *extendedDllChars = 956 make<ExtendedDllCharacteristicsChunk>( 957 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT); 958 debugRecords.push_back( 959 {COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS, extendedDllChars}); 960 } 961 962 if (debugRecords.size() > 0) { 963 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) 964 debugInfoSec->addChunk(r.second); 965 } 966 967 // Create SEH table. x86-only. 968 if (config->safeSEH) 969 createSEHTable(); 970 971 // Create /guard:cf tables if requested. 972 if (config->guardCF != GuardCFLevel::Off) 973 createGuardCFTables(); 974 975 if (config->autoImport) 976 createRuntimePseudoRelocs(); 977 978 if (config->mingw) 979 insertCtorDtorSymbols(); 980 } 981 982 // Create .idata section for the DLL-imported symbol table. 983 // The format of this section is inherently Windows-specific. 984 // IdataContents class abstracted away the details for us, 985 // so we just let it create chunks and add them to the section. 986 void Writer::createImportTables() { 987 // Initialize DLLOrder so that import entries are ordered in 988 // the same order as in the command line. (That affects DLL 989 // initialization order, and this ordering is MSVC-compatible.) 990 for (ImportFile *file : ImportFile::instances) { 991 if (!file->live) 992 continue; 993 994 std::string dll = StringRef(file->dllName).lower(); 995 if (config->dllOrder.count(dll) == 0) 996 config->dllOrder[dll] = config->dllOrder.size(); 997 998 if (file->impSym && !isa<DefinedImportData>(file->impSym)) 999 fatal(toString(*file->impSym) + " was replaced"); 1000 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym); 1001 if (config->delayLoads.count(StringRef(file->dllName).lower())) { 1002 if (!file->thunkSym) 1003 fatal("cannot delay-load " + toString(file) + 1004 " due to import of data: " + toString(*impSym)); 1005 delayIdata.add(impSym); 1006 } else { 1007 idata.add(impSym); 1008 } 1009 } 1010 } 1011 1012 void Writer::appendImportThunks() { 1013 if (ImportFile::instances.empty()) 1014 return; 1015 1016 for (ImportFile *file : ImportFile::instances) { 1017 if (!file->live) 1018 continue; 1019 1020 if (!file->thunkSym) 1021 continue; 1022 1023 if (!isa<DefinedImportThunk>(file->thunkSym)) 1024 fatal(toString(*file->thunkSym) + " was replaced"); 1025 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym); 1026 if (file->thunkLive) 1027 textSec->addChunk(thunk->getChunk()); 1028 } 1029 1030 if (!delayIdata.empty()) { 1031 Defined *helper = cast<Defined>(config->delayLoadHelper); 1032 delayIdata.create(helper); 1033 for (Chunk *c : delayIdata.getChunks()) 1034 didatSec->addChunk(c); 1035 for (Chunk *c : delayIdata.getDataChunks()) 1036 dataSec->addChunk(c); 1037 for (Chunk *c : delayIdata.getCodeChunks()) 1038 textSec->addChunk(c); 1039 } 1040 } 1041 1042 void Writer::createExportTable() { 1043 if (!edataSec->chunks.empty()) { 1044 // Allow using a custom built export table from input object files, instead 1045 // of having the linker synthesize the tables. 1046 if (config->hadExplicitExports) 1047 warn("literal .edata sections override exports"); 1048 } else if (!config->exports.empty()) { 1049 for (Chunk *c : edata.chunks) 1050 edataSec->addChunk(c); 1051 } 1052 if (!edataSec->chunks.empty()) { 1053 edataStart = edataSec->chunks.front(); 1054 edataEnd = edataSec->chunks.back(); 1055 } 1056 } 1057 1058 void Writer::removeUnusedSections() { 1059 // Remove sections that we can be sure won't get content, to avoid 1060 // allocating space for their section headers. 1061 auto isUnused = [this](OutputSection *s) { 1062 if (s == relocSec) 1063 return false; // This section is populated later. 1064 // MergeChunks have zero size at this point, as their size is finalized 1065 // later. Only remove sections that have no Chunks at all. 1066 return s->chunks.empty(); 1067 }; 1068 outputSections.erase( 1069 std::remove_if(outputSections.begin(), outputSections.end(), isUnused), 1070 outputSections.end()); 1071 } 1072 1073 // The Windows loader doesn't seem to like empty sections, 1074 // so we remove them if any. 1075 void Writer::removeEmptySections() { 1076 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; }; 1077 outputSections.erase( 1078 std::remove_if(outputSections.begin(), outputSections.end(), isEmpty), 1079 outputSections.end()); 1080 } 1081 1082 void Writer::assignOutputSectionIndices() { 1083 // Assign final output section indices, and assign each chunk to its output 1084 // section. 1085 uint32_t idx = 1; 1086 for (OutputSection *os : outputSections) { 1087 os->sectionIndex = idx; 1088 for (Chunk *c : os->chunks) 1089 c->setOutputSectionIdx(idx); 1090 ++idx; 1091 } 1092 1093 // Merge chunks are containers of chunks, so assign those an output section 1094 // too. 1095 for (MergeChunk *mc : MergeChunk::instances) 1096 if (mc) 1097 for (SectionChunk *sc : mc->sections) 1098 if (sc && sc->live) 1099 sc->setOutputSectionIdx(mc->getOutputSectionIdx()); 1100 } 1101 1102 size_t Writer::addEntryToStringTable(StringRef str) { 1103 assert(str.size() > COFF::NameSize); 1104 size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field 1105 strtab.insert(strtab.end(), str.begin(), str.end()); 1106 strtab.push_back('\0'); 1107 return offsetOfEntry; 1108 } 1109 1110 Optional<coff_symbol16> Writer::createSymbol(Defined *def) { 1111 coff_symbol16 sym; 1112 switch (def->kind()) { 1113 case Symbol::DefinedAbsoluteKind: 1114 sym.Value = def->getRVA(); 1115 sym.SectionNumber = IMAGE_SYM_ABSOLUTE; 1116 break; 1117 case Symbol::DefinedSyntheticKind: 1118 // Relative symbols are unrepresentable in a COFF symbol table. 1119 return None; 1120 default: { 1121 // Don't write symbols that won't be written to the output to the symbol 1122 // table. 1123 Chunk *c = def->getChunk(); 1124 if (!c) 1125 return None; 1126 OutputSection *os = c->getOutputSection(); 1127 if (!os) 1128 return None; 1129 1130 sym.Value = def->getRVA() - os->getRVA(); 1131 sym.SectionNumber = os->sectionIndex; 1132 break; 1133 } 1134 } 1135 1136 // Symbols that are runtime pseudo relocations don't point to the actual 1137 // symbol data itself (as they are imported), but points to the IAT entry 1138 // instead. Avoid emitting them to the symbol table, as they can confuse 1139 // debuggers. 1140 if (def->isRuntimePseudoReloc) 1141 return None; 1142 1143 StringRef name = def->getName(); 1144 if (name.size() > COFF::NameSize) { 1145 sym.Name.Offset.Zeroes = 0; 1146 sym.Name.Offset.Offset = addEntryToStringTable(name); 1147 } else { 1148 memset(sym.Name.ShortName, 0, COFF::NameSize); 1149 memcpy(sym.Name.ShortName, name.data(), name.size()); 1150 } 1151 1152 if (auto *d = dyn_cast<DefinedCOFF>(def)) { 1153 COFFSymbolRef ref = d->getCOFFSymbol(); 1154 sym.Type = ref.getType(); 1155 sym.StorageClass = ref.getStorageClass(); 1156 } else { 1157 sym.Type = IMAGE_SYM_TYPE_NULL; 1158 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL; 1159 } 1160 sym.NumberOfAuxSymbols = 0; 1161 return sym; 1162 } 1163 1164 void Writer::createSymbolAndStringTable() { 1165 // PE/COFF images are limited to 8 byte section names. Longer names can be 1166 // supported by writing a non-standard string table, but this string table is 1167 // not mapped at runtime and the long names will therefore be inaccessible. 1168 // link.exe always truncates section names to 8 bytes, whereas binutils always 1169 // preserves long section names via the string table. LLD adopts a hybrid 1170 // solution where discardable sections have long names preserved and 1171 // non-discardable sections have their names truncated, to ensure that any 1172 // section which is mapped at runtime also has its name mapped at runtime. 1173 for (OutputSection *sec : outputSections) { 1174 if (sec->name.size() <= COFF::NameSize) 1175 continue; 1176 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0) 1177 continue; 1178 if (config->warnLongSectionNames) { 1179 warn("section name " + sec->name + 1180 " is longer than 8 characters and will use a non-standard string " 1181 "table"); 1182 } 1183 sec->setStringTableOff(addEntryToStringTable(sec->name)); 1184 } 1185 1186 if (config->debugDwarf || config->debugSymtab) { 1187 for (ObjFile *file : ObjFile::instances) { 1188 for (Symbol *b : file->getSymbols()) { 1189 auto *d = dyn_cast_or_null<Defined>(b); 1190 if (!d || d->writtenToSymtab) 1191 continue; 1192 d->writtenToSymtab = true; 1193 1194 if (Optional<coff_symbol16> sym = createSymbol(d)) 1195 outputSymtab.push_back(*sym); 1196 } 1197 } 1198 } 1199 1200 if (outputSymtab.empty() && strtab.empty()) 1201 return; 1202 1203 // We position the symbol table to be adjacent to the end of the last section. 1204 uint64_t fileOff = fileSize; 1205 pointerToSymbolTable = fileOff; 1206 fileOff += outputSymtab.size() * sizeof(coff_symbol16); 1207 fileOff += 4 + strtab.size(); 1208 fileSize = alignTo(fileOff, config->fileAlign); 1209 } 1210 1211 void Writer::mergeSections() { 1212 if (!pdataSec->chunks.empty()) { 1213 firstPdata = pdataSec->chunks.front(); 1214 lastPdata = pdataSec->chunks.back(); 1215 } 1216 1217 for (auto &p : config->merge) { 1218 StringRef toName = p.second; 1219 if (p.first == toName) 1220 continue; 1221 StringSet<> names; 1222 while (1) { 1223 if (!names.insert(toName).second) 1224 fatal("/merge: cycle found for section '" + p.first + "'"); 1225 auto i = config->merge.find(toName); 1226 if (i == config->merge.end()) 1227 break; 1228 toName = i->second; 1229 } 1230 OutputSection *from = findSection(p.first); 1231 OutputSection *to = findSection(toName); 1232 if (!from) 1233 continue; 1234 if (!to) { 1235 from->name = toName; 1236 continue; 1237 } 1238 to->merge(from); 1239 } 1240 } 1241 1242 // Visits all sections to assign incremental, non-overlapping RVAs and 1243 // file offsets. 1244 void Writer::assignAddresses() { 1245 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) + 1246 sizeof(data_directory) * numberOfDataDirectory + 1247 sizeof(coff_section) * outputSections.size(); 1248 sizeOfHeaders += 1249 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header); 1250 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign); 1251 fileSize = sizeOfHeaders; 1252 1253 // The first page is kept unmapped. 1254 uint64_t rva = alignTo(sizeOfHeaders, config->align); 1255 1256 for (OutputSection *sec : outputSections) { 1257 if (sec == relocSec) 1258 addBaserels(); 1259 uint64_t rawSize = 0, virtualSize = 0; 1260 sec->header.VirtualAddress = rva; 1261 1262 // If /FUNCTIONPADMIN is used, functions are padded in order to create a 1263 // hotpatchable image. 1264 const bool isCodeSection = 1265 (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) && 1266 (sec->header.Characteristics & IMAGE_SCN_MEM_READ) && 1267 (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE); 1268 uint32_t padding = isCodeSection ? config->functionPadMin : 0; 1269 1270 for (Chunk *c : sec->chunks) { 1271 if (padding && c->isHotPatchable()) 1272 virtualSize += padding; 1273 virtualSize = alignTo(virtualSize, c->getAlignment()); 1274 c->setRVA(rva + virtualSize); 1275 virtualSize += c->getSize(); 1276 if (c->hasData) 1277 rawSize = alignTo(virtualSize, config->fileAlign); 1278 } 1279 if (virtualSize > UINT32_MAX) 1280 error("section larger than 4 GiB: " + sec->name); 1281 sec->header.VirtualSize = virtualSize; 1282 sec->header.SizeOfRawData = rawSize; 1283 if (rawSize != 0) 1284 sec->header.PointerToRawData = fileSize; 1285 rva += alignTo(virtualSize, config->align); 1286 fileSize += alignTo(rawSize, config->fileAlign); 1287 } 1288 sizeOfImage = alignTo(rva, config->align); 1289 1290 // Assign addresses to sections in MergeChunks. 1291 for (MergeChunk *mc : MergeChunk::instances) 1292 if (mc) 1293 mc->assignSubsectionRVAs(); 1294 } 1295 1296 template <typename PEHeaderTy> void Writer::writeHeader() { 1297 // Write DOS header. For backwards compatibility, the first part of a PE/COFF 1298 // executable consists of an MS-DOS MZ executable. If the executable is run 1299 // under DOS, that program gets run (usually to just print an error message). 1300 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses 1301 // the PE header instead. 1302 uint8_t *buf = buffer->getBufferStart(); 1303 auto *dos = reinterpret_cast<dos_header *>(buf); 1304 buf += sizeof(dos_header); 1305 dos->Magic[0] = 'M'; 1306 dos->Magic[1] = 'Z'; 1307 dos->UsedBytesInTheLastPage = dosStubSize % 512; 1308 dos->FileSizeInPages = divideCeil(dosStubSize, 512); 1309 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16; 1310 1311 dos->AddressOfRelocationTable = sizeof(dos_header); 1312 dos->AddressOfNewExeHeader = dosStubSize; 1313 1314 // Write DOS program. 1315 memcpy(buf, dosProgram, sizeof(dosProgram)); 1316 buf += sizeof(dosProgram); 1317 1318 // Write PE magic 1319 memcpy(buf, PEMagic, sizeof(PEMagic)); 1320 buf += sizeof(PEMagic); 1321 1322 // Write COFF header 1323 auto *coff = reinterpret_cast<coff_file_header *>(buf); 1324 buf += sizeof(*coff); 1325 coff->Machine = config->machine; 1326 coff->NumberOfSections = outputSections.size(); 1327 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE; 1328 if (config->largeAddressAware) 1329 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE; 1330 if (!config->is64()) 1331 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE; 1332 if (config->dll) 1333 coff->Characteristics |= IMAGE_FILE_DLL; 1334 if (config->driverUponly) 1335 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY; 1336 if (!config->relocatable) 1337 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED; 1338 if (config->swaprunCD) 1339 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP; 1340 if (config->swaprunNet) 1341 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP; 1342 coff->SizeOfOptionalHeader = 1343 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory; 1344 1345 // Write PE header 1346 auto *pe = reinterpret_cast<PEHeaderTy *>(buf); 1347 buf += sizeof(*pe); 1348 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32; 1349 1350 // If {Major,Minor}LinkerVersion is left at 0.0, then for some 1351 // reason signing the resulting PE file with Authenticode produces a 1352 // signature that fails to validate on Windows 7 (but is OK on 10). 1353 // Set it to 14.0, which is what VS2015 outputs, and which avoids 1354 // that problem. 1355 pe->MajorLinkerVersion = 14; 1356 pe->MinorLinkerVersion = 0; 1357 1358 pe->ImageBase = config->imageBase; 1359 pe->SectionAlignment = config->align; 1360 pe->FileAlignment = config->fileAlign; 1361 pe->MajorImageVersion = config->majorImageVersion; 1362 pe->MinorImageVersion = config->minorImageVersion; 1363 pe->MajorOperatingSystemVersion = config->majorOSVersion; 1364 pe->MinorOperatingSystemVersion = config->minorOSVersion; 1365 pe->MajorSubsystemVersion = config->majorOSVersion; 1366 pe->MinorSubsystemVersion = config->minorOSVersion; 1367 pe->Subsystem = config->subsystem; 1368 pe->SizeOfImage = sizeOfImage; 1369 pe->SizeOfHeaders = sizeOfHeaders; 1370 if (!config->noEntry) { 1371 Defined *entry = cast<Defined>(config->entry); 1372 pe->AddressOfEntryPoint = entry->getRVA(); 1373 // Pointer to thumb code must have the LSB set, so adjust it. 1374 if (config->machine == ARMNT) 1375 pe->AddressOfEntryPoint |= 1; 1376 } 1377 pe->SizeOfStackReserve = config->stackReserve; 1378 pe->SizeOfStackCommit = config->stackCommit; 1379 pe->SizeOfHeapReserve = config->heapReserve; 1380 pe->SizeOfHeapCommit = config->heapCommit; 1381 if (config->appContainer) 1382 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER; 1383 if (config->driverWdm) 1384 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER; 1385 if (config->dynamicBase) 1386 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE; 1387 if (config->highEntropyVA) 1388 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA; 1389 if (!config->allowBind) 1390 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND; 1391 if (config->nxCompat) 1392 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT; 1393 if (!config->allowIsolation) 1394 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION; 1395 if (config->guardCF != GuardCFLevel::Off) 1396 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF; 1397 if (config->integrityCheck) 1398 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY; 1399 if (setNoSEHCharacteristic || config->noSEH) 1400 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH; 1401 if (config->terminalServerAware) 1402 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE; 1403 pe->NumberOfRvaAndSize = numberOfDataDirectory; 1404 if (textSec->getVirtualSize()) { 1405 pe->BaseOfCode = textSec->getRVA(); 1406 pe->SizeOfCode = textSec->getRawSize(); 1407 } 1408 pe->SizeOfInitializedData = getSizeOfInitializedData(); 1409 1410 // Write data directory 1411 auto *dir = reinterpret_cast<data_directory *>(buf); 1412 buf += sizeof(*dir) * numberOfDataDirectory; 1413 if (edataStart) { 1414 dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA(); 1415 dir[EXPORT_TABLE].Size = 1416 edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA(); 1417 } 1418 if (importTableStart) { 1419 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA(); 1420 dir[IMPORT_TABLE].Size = importTableSize; 1421 } 1422 if (iatStart) { 1423 dir[IAT].RelativeVirtualAddress = iatStart->getRVA(); 1424 dir[IAT].Size = iatSize; 1425 } 1426 if (rsrcSec->getVirtualSize()) { 1427 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA(); 1428 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize(); 1429 } 1430 if (firstPdata) { 1431 dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA(); 1432 dir[EXCEPTION_TABLE].Size = 1433 lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA(); 1434 } 1435 if (relocSec->getVirtualSize()) { 1436 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA(); 1437 dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize(); 1438 } 1439 if (Symbol *sym = symtab->findUnderscore("_tls_used")) { 1440 if (Defined *b = dyn_cast<Defined>(sym)) { 1441 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA(); 1442 dir[TLS_TABLE].Size = config->is64() 1443 ? sizeof(object::coff_tls_directory64) 1444 : sizeof(object::coff_tls_directory32); 1445 } 1446 } 1447 if (debugDirectory) { 1448 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA(); 1449 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize(); 1450 } 1451 if (Symbol *sym = symtab->findUnderscore("_load_config_used")) { 1452 if (auto *b = dyn_cast<DefinedRegular>(sym)) { 1453 SectionChunk *sc = b->getChunk(); 1454 assert(b->getRVA() >= sc->getRVA()); 1455 uint64_t offsetInChunk = b->getRVA() - sc->getRVA(); 1456 if (!sc->hasData || offsetInChunk + 4 > sc->getSize()) 1457 fatal("_load_config_used is malformed"); 1458 1459 ArrayRef<uint8_t> secContents = sc->getContents(); 1460 uint32_t loadConfigSize = 1461 *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]); 1462 if (offsetInChunk + loadConfigSize > sc->getSize()) 1463 fatal("_load_config_used is too large"); 1464 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA(); 1465 dir[LOAD_CONFIG_TABLE].Size = loadConfigSize; 1466 } 1467 } 1468 if (!delayIdata.empty()) { 1469 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress = 1470 delayIdata.getDirRVA(); 1471 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize(); 1472 } 1473 1474 // Write section table 1475 for (OutputSection *sec : outputSections) { 1476 sec->writeHeaderTo(buf); 1477 buf += sizeof(coff_section); 1478 } 1479 sectionTable = ArrayRef<uint8_t>( 1480 buf - outputSections.size() * sizeof(coff_section), buf); 1481 1482 if (outputSymtab.empty() && strtab.empty()) 1483 return; 1484 1485 coff->PointerToSymbolTable = pointerToSymbolTable; 1486 uint32_t numberOfSymbols = outputSymtab.size(); 1487 coff->NumberOfSymbols = numberOfSymbols; 1488 auto *symbolTable = reinterpret_cast<coff_symbol16 *>( 1489 buffer->getBufferStart() + coff->PointerToSymbolTable); 1490 for (size_t i = 0; i != numberOfSymbols; ++i) 1491 symbolTable[i] = outputSymtab[i]; 1492 // Create the string table, it follows immediately after the symbol table. 1493 // The first 4 bytes is length including itself. 1494 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]); 1495 write32le(buf, strtab.size() + 4); 1496 if (!strtab.empty()) 1497 memcpy(buf + 4, strtab.data(), strtab.size()); 1498 } 1499 1500 void Writer::openFile(StringRef path) { 1501 buffer = CHECK( 1502 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable), 1503 "failed to open " + path); 1504 } 1505 1506 void Writer::createSEHTable() { 1507 SymbolRVASet handlers; 1508 for (ObjFile *file : ObjFile::instances) { 1509 if (!file->hasSafeSEH()) 1510 error("/safeseh: " + file->getName() + " is not compatible with SEH"); 1511 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers); 1512 } 1513 1514 // Set the "no SEH" characteristic if there really were no handlers, or if 1515 // there is no load config object to point to the table of handlers. 1516 setNoSEHCharacteristic = 1517 handlers.empty() || !symtab->findUnderscore("_load_config_used"); 1518 1519 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table", 1520 "__safe_se_handler_count"); 1521 } 1522 1523 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set 1524 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the 1525 // symbol's offset into that Chunk. 1526 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) { 1527 Chunk *c = s->getChunk(); 1528 if (auto *sc = dyn_cast<SectionChunk>(c)) 1529 c = sc->repl; // Look through ICF replacement. 1530 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0); 1531 rvaSet.insert({c, off}); 1532 } 1533 1534 // Given a symbol, add it to the GFIDs table if it is a live, defined, function 1535 // symbol in an executable section. 1536 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms, 1537 Symbol *s) { 1538 if (!s) 1539 return; 1540 1541 switch (s->kind()) { 1542 case Symbol::DefinedLocalImportKind: 1543 case Symbol::DefinedImportDataKind: 1544 // Defines an __imp_ pointer, so it is data, so it is ignored. 1545 break; 1546 case Symbol::DefinedCommonKind: 1547 // Common is always data, so it is ignored. 1548 break; 1549 case Symbol::DefinedAbsoluteKind: 1550 case Symbol::DefinedSyntheticKind: 1551 // Absolute is never code, synthetic generally isn't and usually isn't 1552 // determinable. 1553 break; 1554 case Symbol::LazyArchiveKind: 1555 case Symbol::LazyObjectKind: 1556 case Symbol::UndefinedKind: 1557 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy 1558 // symbols shouldn't have relocations. 1559 break; 1560 1561 case Symbol::DefinedImportThunkKind: 1562 // Thunks are always code, include them. 1563 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s)); 1564 break; 1565 1566 case Symbol::DefinedRegularKind: { 1567 // This is a regular, defined, symbol from a COFF file. Mark the symbol as 1568 // address taken if the symbol type is function and it's in an executable 1569 // section. 1570 auto *d = cast<DefinedRegular>(s); 1571 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) { 1572 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk()); 1573 if (sc && sc->live && 1574 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) 1575 addSymbolToRVASet(addressTakenSyms, d); 1576 } 1577 break; 1578 } 1579 } 1580 } 1581 1582 // Visit all relocations from all section contributions of this object file and 1583 // mark the relocation target as address-taken. 1584 static void markSymbolsWithRelocations(ObjFile *file, 1585 SymbolRVASet &usedSymbols) { 1586 for (Chunk *c : file->getChunks()) { 1587 // We only care about live section chunks. Common chunks and other chunks 1588 // don't generally contain relocations. 1589 SectionChunk *sc = dyn_cast<SectionChunk>(c); 1590 if (!sc || !sc->live) 1591 continue; 1592 1593 for (const coff_relocation &reloc : sc->getRelocs()) { 1594 if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32) 1595 // Ignore relative relocations on x86. On x86_64 they can't be ignored 1596 // since they're also used to compute absolute addresses. 1597 continue; 1598 1599 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex); 1600 maybeAddAddressTakenFunction(usedSymbols, ref); 1601 } 1602 } 1603 } 1604 1605 // Create the guard function id table. This is a table of RVAs of all 1606 // address-taken functions. It is sorted and uniqued, just like the safe SEH 1607 // table. 1608 void Writer::createGuardCFTables() { 1609 SymbolRVASet addressTakenSyms; 1610 SymbolRVASet longJmpTargets; 1611 for (ObjFile *file : ObjFile::instances) { 1612 // If the object was compiled with /guard:cf, the address taken symbols 1613 // are in .gfids$y sections, and the longjmp targets are in .gljmp$y 1614 // sections. If the object was not compiled with /guard:cf, we assume there 1615 // were no setjmp targets, and that all code symbols with relocations are 1616 // possibly address-taken. 1617 if (file->hasGuardCF()) { 1618 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms); 1619 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets); 1620 } else { 1621 markSymbolsWithRelocations(file, addressTakenSyms); 1622 } 1623 } 1624 1625 // Mark the image entry as address-taken. 1626 if (config->entry) 1627 maybeAddAddressTakenFunction(addressTakenSyms, config->entry); 1628 1629 // Mark exported symbols in executable sections as address-taken. 1630 for (Export &e : config->exports) 1631 maybeAddAddressTakenFunction(addressTakenSyms, e.sym); 1632 1633 // Ensure sections referenced in the gfid table are 16-byte aligned. 1634 for (const ChunkAndOffset &c : addressTakenSyms) 1635 if (c.inputChunk->getAlignment() < 16) 1636 c.inputChunk->setAlignment(16); 1637 1638 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table", 1639 "__guard_fids_count"); 1640 1641 // Add the longjmp target table unless the user told us not to. 1642 if (config->guardCF == GuardCFLevel::Full) 1643 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table", 1644 "__guard_longjmp_count"); 1645 1646 // Set __guard_flags, which will be used in the load config to indicate that 1647 // /guard:cf was enabled. 1648 uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) | 1649 uint32_t(coff_guard_flags::HasFidTable); 1650 if (config->guardCF == GuardCFLevel::Full) 1651 guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable); 1652 Symbol *flagSym = symtab->findUnderscore("__guard_flags"); 1653 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags); 1654 } 1655 1656 // Take a list of input sections containing symbol table indices and add those 1657 // symbols to an RVA table. The challenge is that symbol RVAs are not known and 1658 // depend on the table size, so we can't directly build a set of integers. 1659 void Writer::markSymbolsForRVATable(ObjFile *file, 1660 ArrayRef<SectionChunk *> symIdxChunks, 1661 SymbolRVASet &tableSymbols) { 1662 for (SectionChunk *c : symIdxChunks) { 1663 // Skip sections discarded by linker GC. This comes up when a .gfids section 1664 // is associated with something like a vtable and the vtable is discarded. 1665 // In this case, the associated gfids section is discarded, and we don't 1666 // mark the virtual member functions as address-taken by the vtable. 1667 if (!c->live) 1668 continue; 1669 1670 // Validate that the contents look like symbol table indices. 1671 ArrayRef<uint8_t> data = c->getContents(); 1672 if (data.size() % 4 != 0) { 1673 warn("ignoring " + c->getSectionName() + 1674 " symbol table index section in object " + toString(file)); 1675 continue; 1676 } 1677 1678 // Read each symbol table index and check if that symbol was included in the 1679 // final link. If so, add it to the table symbol set. 1680 ArrayRef<ulittle32_t> symIndices( 1681 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4); 1682 ArrayRef<Symbol *> objSymbols = file->getSymbols(); 1683 for (uint32_t symIndex : symIndices) { 1684 if (symIndex >= objSymbols.size()) { 1685 warn("ignoring invalid symbol table index in section " + 1686 c->getSectionName() + " in object " + toString(file)); 1687 continue; 1688 } 1689 if (Symbol *s = objSymbols[symIndex]) { 1690 if (s->isLive()) 1691 addSymbolToRVASet(tableSymbols, cast<Defined>(s)); 1692 } 1693 } 1694 } 1695 } 1696 1697 // Replace the absolute table symbol with a synthetic symbol pointing to 1698 // tableChunk so that we can emit base relocations for it and resolve section 1699 // relative relocations. 1700 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, 1701 StringRef countSym) { 1702 if (tableSymbols.empty()) 1703 return; 1704 1705 RVATableChunk *tableChunk = make<RVATableChunk>(std::move(tableSymbols)); 1706 rdataSec->addChunk(tableChunk); 1707 1708 Symbol *t = symtab->findUnderscore(tableSym); 1709 Symbol *c = symtab->findUnderscore(countSym); 1710 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk); 1711 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / 4); 1712 } 1713 1714 // MinGW specific. Gather all relocations that are imported from a DLL even 1715 // though the code didn't expect it to, produce the table that the runtime 1716 // uses for fixing them up, and provide the synthetic symbols that the 1717 // runtime uses for finding the table. 1718 void Writer::createRuntimePseudoRelocs() { 1719 std::vector<RuntimePseudoReloc> rels; 1720 1721 for (Chunk *c : symtab->getChunks()) { 1722 auto *sc = dyn_cast<SectionChunk>(c); 1723 if (!sc || !sc->live) 1724 continue; 1725 sc->getRuntimePseudoRelocs(rels); 1726 } 1727 1728 if (!config->pseudoRelocs) { 1729 // Not writing any pseudo relocs; if some were needed, error out and 1730 // indicate what required them. 1731 for (const RuntimePseudoReloc &rpr : rels) 1732 error("automatic dllimport of " + rpr.sym->getName() + " in " + 1733 toString(rpr.target->file) + " requires pseudo relocations"); 1734 return; 1735 } 1736 1737 if (!rels.empty()) 1738 log("Writing " + Twine(rels.size()) + " runtime pseudo relocations"); 1739 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels); 1740 rdataSec->addChunk(table); 1741 EmptyChunk *endOfList = make<EmptyChunk>(); 1742 rdataSec->addChunk(endOfList); 1743 1744 Symbol *headSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__"); 1745 Symbol *endSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__"); 1746 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table); 1747 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList); 1748 } 1749 1750 // MinGW specific. 1751 // The MinGW .ctors and .dtors lists have sentinels at each end; 1752 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end. 1753 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__ 1754 // and __DTOR_LIST__ respectively. 1755 void Writer::insertCtorDtorSymbols() { 1756 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1); 1757 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0); 1758 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1); 1759 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0); 1760 ctorsSec->insertChunkAtStart(ctorListHead); 1761 ctorsSec->addChunk(ctorListEnd); 1762 dtorsSec->insertChunkAtStart(dtorListHead); 1763 dtorsSec->addChunk(dtorListEnd); 1764 1765 Symbol *ctorListSym = symtab->findUnderscore("__CTOR_LIST__"); 1766 Symbol *dtorListSym = symtab->findUnderscore("__DTOR_LIST__"); 1767 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(), 1768 ctorListHead); 1769 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(), 1770 dtorListHead); 1771 } 1772 1773 // Handles /section options to allow users to overwrite 1774 // section attributes. 1775 void Writer::setSectionPermissions() { 1776 for (auto &p : config->section) { 1777 StringRef name = p.first; 1778 uint32_t perm = p.second; 1779 for (OutputSection *sec : outputSections) 1780 if (sec->name == name) 1781 sec->setPermissions(perm); 1782 } 1783 } 1784 1785 // Write section contents to a mmap'ed file. 1786 void Writer::writeSections() { 1787 // Record the number of sections to apply section index relocations 1788 // against absolute symbols. See applySecIdx in Chunks.cpp.. 1789 DefinedAbsolute::numOutputSections = outputSections.size(); 1790 1791 uint8_t *buf = buffer->getBufferStart(); 1792 for (OutputSection *sec : outputSections) { 1793 uint8_t *secBuf = buf + sec->getFileOff(); 1794 // Fill gaps between functions in .text with INT3 instructions 1795 // instead of leaving as NUL bytes (which can be interpreted as 1796 // ADD instructions). 1797 if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) 1798 memset(secBuf, 0xCC, sec->getRawSize()); 1799 parallelForEach(sec->chunks, [&](Chunk *c) { 1800 c->writeTo(secBuf + c->getRVA() - sec->getRVA()); 1801 }); 1802 } 1803 } 1804 1805 void Writer::writeBuildId() { 1806 // There are two important parts to the build ID. 1807 // 1) If building with debug info, the COFF debug directory contains a 1808 // timestamp as well as a Guid and Age of the PDB. 1809 // 2) In all cases, the PE COFF file header also contains a timestamp. 1810 // For reproducibility, instead of a timestamp we want to use a hash of the 1811 // PE contents. 1812 if (config->debug) { 1813 assert(buildId && "BuildId is not set!"); 1814 // BuildId->BuildId was filled in when the PDB was written. 1815 } 1816 1817 // At this point the only fields in the COFF file which remain unset are the 1818 // "timestamp" in the COFF file header, and the ones in the coff debug 1819 // directory. Now we can hash the file and write that hash to the various 1820 // timestamp fields in the file. 1821 StringRef outputFileData( 1822 reinterpret_cast<const char *>(buffer->getBufferStart()), 1823 buffer->getBufferSize()); 1824 1825 uint32_t timestamp = config->timestamp; 1826 uint64_t hash = 0; 1827 bool generateSyntheticBuildId = 1828 config->mingw && config->debug && config->pdbPath.empty(); 1829 1830 if (config->repro || generateSyntheticBuildId) 1831 hash = xxHash64(outputFileData); 1832 1833 if (config->repro) 1834 timestamp = static_cast<uint32_t>(hash); 1835 1836 if (generateSyntheticBuildId) { 1837 // For MinGW builds without a PDB file, we still generate a build id 1838 // to allow associating a crash dump to the executable. 1839 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70; 1840 buildId->buildId->PDB70.Age = 1; 1841 memcpy(buildId->buildId->PDB70.Signature, &hash, 8); 1842 // xxhash only gives us 8 bytes, so put some fixed data in the other half. 1843 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8); 1844 } 1845 1846 if (debugDirectory) 1847 debugDirectory->setTimeDateStamp(timestamp); 1848 1849 uint8_t *buf = buffer->getBufferStart(); 1850 buf += dosStubSize + sizeof(PEMagic); 1851 object::coff_file_header *coffHeader = 1852 reinterpret_cast<coff_file_header *>(buf); 1853 coffHeader->TimeDateStamp = timestamp; 1854 } 1855 1856 // Sort .pdata section contents according to PE/COFF spec 5.5. 1857 void Writer::sortExceptionTable() { 1858 if (!firstPdata) 1859 return; 1860 // We assume .pdata contains function table entries only. 1861 auto bufAddr = [&](Chunk *c) { 1862 OutputSection *os = c->getOutputSection(); 1863 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() - 1864 os->getRVA(); 1865 }; 1866 uint8_t *begin = bufAddr(firstPdata); 1867 uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize(); 1868 if (config->machine == AMD64) { 1869 struct Entry { ulittle32_t begin, end, unwind; }; 1870 if ((end - begin) % sizeof(Entry) != 0) { 1871 fatal("unexpected .pdata size: " + Twine(end - begin) + 1872 " is not a multiple of " + Twine(sizeof(Entry))); 1873 } 1874 parallelSort( 1875 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end), 1876 [](const Entry &a, const Entry &b) { return a.begin < b.begin; }); 1877 return; 1878 } 1879 if (config->machine == ARMNT || config->machine == ARM64) { 1880 struct Entry { ulittle32_t begin, unwind; }; 1881 if ((end - begin) % sizeof(Entry) != 0) { 1882 fatal("unexpected .pdata size: " + Twine(end - begin) + 1883 " is not a multiple of " + Twine(sizeof(Entry))); 1884 } 1885 parallelSort( 1886 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end), 1887 [](const Entry &a, const Entry &b) { return a.begin < b.begin; }); 1888 return; 1889 } 1890 lld::errs() << "warning: don't know how to handle .pdata.\n"; 1891 } 1892 1893 // The CRT section contains, among other things, the array of function 1894 // pointers that initialize every global variable that is not trivially 1895 // constructed. The CRT calls them one after the other prior to invoking 1896 // main(). 1897 // 1898 // As per C++ spec, 3.6.2/2.3, 1899 // "Variables with ordered initialization defined within a single 1900 // translation unit shall be initialized in the order of their definitions 1901 // in the translation unit" 1902 // 1903 // It is therefore critical to sort the chunks containing the function 1904 // pointers in the order that they are listed in the object file (top to 1905 // bottom), otherwise global objects might not be initialized in the 1906 // correct order. 1907 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) { 1908 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) { 1909 auto sa = dyn_cast<SectionChunk>(a); 1910 auto sb = dyn_cast<SectionChunk>(b); 1911 assert(sa && sb && "Non-section chunks in CRT section!"); 1912 1913 StringRef sAObj = sa->file->mb.getBufferIdentifier(); 1914 StringRef sBObj = sb->file->mb.getBufferIdentifier(); 1915 1916 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber(); 1917 }; 1918 llvm::stable_sort(chunks, sectionChunkOrder); 1919 1920 if (config->verbose) { 1921 for (auto &c : chunks) { 1922 auto sc = dyn_cast<SectionChunk>(c); 1923 log(" " + sc->file->mb.getBufferIdentifier().str() + 1924 ", SectionID: " + Twine(sc->getSectionNumber())); 1925 } 1926 } 1927 } 1928 1929 OutputSection *Writer::findSection(StringRef name) { 1930 for (OutputSection *sec : outputSections) 1931 if (sec->name == name) 1932 return sec; 1933 return nullptr; 1934 } 1935 1936 uint32_t Writer::getSizeOfInitializedData() { 1937 uint32_t res = 0; 1938 for (OutputSection *s : outputSections) 1939 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA) 1940 res += s->getRawSize(); 1941 return res; 1942 } 1943 1944 // Add base relocations to .reloc section. 1945 void Writer::addBaserels() { 1946 if (!config->relocatable) 1947 return; 1948 relocSec->chunks.clear(); 1949 std::vector<Baserel> v; 1950 for (OutputSection *sec : outputSections) { 1951 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) 1952 continue; 1953 // Collect all locations for base relocations. 1954 for (Chunk *c : sec->chunks) 1955 c->getBaserels(&v); 1956 // Add the addresses to .reloc section. 1957 if (!v.empty()) 1958 addBaserelBlocks(v); 1959 v.clear(); 1960 } 1961 } 1962 1963 // Add addresses to .reloc section. Note that addresses are grouped by page. 1964 void Writer::addBaserelBlocks(std::vector<Baserel> &v) { 1965 const uint32_t mask = ~uint32_t(pageSize - 1); 1966 uint32_t page = v[0].rva & mask; 1967 size_t i = 0, j = 1; 1968 for (size_t e = v.size(); j < e; ++j) { 1969 uint32_t p = v[j].rva & mask; 1970 if (p == page) 1971 continue; 1972 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j)); 1973 i = j; 1974 page = p; 1975 } 1976 if (i == j) 1977 return; 1978 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j)); 1979 } 1980 1981 PartialSection *Writer::createPartialSection(StringRef name, 1982 uint32_t outChars) { 1983 PartialSection *&pSec = partialSections[{name, outChars}]; 1984 if (pSec) 1985 return pSec; 1986 pSec = make<PartialSection>(name, outChars); 1987 return pSec; 1988 } 1989 1990 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) { 1991 auto it = partialSections.find({name, outChars}); 1992 if (it != partialSections.end()) 1993 return it->second; 1994 return nullptr; 1995 } 1996