1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "Config.h" 11 #include "DLL.h" 12 #include "InputFiles.h" 13 #include "LLDMapFile.h" 14 #include "MapFile.h" 15 #include "PDB.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "lld/Common/ErrorHandler.h" 19 #include "lld/Common/Memory.h" 20 #include "lld/Common/Timer.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/Support/BinaryStreamReader.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/Endian.h" 28 #include "llvm/Support/FileOutputBuffer.h" 29 #include "llvm/Support/Parallel.h" 30 #include "llvm/Support/Path.h" 31 #include "llvm/Support/RandomNumberGenerator.h" 32 #include "llvm/Support/xxhash.h" 33 #include <algorithm> 34 #include <cstdio> 35 #include <map> 36 #include <memory> 37 #include <utility> 38 39 using namespace llvm; 40 using namespace llvm::COFF; 41 using namespace llvm::object; 42 using namespace llvm::support; 43 using namespace llvm::support::endian; 44 using namespace lld; 45 using namespace lld::coff; 46 47 /* To re-generate DOSProgram: 48 $ cat > /tmp/DOSProgram.asm 49 org 0 50 ; Copy cs to ds. 51 push cs 52 pop ds 53 ; Point ds:dx at the $-terminated string. 54 mov dx, str 55 ; Int 21/AH=09h: Write string to standard output. 56 mov ah, 0x9 57 int 0x21 58 ; Int 21/AH=4Ch: Exit with return code (in AL). 59 mov ax, 0x4C01 60 int 0x21 61 str: 62 db 'This program cannot be run in DOS mode.$' 63 align 8, db 0 64 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin 65 $ xxd -i /tmp/DOSProgram.bin 66 */ 67 static unsigned char dosProgram[] = { 68 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c, 69 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72, 70 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65, 71 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20, 72 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00 73 }; 74 static_assert(sizeof(dosProgram) % 8 == 0, 75 "DOSProgram size must be multiple of 8"); 76 77 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram); 78 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8"); 79 80 static const int numberOfDataDirectory = 16; 81 82 // Global vector of all output sections. After output sections are finalized, 83 // this can be indexed by Chunk::getOutputSection. 84 static std::vector<OutputSection *> outputSections; 85 86 OutputSection *Chunk::getOutputSection() const { 87 return osidx == 0 ? nullptr : outputSections[osidx - 1]; 88 } 89 90 namespace { 91 92 class DebugDirectoryChunk : public NonSectionChunk { 93 public: 94 DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType, Chunk *>> &r, 95 bool writeRepro) 96 : records(r), writeRepro(writeRepro) {} 97 98 size_t getSize() const override { 99 return (records.size() + int(writeRepro)) * sizeof(debug_directory); 100 } 101 102 void writeTo(uint8_t *b) const override { 103 auto *d = reinterpret_cast<debug_directory *>(b); 104 105 for (const std::pair<COFF::DebugType, Chunk *>& record : records) { 106 Chunk *c = record.second; 107 OutputSection *os = c->getOutputSection(); 108 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA()); 109 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs); 110 ++d; 111 } 112 113 if (writeRepro) { 114 // FIXME: The COFF spec allows either a 0-sized entry to just say 115 // "the timestamp field is really a hash", or a 4-byte size field 116 // followed by that many bytes containing a longer hash (with the 117 // lowest 4 bytes usually being the timestamp in little-endian order). 118 // Consider storing the full 8 bytes computed by xxHash64 here. 119 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0); 120 } 121 } 122 123 void setTimeDateStamp(uint32_t timeDateStamp) { 124 for (support::ulittle32_t *tds : timeDateStamps) 125 *tds = timeDateStamp; 126 } 127 128 private: 129 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size, 130 uint64_t rva, uint64_t offs) const { 131 d->Characteristics = 0; 132 d->TimeDateStamp = 0; 133 d->MajorVersion = 0; 134 d->MinorVersion = 0; 135 d->Type = debugType; 136 d->SizeOfData = size; 137 d->AddressOfRawData = rva; 138 d->PointerToRawData = offs; 139 140 timeDateStamps.push_back(&d->TimeDateStamp); 141 } 142 143 mutable std::vector<support::ulittle32_t *> timeDateStamps; 144 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records; 145 bool writeRepro; 146 }; 147 148 class CVDebugRecordChunk : public NonSectionChunk { 149 public: 150 size_t getSize() const override { 151 return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1; 152 } 153 154 void writeTo(uint8_t *b) const override { 155 // Save off the DebugInfo entry to backfill the file signature (build id) 156 // in Writer::writeBuildId 157 buildId = reinterpret_cast<codeview::DebugInfo *>(b); 158 159 // variable sized field (PDB Path) 160 char *p = reinterpret_cast<char *>(b + sizeof(*buildId)); 161 if (!config->pdbAltPath.empty()) 162 memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size()); 163 p[config->pdbAltPath.size()] = '\0'; 164 } 165 166 mutable codeview::DebugInfo *buildId = nullptr; 167 }; 168 169 class ExtendedDllCharacteristicsChunk : public NonSectionChunk { 170 public: 171 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {} 172 173 size_t getSize() const override { return 4; } 174 175 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); } 176 177 uint32_t characteristics = 0; 178 }; 179 180 // PartialSection represents a group of chunks that contribute to an 181 // OutputSection. Collating a collection of PartialSections of same name and 182 // characteristics constitutes the OutputSection. 183 class PartialSectionKey { 184 public: 185 StringRef name; 186 unsigned characteristics; 187 188 bool operator<(const PartialSectionKey &other) const { 189 int c = name.compare(other.name); 190 if (c == 1) 191 return false; 192 if (c == 0) 193 return characteristics < other.characteristics; 194 return true; 195 } 196 }; 197 198 // The writer writes a SymbolTable result to a file. 199 class Writer { 200 public: 201 Writer() : buffer(errorHandler().outputBuffer) {} 202 void run(); 203 204 private: 205 void createSections(); 206 void createMiscChunks(); 207 void createImportTables(); 208 void appendImportThunks(); 209 void locateImportTables(); 210 void createExportTable(); 211 void mergeSections(); 212 void removeUnusedSections(); 213 void assignAddresses(); 214 void finalizeAddresses(); 215 void removeEmptySections(); 216 void assignOutputSectionIndices(); 217 void createSymbolAndStringTable(); 218 void openFile(StringRef outputPath); 219 template <typename PEHeaderTy> void writeHeader(); 220 void createSEHTable(); 221 void createRuntimePseudoRelocs(); 222 void insertCtorDtorSymbols(); 223 void createGuardCFTables(); 224 void markSymbolsForRVATable(ObjFile *file, 225 ArrayRef<SectionChunk *> symIdxChunks, 226 SymbolRVASet &tableSymbols); 227 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, 228 StringRef countSym); 229 void setSectionPermissions(); 230 void writeSections(); 231 void writeBuildId(); 232 void sortExceptionTable(); 233 void sortCRTSectionChunks(std::vector<Chunk *> &chunks); 234 void addSyntheticIdata(); 235 void fixPartialSectionChars(StringRef name, uint32_t chars); 236 bool fixGnuImportChunks(); 237 PartialSection *createPartialSection(StringRef name, uint32_t outChars); 238 PartialSection *findPartialSection(StringRef name, uint32_t outChars); 239 240 llvm::Optional<coff_symbol16> createSymbol(Defined *d); 241 size_t addEntryToStringTable(StringRef str); 242 243 OutputSection *findSection(StringRef name); 244 void addBaserels(); 245 void addBaserelBlocks(std::vector<Baserel> &v); 246 247 uint32_t getSizeOfInitializedData(); 248 249 std::unique_ptr<FileOutputBuffer> &buffer; 250 std::map<PartialSectionKey, PartialSection *> partialSections; 251 std::vector<char> strtab; 252 std::vector<llvm::object::coff_symbol16> outputSymtab; 253 IdataContents idata; 254 Chunk *importTableStart = nullptr; 255 uint64_t importTableSize = 0; 256 Chunk *edataStart = nullptr; 257 Chunk *edataEnd = nullptr; 258 Chunk *iatStart = nullptr; 259 uint64_t iatSize = 0; 260 DelayLoadContents delayIdata; 261 EdataContents edata; 262 bool setNoSEHCharacteristic = false; 263 264 DebugDirectoryChunk *debugDirectory = nullptr; 265 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords; 266 CVDebugRecordChunk *buildId = nullptr; 267 ArrayRef<uint8_t> sectionTable; 268 269 uint64_t fileSize; 270 uint32_t pointerToSymbolTable = 0; 271 uint64_t sizeOfImage; 272 uint64_t sizeOfHeaders; 273 274 OutputSection *textSec; 275 OutputSection *rdataSec; 276 OutputSection *buildidSec; 277 OutputSection *dataSec; 278 OutputSection *pdataSec; 279 OutputSection *idataSec; 280 OutputSection *edataSec; 281 OutputSection *didatSec; 282 OutputSection *rsrcSec; 283 OutputSection *relocSec; 284 OutputSection *ctorsSec; 285 OutputSection *dtorsSec; 286 287 // The first and last .pdata sections in the output file. 288 // 289 // We need to keep track of the location of .pdata in whichever section it 290 // gets merged into so that we can sort its contents and emit a correct data 291 // directory entry for the exception table. This is also the case for some 292 // other sections (such as .edata) but because the contents of those sections 293 // are entirely linker-generated we can keep track of their locations using 294 // the chunks that the linker creates. All .pdata chunks come from input 295 // files, so we need to keep track of them separately. 296 Chunk *firstPdata = nullptr; 297 Chunk *lastPdata; 298 }; 299 } // anonymous namespace 300 301 static Timer codeLayoutTimer("Code Layout", Timer::root()); 302 static Timer diskCommitTimer("Commit Output File", Timer::root()); 303 304 void lld::coff::writeResult() { Writer().run(); } 305 306 void OutputSection::addChunk(Chunk *c) { 307 chunks.push_back(c); 308 } 309 310 void OutputSection::insertChunkAtStart(Chunk *c) { 311 chunks.insert(chunks.begin(), c); 312 } 313 314 void OutputSection::setPermissions(uint32_t c) { 315 header.Characteristics &= ~permMask; 316 header.Characteristics |= c; 317 } 318 319 void OutputSection::merge(OutputSection *other) { 320 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end()); 321 other->chunks.clear(); 322 contribSections.insert(contribSections.end(), other->contribSections.begin(), 323 other->contribSections.end()); 324 other->contribSections.clear(); 325 } 326 327 // Write the section header to a given buffer. 328 void OutputSection::writeHeaderTo(uint8_t *buf) { 329 auto *hdr = reinterpret_cast<coff_section *>(buf); 330 *hdr = header; 331 if (stringTableOff) { 332 // If name is too long, write offset into the string table as a name. 333 sprintf(hdr->Name, "/%d", stringTableOff); 334 } else { 335 assert(!config->debug || name.size() <= COFF::NameSize || 336 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0); 337 strncpy(hdr->Name, name.data(), 338 std::min(name.size(), (size_t)COFF::NameSize)); 339 } 340 } 341 342 void OutputSection::addContributingPartialSection(PartialSection *sec) { 343 contribSections.push_back(sec); 344 } 345 346 // Check whether the target address S is in range from a relocation 347 // of type relType at address P. 348 static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) { 349 if (config->machine == ARMNT) { 350 int64_t diff = AbsoluteDifference(s, p + 4) + margin; 351 switch (relType) { 352 case IMAGE_REL_ARM_BRANCH20T: 353 return isInt<21>(diff); 354 case IMAGE_REL_ARM_BRANCH24T: 355 case IMAGE_REL_ARM_BLX23T: 356 return isInt<25>(diff); 357 default: 358 return true; 359 } 360 } else if (config->machine == ARM64) { 361 int64_t diff = AbsoluteDifference(s, p) + margin; 362 switch (relType) { 363 case IMAGE_REL_ARM64_BRANCH26: 364 return isInt<28>(diff); 365 case IMAGE_REL_ARM64_BRANCH19: 366 return isInt<21>(diff); 367 case IMAGE_REL_ARM64_BRANCH14: 368 return isInt<16>(diff); 369 default: 370 return true; 371 } 372 } else { 373 llvm_unreachable("Unexpected architecture"); 374 } 375 } 376 377 // Return the last thunk for the given target if it is in range, 378 // or create a new one. 379 static std::pair<Defined *, bool> 380 getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p, 381 uint16_t type, int margin) { 382 Defined *&lastThunk = lastThunks[target->getRVA()]; 383 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin)) 384 return {lastThunk, false}; 385 Chunk *c; 386 switch (config->machine) { 387 case ARMNT: 388 c = make<RangeExtensionThunkARM>(target); 389 break; 390 case ARM64: 391 c = make<RangeExtensionThunkARM64>(target); 392 break; 393 default: 394 llvm_unreachable("Unexpected architecture"); 395 } 396 Defined *d = make<DefinedSynthetic>("", c); 397 lastThunk = d; 398 return {d, true}; 399 } 400 401 // This checks all relocations, and for any relocation which isn't in range 402 // it adds a thunk after the section chunk that contains the relocation. 403 // If the latest thunk for the specific target is in range, that is used 404 // instead of creating a new thunk. All range checks are done with the 405 // specified margin, to make sure that relocations that originally are in 406 // range, but only barely, also get thunks - in case other added thunks makes 407 // the target go out of range. 408 // 409 // After adding thunks, we verify that all relocations are in range (with 410 // no extra margin requirements). If this failed, we restart (throwing away 411 // the previously created thunks) and retry with a wider margin. 412 static bool createThunks(OutputSection *os, int margin) { 413 bool addressesChanged = false; 414 DenseMap<uint64_t, Defined *> lastThunks; 415 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices; 416 size_t thunksSize = 0; 417 // Recheck Chunks.size() each iteration, since we can insert more 418 // elements into it. 419 for (size_t i = 0; i != os->chunks.size(); ++i) { 420 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]); 421 if (!sc) 422 continue; 423 size_t thunkInsertionSpot = i + 1; 424 425 // Try to get a good enough estimate of where new thunks will be placed. 426 // Offset this by the size of the new thunks added so far, to make the 427 // estimate slightly better. 428 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize; 429 ObjFile *file = sc->file; 430 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements; 431 ArrayRef<coff_relocation> originalRelocs = 432 file->getCOFFObj()->getRelocations(sc->header); 433 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) { 434 const coff_relocation &rel = originalRelocs[j]; 435 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex); 436 437 // The estimate of the source address P should be pretty accurate, 438 // but we don't know whether the target Symbol address should be 439 // offset by thunksSize or not (or by some of thunksSize but not all of 440 // it), giving us some uncertainty once we have added one thunk. 441 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize; 442 443 Defined *sym = dyn_cast_or_null<Defined>(relocTarget); 444 if (!sym) 445 continue; 446 447 uint64_t s = sym->getRVA(); 448 449 if (isInRange(rel.Type, s, p, margin)) 450 continue; 451 452 // If the target isn't in range, hook it up to an existing or new 453 // thunk. 454 Defined *thunk; 455 bool wasNew; 456 std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin); 457 if (wasNew) { 458 Chunk *thunkChunk = thunk->getChunk(); 459 thunkChunk->setRVA( 460 thunkInsertionRVA); // Estimate of where it will be located. 461 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk); 462 thunkInsertionSpot++; 463 thunksSize += thunkChunk->getSize(); 464 thunkInsertionRVA += thunkChunk->getSize(); 465 addressesChanged = true; 466 } 467 468 // To redirect the relocation, add a symbol to the parent object file's 469 // symbol table, and replace the relocation symbol table index with the 470 // new index. 471 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U}); 472 uint32_t &thunkSymbolIndex = insertion.first->second; 473 if (insertion.second) 474 thunkSymbolIndex = file->addRangeThunkSymbol(thunk); 475 relocReplacements.push_back({j, thunkSymbolIndex}); 476 } 477 478 // Get a writable copy of this section's relocations so they can be 479 // modified. If the relocations point into the object file, allocate new 480 // memory. Otherwise, this must be previously allocated memory that can be 481 // modified in place. 482 ArrayRef<coff_relocation> curRelocs = sc->getRelocs(); 483 MutableArrayRef<coff_relocation> newRelocs; 484 if (originalRelocs.data() == curRelocs.data()) { 485 newRelocs = makeMutableArrayRef( 486 bAlloc.Allocate<coff_relocation>(originalRelocs.size()), 487 originalRelocs.size()); 488 } else { 489 newRelocs = makeMutableArrayRef( 490 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size()); 491 } 492 493 // Copy each relocation, but replace the symbol table indices which need 494 // thunks. 495 auto nextReplacement = relocReplacements.begin(); 496 auto endReplacement = relocReplacements.end(); 497 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) { 498 newRelocs[i] = originalRelocs[i]; 499 if (nextReplacement != endReplacement && nextReplacement->first == i) { 500 newRelocs[i].SymbolTableIndex = nextReplacement->second; 501 ++nextReplacement; 502 } 503 } 504 505 sc->setRelocs(newRelocs); 506 } 507 return addressesChanged; 508 } 509 510 // Verify that all relocations are in range, with no extra margin requirements. 511 static bool verifyRanges(const std::vector<Chunk *> chunks) { 512 for (Chunk *c : chunks) { 513 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c); 514 if (!sc) 515 continue; 516 517 ArrayRef<coff_relocation> relocs = sc->getRelocs(); 518 for (size_t j = 0, e = relocs.size(); j < e; ++j) { 519 const coff_relocation &rel = relocs[j]; 520 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex); 521 522 Defined *sym = dyn_cast_or_null<Defined>(relocTarget); 523 if (!sym) 524 continue; 525 526 uint64_t p = sc->getRVA() + rel.VirtualAddress; 527 uint64_t s = sym->getRVA(); 528 529 if (!isInRange(rel.Type, s, p, 0)) 530 return false; 531 } 532 } 533 return true; 534 } 535 536 // Assign addresses and add thunks if necessary. 537 void Writer::finalizeAddresses() { 538 assignAddresses(); 539 if (config->machine != ARMNT && config->machine != ARM64) 540 return; 541 542 size_t origNumChunks = 0; 543 for (OutputSection *sec : outputSections) { 544 sec->origChunks = sec->chunks; 545 origNumChunks += sec->chunks.size(); 546 } 547 548 int pass = 0; 549 int margin = 1024 * 100; 550 while (true) { 551 // First check whether we need thunks at all, or if the previous pass of 552 // adding them turned out ok. 553 bool rangesOk = true; 554 size_t numChunks = 0; 555 for (OutputSection *sec : outputSections) { 556 if (!verifyRanges(sec->chunks)) { 557 rangesOk = false; 558 break; 559 } 560 numChunks += sec->chunks.size(); 561 } 562 if (rangesOk) { 563 if (pass > 0) 564 log("Added " + Twine(numChunks - origNumChunks) + " thunks with " + 565 "margin " + Twine(margin) + " in " + Twine(pass) + " passes"); 566 return; 567 } 568 569 if (pass >= 10) 570 fatal("adding thunks hasn't converged after " + Twine(pass) + " passes"); 571 572 if (pass > 0) { 573 // If the previous pass didn't work out, reset everything back to the 574 // original conditions before retrying with a wider margin. This should 575 // ideally never happen under real circumstances. 576 for (OutputSection *sec : outputSections) 577 sec->chunks = sec->origChunks; 578 margin *= 2; 579 } 580 581 // Try adding thunks everywhere where it is needed, with a margin 582 // to avoid things going out of range due to the added thunks. 583 bool addressesChanged = false; 584 for (OutputSection *sec : outputSections) 585 addressesChanged |= createThunks(sec, margin); 586 // If the verification above thought we needed thunks, we should have 587 // added some. 588 assert(addressesChanged); 589 590 // Recalculate the layout for the whole image (and verify the ranges at 591 // the start of the next round). 592 assignAddresses(); 593 594 pass++; 595 } 596 } 597 598 // The main function of the writer. 599 void Writer::run() { 600 ScopedTimer t1(codeLayoutTimer); 601 602 createImportTables(); 603 createSections(); 604 createMiscChunks(); 605 appendImportThunks(); 606 createExportTable(); 607 mergeSections(); 608 removeUnusedSections(); 609 finalizeAddresses(); 610 removeEmptySections(); 611 assignOutputSectionIndices(); 612 setSectionPermissions(); 613 createSymbolAndStringTable(); 614 615 if (fileSize > UINT32_MAX) 616 fatal("image size (" + Twine(fileSize) + ") " + 617 "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")"); 618 619 openFile(config->outputFile); 620 if (config->is64()) { 621 writeHeader<pe32plus_header>(); 622 } else { 623 writeHeader<pe32_header>(); 624 } 625 writeSections(); 626 sortExceptionTable(); 627 628 t1.stop(); 629 630 if (!config->pdbPath.empty() && config->debug) { 631 assert(buildId); 632 createPDB(symtab, outputSections, sectionTable, buildId->buildId); 633 } 634 writeBuildId(); 635 636 writeLLDMapFile(outputSections); 637 writeMapFile(outputSections); 638 639 if (errorCount()) 640 return; 641 642 ScopedTimer t2(diskCommitTimer); 643 if (auto e = buffer->commit()) 644 fatal("failed to write the output file: " + toString(std::move(e))); 645 } 646 647 static StringRef getOutputSectionName(StringRef name) { 648 StringRef s = name.split('$').first; 649 650 // Treat a later period as a separator for MinGW, for sections like 651 // ".ctors.01234". 652 return s.substr(0, s.find('.', 1)); 653 } 654 655 // For /order. 656 static void sortBySectionOrder(std::vector<Chunk *> &chunks) { 657 auto getPriority = [](const Chunk *c) { 658 if (auto *sec = dyn_cast<SectionChunk>(c)) 659 if (sec->sym) 660 return config->order.lookup(sec->sym->getName()); 661 return 0; 662 }; 663 664 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) { 665 return getPriority(a) < getPriority(b); 666 }); 667 } 668 669 // Change the characteristics of existing PartialSections that belong to the 670 // section Name to Chars. 671 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) { 672 for (auto it : partialSections) { 673 PartialSection *pSec = it.second; 674 StringRef curName = pSec->name; 675 if (!curName.consume_front(name) || 676 (!curName.empty() && !curName.startswith("$"))) 677 continue; 678 if (pSec->characteristics == chars) 679 continue; 680 PartialSection *destSec = createPartialSection(pSec->name, chars); 681 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(), 682 pSec->chunks.end()); 683 pSec->chunks.clear(); 684 } 685 } 686 687 // Sort concrete section chunks from GNU import libraries. 688 // 689 // GNU binutils doesn't use short import files, but instead produces import 690 // libraries that consist of object files, with section chunks for the .idata$* 691 // sections. These are linked just as regular static libraries. Each import 692 // library consists of one header object, one object file for every imported 693 // symbol, and one trailer object. In order for the .idata tables/lists to 694 // be formed correctly, the section chunks within each .idata$* section need 695 // to be grouped by library, and sorted alphabetically within each library 696 // (which makes sure the header comes first and the trailer last). 697 bool Writer::fixGnuImportChunks() { 698 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 699 700 // Make sure all .idata$* section chunks are mapped as RDATA in order to 701 // be sorted into the same sections as our own synthesized .idata chunks. 702 fixPartialSectionChars(".idata", rdata); 703 704 bool hasIdata = false; 705 // Sort all .idata$* chunks, grouping chunks from the same library, 706 // with alphabetical ordering of the object fils within a library. 707 for (auto it : partialSections) { 708 PartialSection *pSec = it.second; 709 if (!pSec->name.startswith(".idata")) 710 continue; 711 712 if (!pSec->chunks.empty()) 713 hasIdata = true; 714 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) { 715 SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s); 716 SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t); 717 if (!sc1 || !sc2) { 718 // if SC1, order them ascending. If SC2 or both null, 719 // S is not less than T. 720 return sc1 != nullptr; 721 } 722 // Make a string with "libraryname/objectfile" for sorting, achieving 723 // both grouping by library and sorting of objects within a library, 724 // at once. 725 std::string key1 = 726 (sc1->file->parentName + "/" + sc1->file->getName()).str(); 727 std::string key2 = 728 (sc2->file->parentName + "/" + sc2->file->getName()).str(); 729 return key1 < key2; 730 }); 731 } 732 return hasIdata; 733 } 734 735 // Add generated idata chunks, for imported symbols and DLLs, and a 736 // terminator in .idata$2. 737 void Writer::addSyntheticIdata() { 738 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 739 idata.create(); 740 741 // Add the .idata content in the right section groups, to allow 742 // chunks from other linked in object files to be grouped together. 743 // See Microsoft PE/COFF spec 5.4 for details. 744 auto add = [&](StringRef n, std::vector<Chunk *> &v) { 745 PartialSection *pSec = createPartialSection(n, rdata); 746 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end()); 747 }; 748 749 // The loader assumes a specific order of data. 750 // Add each type in the correct order. 751 add(".idata$2", idata.dirs); 752 add(".idata$4", idata.lookups); 753 add(".idata$5", idata.addresses); 754 if (!idata.hints.empty()) 755 add(".idata$6", idata.hints); 756 add(".idata$7", idata.dllNames); 757 } 758 759 // Locate the first Chunk and size of the import directory list and the 760 // IAT. 761 void Writer::locateImportTables() { 762 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 763 764 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) { 765 if (!importDirs->chunks.empty()) 766 importTableStart = importDirs->chunks.front(); 767 for (Chunk *c : importDirs->chunks) 768 importTableSize += c->getSize(); 769 } 770 771 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) { 772 if (!importAddresses->chunks.empty()) 773 iatStart = importAddresses->chunks.front(); 774 for (Chunk *c : importAddresses->chunks) 775 iatSize += c->getSize(); 776 } 777 } 778 779 // Return whether a SectionChunk's suffix (the dollar and any trailing 780 // suffix) should be removed and sorted into the main suffixless 781 // PartialSection. 782 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) { 783 // On MinGW, comdat groups are formed by putting the comdat group name 784 // after the '$' in the section name. For .eh_frame$<symbol>, that must 785 // still be sorted before the .eh_frame trailer from crtend.o, thus just 786 // strip the section name trailer. For other sections, such as 787 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in 788 // ".tls$"), they must be strictly sorted after .tls. And for the 789 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the 790 // suffix for sorting. Thus, to play it safe, only strip the suffix for 791 // the standard sections. 792 if (!config->mingw) 793 return false; 794 if (!sc || !sc->isCOMDAT()) 795 return false; 796 return name.startswith(".text$") || name.startswith(".data$") || 797 name.startswith(".rdata$") || name.startswith(".pdata$") || 798 name.startswith(".xdata$") || name.startswith(".eh_frame$"); 799 } 800 801 // Create output section objects and add them to OutputSections. 802 void Writer::createSections() { 803 // First, create the builtin sections. 804 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA; 805 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA; 806 const uint32_t code = IMAGE_SCN_CNT_CODE; 807 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE; 808 const uint32_t r = IMAGE_SCN_MEM_READ; 809 const uint32_t w = IMAGE_SCN_MEM_WRITE; 810 const uint32_t x = IMAGE_SCN_MEM_EXECUTE; 811 812 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections; 813 auto createSection = [&](StringRef name, uint32_t outChars) { 814 OutputSection *&sec = sections[{name, outChars}]; 815 if (!sec) { 816 sec = make<OutputSection>(name, outChars); 817 outputSections.push_back(sec); 818 } 819 return sec; 820 }; 821 822 // Try to match the section order used by link.exe. 823 textSec = createSection(".text", code | r | x); 824 createSection(".bss", bss | r | w); 825 rdataSec = createSection(".rdata", data | r); 826 buildidSec = createSection(".buildid", data | r); 827 dataSec = createSection(".data", data | r | w); 828 pdataSec = createSection(".pdata", data | r); 829 idataSec = createSection(".idata", data | r); 830 edataSec = createSection(".edata", data | r); 831 didatSec = createSection(".didat", data | r); 832 rsrcSec = createSection(".rsrc", data | r); 833 relocSec = createSection(".reloc", data | discardable | r); 834 ctorsSec = createSection(".ctors", data | r | w); 835 dtorsSec = createSection(".dtors", data | r | w); 836 837 // Then bin chunks by name and output characteristics. 838 for (Chunk *c : symtab->getChunks()) { 839 auto *sc = dyn_cast<SectionChunk>(c); 840 if (sc && !sc->live) { 841 if (config->verbose) 842 sc->printDiscardedMessage(); 843 continue; 844 } 845 StringRef name = c->getSectionName(); 846 if (shouldStripSectionSuffix(sc, name)) 847 name = name.split('$').first; 848 PartialSection *pSec = createPartialSection(name, 849 c->getOutputCharacteristics()); 850 pSec->chunks.push_back(c); 851 } 852 853 fixPartialSectionChars(".rsrc", data | r); 854 fixPartialSectionChars(".edata", data | r); 855 // Even in non MinGW cases, we might need to link against GNU import 856 // libraries. 857 bool hasIdata = fixGnuImportChunks(); 858 if (!idata.empty()) 859 hasIdata = true; 860 861 if (hasIdata) 862 addSyntheticIdata(); 863 864 // Process an /order option. 865 if (!config->order.empty()) 866 for (auto it : partialSections) 867 sortBySectionOrder(it.second->chunks); 868 869 if (hasIdata) 870 locateImportTables(); 871 872 // Then create an OutputSection for each section. 873 // '$' and all following characters in input section names are 874 // discarded when determining output section. So, .text$foo 875 // contributes to .text, for example. See PE/COFF spec 3.2. 876 for (auto it : partialSections) { 877 PartialSection *pSec = it.second; 878 StringRef name = getOutputSectionName(pSec->name); 879 uint32_t outChars = pSec->characteristics; 880 881 if (name == ".CRT") { 882 // In link.exe, there is a special case for the I386 target where .CRT 883 // sections are treated as if they have output characteristics DATA | R if 884 // their characteristics are DATA | R | W. This implements the same 885 // special case for all architectures. 886 outChars = data | r; 887 888 log("Processing section " + pSec->name + " -> " + name); 889 890 sortCRTSectionChunks(pSec->chunks); 891 } 892 893 OutputSection *sec = createSection(name, outChars); 894 for (Chunk *c : pSec->chunks) 895 sec->addChunk(c); 896 897 sec->addContributingPartialSection(pSec); 898 } 899 900 // Finally, move some output sections to the end. 901 auto sectionOrder = [&](const OutputSection *s) { 902 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file 903 // because the loader cannot handle holes. Stripping can remove other 904 // discardable ones than .reloc, which is first of them (created early). 905 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) 906 return 2; 907 // .rsrc should come at the end of the non-discardable sections because its 908 // size may change by the Win32 UpdateResources() function, causing 909 // subsequent sections to move (see https://crbug.com/827082). 910 if (s == rsrcSec) 911 return 1; 912 return 0; 913 }; 914 llvm::stable_sort(outputSections, 915 [&](const OutputSection *s, const OutputSection *t) { 916 return sectionOrder(s) < sectionOrder(t); 917 }); 918 } 919 920 void Writer::createMiscChunks() { 921 for (MergeChunk *p : MergeChunk::instances) { 922 if (p) { 923 p->finalizeContents(); 924 rdataSec->addChunk(p); 925 } 926 } 927 928 // Create thunks for locally-dllimported symbols. 929 if (!symtab->localImportChunks.empty()) { 930 for (Chunk *c : symtab->localImportChunks) 931 rdataSec->addChunk(c); 932 } 933 934 // Create Debug Information Chunks 935 OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec; 936 if (config->debug || config->repro || config->cetCompat) { 937 debugDirectory = make<DebugDirectoryChunk>(debugRecords, config->repro); 938 debugDirectory->setAlignment(4); 939 debugInfoSec->addChunk(debugDirectory); 940 } 941 942 if (config->debug) { 943 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We 944 // output a PDB no matter what, and this chunk provides the only means of 945 // allowing a debugger to match a PDB and an executable. So we need it even 946 // if we're ultimately not going to write CodeView data to the PDB. 947 buildId = make<CVDebugRecordChunk>(); 948 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId}); 949 } 950 951 if (config->cetCompat) { 952 ExtendedDllCharacteristicsChunk *extendedDllChars = 953 make<ExtendedDllCharacteristicsChunk>( 954 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT); 955 debugRecords.push_back( 956 {COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS, extendedDllChars}); 957 } 958 959 if (debugRecords.size() > 0) { 960 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) 961 debugInfoSec->addChunk(r.second); 962 } 963 964 // Create SEH table. x86-only. 965 if (config->safeSEH) 966 createSEHTable(); 967 968 // Create /guard:cf tables if requested. 969 if (config->guardCF != GuardCFLevel::Off) 970 createGuardCFTables(); 971 972 if (config->autoImport) 973 createRuntimePseudoRelocs(); 974 975 if (config->mingw) 976 insertCtorDtorSymbols(); 977 } 978 979 // Create .idata section for the DLL-imported symbol table. 980 // The format of this section is inherently Windows-specific. 981 // IdataContents class abstracted away the details for us, 982 // so we just let it create chunks and add them to the section. 983 void Writer::createImportTables() { 984 // Initialize DLLOrder so that import entries are ordered in 985 // the same order as in the command line. (That affects DLL 986 // initialization order, and this ordering is MSVC-compatible.) 987 for (ImportFile *file : ImportFile::instances) { 988 if (!file->live) 989 continue; 990 991 std::string dll = StringRef(file->dllName).lower(); 992 if (config->dllOrder.count(dll) == 0) 993 config->dllOrder[dll] = config->dllOrder.size(); 994 995 if (file->impSym && !isa<DefinedImportData>(file->impSym)) 996 fatal(toString(*file->impSym) + " was replaced"); 997 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym); 998 if (config->delayLoads.count(StringRef(file->dllName).lower())) { 999 if (!file->thunkSym) 1000 fatal("cannot delay-load " + toString(file) + 1001 " due to import of data: " + toString(*impSym)); 1002 delayIdata.add(impSym); 1003 } else { 1004 idata.add(impSym); 1005 } 1006 } 1007 } 1008 1009 void Writer::appendImportThunks() { 1010 if (ImportFile::instances.empty()) 1011 return; 1012 1013 for (ImportFile *file : ImportFile::instances) { 1014 if (!file->live) 1015 continue; 1016 1017 if (!file->thunkSym) 1018 continue; 1019 1020 if (!isa<DefinedImportThunk>(file->thunkSym)) 1021 fatal(toString(*file->thunkSym) + " was replaced"); 1022 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym); 1023 if (file->thunkLive) 1024 textSec->addChunk(thunk->getChunk()); 1025 } 1026 1027 if (!delayIdata.empty()) { 1028 Defined *helper = cast<Defined>(config->delayLoadHelper); 1029 delayIdata.create(helper); 1030 for (Chunk *c : delayIdata.getChunks()) 1031 didatSec->addChunk(c); 1032 for (Chunk *c : delayIdata.getDataChunks()) 1033 dataSec->addChunk(c); 1034 for (Chunk *c : delayIdata.getCodeChunks()) 1035 textSec->addChunk(c); 1036 } 1037 } 1038 1039 void Writer::createExportTable() { 1040 if (!edataSec->chunks.empty()) { 1041 // Allow using a custom built export table from input object files, instead 1042 // of having the linker synthesize the tables. 1043 if (config->hadExplicitExports) 1044 warn("literal .edata sections override exports"); 1045 } else if (!config->exports.empty()) { 1046 for (Chunk *c : edata.chunks) 1047 edataSec->addChunk(c); 1048 } 1049 if (!edataSec->chunks.empty()) { 1050 edataStart = edataSec->chunks.front(); 1051 edataEnd = edataSec->chunks.back(); 1052 } 1053 } 1054 1055 void Writer::removeUnusedSections() { 1056 // Remove sections that we can be sure won't get content, to avoid 1057 // allocating space for their section headers. 1058 auto isUnused = [this](OutputSection *s) { 1059 if (s == relocSec) 1060 return false; // This section is populated later. 1061 // MergeChunks have zero size at this point, as their size is finalized 1062 // later. Only remove sections that have no Chunks at all. 1063 return s->chunks.empty(); 1064 }; 1065 outputSections.erase( 1066 std::remove_if(outputSections.begin(), outputSections.end(), isUnused), 1067 outputSections.end()); 1068 } 1069 1070 // The Windows loader doesn't seem to like empty sections, 1071 // so we remove them if any. 1072 void Writer::removeEmptySections() { 1073 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; }; 1074 outputSections.erase( 1075 std::remove_if(outputSections.begin(), outputSections.end(), isEmpty), 1076 outputSections.end()); 1077 } 1078 1079 void Writer::assignOutputSectionIndices() { 1080 // Assign final output section indices, and assign each chunk to its output 1081 // section. 1082 uint32_t idx = 1; 1083 for (OutputSection *os : outputSections) { 1084 os->sectionIndex = idx; 1085 for (Chunk *c : os->chunks) 1086 c->setOutputSectionIdx(idx); 1087 ++idx; 1088 } 1089 1090 // Merge chunks are containers of chunks, so assign those an output section 1091 // too. 1092 for (MergeChunk *mc : MergeChunk::instances) 1093 if (mc) 1094 for (SectionChunk *sc : mc->sections) 1095 if (sc && sc->live) 1096 sc->setOutputSectionIdx(mc->getOutputSectionIdx()); 1097 } 1098 1099 size_t Writer::addEntryToStringTable(StringRef str) { 1100 assert(str.size() > COFF::NameSize); 1101 size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field 1102 strtab.insert(strtab.end(), str.begin(), str.end()); 1103 strtab.push_back('\0'); 1104 return offsetOfEntry; 1105 } 1106 1107 Optional<coff_symbol16> Writer::createSymbol(Defined *def) { 1108 coff_symbol16 sym; 1109 switch (def->kind()) { 1110 case Symbol::DefinedAbsoluteKind: 1111 sym.Value = def->getRVA(); 1112 sym.SectionNumber = IMAGE_SYM_ABSOLUTE; 1113 break; 1114 case Symbol::DefinedSyntheticKind: 1115 // Relative symbols are unrepresentable in a COFF symbol table. 1116 return None; 1117 default: { 1118 // Don't write symbols that won't be written to the output to the symbol 1119 // table. 1120 Chunk *c = def->getChunk(); 1121 if (!c) 1122 return None; 1123 OutputSection *os = c->getOutputSection(); 1124 if (!os) 1125 return None; 1126 1127 sym.Value = def->getRVA() - os->getRVA(); 1128 sym.SectionNumber = os->sectionIndex; 1129 break; 1130 } 1131 } 1132 1133 // Symbols that are runtime pseudo relocations don't point to the actual 1134 // symbol data itself (as they are imported), but points to the IAT entry 1135 // instead. Avoid emitting them to the symbol table, as they can confuse 1136 // debuggers. 1137 if (def->isRuntimePseudoReloc) 1138 return None; 1139 1140 StringRef name = def->getName(); 1141 if (name.size() > COFF::NameSize) { 1142 sym.Name.Offset.Zeroes = 0; 1143 sym.Name.Offset.Offset = addEntryToStringTable(name); 1144 } else { 1145 memset(sym.Name.ShortName, 0, COFF::NameSize); 1146 memcpy(sym.Name.ShortName, name.data(), name.size()); 1147 } 1148 1149 if (auto *d = dyn_cast<DefinedCOFF>(def)) { 1150 COFFSymbolRef ref = d->getCOFFSymbol(); 1151 sym.Type = ref.getType(); 1152 sym.StorageClass = ref.getStorageClass(); 1153 } else { 1154 sym.Type = IMAGE_SYM_TYPE_NULL; 1155 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL; 1156 } 1157 sym.NumberOfAuxSymbols = 0; 1158 return sym; 1159 } 1160 1161 void Writer::createSymbolAndStringTable() { 1162 // PE/COFF images are limited to 8 byte section names. Longer names can be 1163 // supported by writing a non-standard string table, but this string table is 1164 // not mapped at runtime and the long names will therefore be inaccessible. 1165 // link.exe always truncates section names to 8 bytes, whereas binutils always 1166 // preserves long section names via the string table. LLD adopts a hybrid 1167 // solution where discardable sections have long names preserved and 1168 // non-discardable sections have their names truncated, to ensure that any 1169 // section which is mapped at runtime also has its name mapped at runtime. 1170 for (OutputSection *sec : outputSections) { 1171 if (sec->name.size() <= COFF::NameSize) 1172 continue; 1173 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0) 1174 continue; 1175 if (config->warnLongSectionNames) { 1176 warn("section name " + sec->name + 1177 " is longer than 8 characters and will use a non-standard string " 1178 "table"); 1179 } 1180 sec->setStringTableOff(addEntryToStringTable(sec->name)); 1181 } 1182 1183 if (config->debugDwarf || config->debugSymtab) { 1184 for (ObjFile *file : ObjFile::instances) { 1185 for (Symbol *b : file->getSymbols()) { 1186 auto *d = dyn_cast_or_null<Defined>(b); 1187 if (!d || d->writtenToSymtab) 1188 continue; 1189 d->writtenToSymtab = true; 1190 1191 if (Optional<coff_symbol16> sym = createSymbol(d)) 1192 outputSymtab.push_back(*sym); 1193 } 1194 } 1195 } 1196 1197 if (outputSymtab.empty() && strtab.empty()) 1198 return; 1199 1200 // We position the symbol table to be adjacent to the end of the last section. 1201 uint64_t fileOff = fileSize; 1202 pointerToSymbolTable = fileOff; 1203 fileOff += outputSymtab.size() * sizeof(coff_symbol16); 1204 fileOff += 4 + strtab.size(); 1205 fileSize = alignTo(fileOff, config->fileAlign); 1206 } 1207 1208 void Writer::mergeSections() { 1209 if (!pdataSec->chunks.empty()) { 1210 firstPdata = pdataSec->chunks.front(); 1211 lastPdata = pdataSec->chunks.back(); 1212 } 1213 1214 for (auto &p : config->merge) { 1215 StringRef toName = p.second; 1216 if (p.first == toName) 1217 continue; 1218 StringSet<> names; 1219 while (1) { 1220 if (!names.insert(toName).second) 1221 fatal("/merge: cycle found for section '" + p.first + "'"); 1222 auto i = config->merge.find(toName); 1223 if (i == config->merge.end()) 1224 break; 1225 toName = i->second; 1226 } 1227 OutputSection *from = findSection(p.first); 1228 OutputSection *to = findSection(toName); 1229 if (!from) 1230 continue; 1231 if (!to) { 1232 from->name = toName; 1233 continue; 1234 } 1235 to->merge(from); 1236 } 1237 } 1238 1239 // Visits all sections to assign incremental, non-overlapping RVAs and 1240 // file offsets. 1241 void Writer::assignAddresses() { 1242 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) + 1243 sizeof(data_directory) * numberOfDataDirectory + 1244 sizeof(coff_section) * outputSections.size(); 1245 sizeOfHeaders += 1246 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header); 1247 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign); 1248 fileSize = sizeOfHeaders; 1249 1250 // The first page is kept unmapped. 1251 uint64_t rva = alignTo(sizeOfHeaders, config->align); 1252 1253 for (OutputSection *sec : outputSections) { 1254 if (sec == relocSec) 1255 addBaserels(); 1256 uint64_t rawSize = 0, virtualSize = 0; 1257 sec->header.VirtualAddress = rva; 1258 1259 // If /FUNCTIONPADMIN is used, functions are padded in order to create a 1260 // hotpatchable image. 1261 const bool isCodeSection = 1262 (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) && 1263 (sec->header.Characteristics & IMAGE_SCN_MEM_READ) && 1264 (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE); 1265 uint32_t padding = isCodeSection ? config->functionPadMin : 0; 1266 1267 for (Chunk *c : sec->chunks) { 1268 if (padding && c->isHotPatchable()) 1269 virtualSize += padding; 1270 virtualSize = alignTo(virtualSize, c->getAlignment()); 1271 c->setRVA(rva + virtualSize); 1272 virtualSize += c->getSize(); 1273 if (c->hasData) 1274 rawSize = alignTo(virtualSize, config->fileAlign); 1275 } 1276 if (virtualSize > UINT32_MAX) 1277 error("section larger than 4 GiB: " + sec->name); 1278 sec->header.VirtualSize = virtualSize; 1279 sec->header.SizeOfRawData = rawSize; 1280 if (rawSize != 0) 1281 sec->header.PointerToRawData = fileSize; 1282 rva += alignTo(virtualSize, config->align); 1283 fileSize += alignTo(rawSize, config->fileAlign); 1284 } 1285 sizeOfImage = alignTo(rva, config->align); 1286 1287 // Assign addresses to sections in MergeChunks. 1288 for (MergeChunk *mc : MergeChunk::instances) 1289 if (mc) 1290 mc->assignSubsectionRVAs(); 1291 } 1292 1293 template <typename PEHeaderTy> void Writer::writeHeader() { 1294 // Write DOS header. For backwards compatibility, the first part of a PE/COFF 1295 // executable consists of an MS-DOS MZ executable. If the executable is run 1296 // under DOS, that program gets run (usually to just print an error message). 1297 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses 1298 // the PE header instead. 1299 uint8_t *buf = buffer->getBufferStart(); 1300 auto *dos = reinterpret_cast<dos_header *>(buf); 1301 buf += sizeof(dos_header); 1302 dos->Magic[0] = 'M'; 1303 dos->Magic[1] = 'Z'; 1304 dos->UsedBytesInTheLastPage = dosStubSize % 512; 1305 dos->FileSizeInPages = divideCeil(dosStubSize, 512); 1306 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16; 1307 1308 dos->AddressOfRelocationTable = sizeof(dos_header); 1309 dos->AddressOfNewExeHeader = dosStubSize; 1310 1311 // Write DOS program. 1312 memcpy(buf, dosProgram, sizeof(dosProgram)); 1313 buf += sizeof(dosProgram); 1314 1315 // Write PE magic 1316 memcpy(buf, PEMagic, sizeof(PEMagic)); 1317 buf += sizeof(PEMagic); 1318 1319 // Write COFF header 1320 auto *coff = reinterpret_cast<coff_file_header *>(buf); 1321 buf += sizeof(*coff); 1322 coff->Machine = config->machine; 1323 coff->NumberOfSections = outputSections.size(); 1324 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE; 1325 if (config->largeAddressAware) 1326 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE; 1327 if (!config->is64()) 1328 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE; 1329 if (config->dll) 1330 coff->Characteristics |= IMAGE_FILE_DLL; 1331 if (config->driverUponly) 1332 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY; 1333 if (!config->relocatable) 1334 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED; 1335 if (config->swaprunCD) 1336 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP; 1337 if (config->swaprunNet) 1338 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP; 1339 coff->SizeOfOptionalHeader = 1340 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory; 1341 1342 // Write PE header 1343 auto *pe = reinterpret_cast<PEHeaderTy *>(buf); 1344 buf += sizeof(*pe); 1345 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32; 1346 1347 // If {Major,Minor}LinkerVersion is left at 0.0, then for some 1348 // reason signing the resulting PE file with Authenticode produces a 1349 // signature that fails to validate on Windows 7 (but is OK on 10). 1350 // Set it to 14.0, which is what VS2015 outputs, and which avoids 1351 // that problem. 1352 pe->MajorLinkerVersion = 14; 1353 pe->MinorLinkerVersion = 0; 1354 1355 pe->ImageBase = config->imageBase; 1356 pe->SectionAlignment = config->align; 1357 pe->FileAlignment = config->fileAlign; 1358 pe->MajorImageVersion = config->majorImageVersion; 1359 pe->MinorImageVersion = config->minorImageVersion; 1360 pe->MajorOperatingSystemVersion = config->majorOSVersion; 1361 pe->MinorOperatingSystemVersion = config->minorOSVersion; 1362 pe->MajorSubsystemVersion = config->majorOSVersion; 1363 pe->MinorSubsystemVersion = config->minorOSVersion; 1364 pe->Subsystem = config->subsystem; 1365 pe->SizeOfImage = sizeOfImage; 1366 pe->SizeOfHeaders = sizeOfHeaders; 1367 if (!config->noEntry) { 1368 Defined *entry = cast<Defined>(config->entry); 1369 pe->AddressOfEntryPoint = entry->getRVA(); 1370 // Pointer to thumb code must have the LSB set, so adjust it. 1371 if (config->machine == ARMNT) 1372 pe->AddressOfEntryPoint |= 1; 1373 } 1374 pe->SizeOfStackReserve = config->stackReserve; 1375 pe->SizeOfStackCommit = config->stackCommit; 1376 pe->SizeOfHeapReserve = config->heapReserve; 1377 pe->SizeOfHeapCommit = config->heapCommit; 1378 if (config->appContainer) 1379 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER; 1380 if (config->driverWdm) 1381 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER; 1382 if (config->dynamicBase) 1383 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE; 1384 if (config->highEntropyVA) 1385 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA; 1386 if (!config->allowBind) 1387 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND; 1388 if (config->nxCompat) 1389 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT; 1390 if (!config->allowIsolation) 1391 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION; 1392 if (config->guardCF != GuardCFLevel::Off) 1393 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF; 1394 if (config->integrityCheck) 1395 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY; 1396 if (setNoSEHCharacteristic || config->noSEH) 1397 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH; 1398 if (config->terminalServerAware) 1399 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE; 1400 pe->NumberOfRvaAndSize = numberOfDataDirectory; 1401 if (textSec->getVirtualSize()) { 1402 pe->BaseOfCode = textSec->getRVA(); 1403 pe->SizeOfCode = textSec->getRawSize(); 1404 } 1405 pe->SizeOfInitializedData = getSizeOfInitializedData(); 1406 1407 // Write data directory 1408 auto *dir = reinterpret_cast<data_directory *>(buf); 1409 buf += sizeof(*dir) * numberOfDataDirectory; 1410 if (edataStart) { 1411 dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA(); 1412 dir[EXPORT_TABLE].Size = 1413 edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA(); 1414 } 1415 if (importTableStart) { 1416 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA(); 1417 dir[IMPORT_TABLE].Size = importTableSize; 1418 } 1419 if (iatStart) { 1420 dir[IAT].RelativeVirtualAddress = iatStart->getRVA(); 1421 dir[IAT].Size = iatSize; 1422 } 1423 if (rsrcSec->getVirtualSize()) { 1424 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA(); 1425 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize(); 1426 } 1427 if (firstPdata) { 1428 dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA(); 1429 dir[EXCEPTION_TABLE].Size = 1430 lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA(); 1431 } 1432 if (relocSec->getVirtualSize()) { 1433 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA(); 1434 dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize(); 1435 } 1436 if (Symbol *sym = symtab->findUnderscore("_tls_used")) { 1437 if (Defined *b = dyn_cast<Defined>(sym)) { 1438 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA(); 1439 dir[TLS_TABLE].Size = config->is64() 1440 ? sizeof(object::coff_tls_directory64) 1441 : sizeof(object::coff_tls_directory32); 1442 } 1443 } 1444 if (debugDirectory) { 1445 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA(); 1446 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize(); 1447 } 1448 if (Symbol *sym = symtab->findUnderscore("_load_config_used")) { 1449 if (auto *b = dyn_cast<DefinedRegular>(sym)) { 1450 SectionChunk *sc = b->getChunk(); 1451 assert(b->getRVA() >= sc->getRVA()); 1452 uint64_t offsetInChunk = b->getRVA() - sc->getRVA(); 1453 if (!sc->hasData || offsetInChunk + 4 > sc->getSize()) 1454 fatal("_load_config_used is malformed"); 1455 1456 ArrayRef<uint8_t> secContents = sc->getContents(); 1457 uint32_t loadConfigSize = 1458 *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]); 1459 if (offsetInChunk + loadConfigSize > sc->getSize()) 1460 fatal("_load_config_used is too large"); 1461 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA(); 1462 dir[LOAD_CONFIG_TABLE].Size = loadConfigSize; 1463 } 1464 } 1465 if (!delayIdata.empty()) { 1466 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress = 1467 delayIdata.getDirRVA(); 1468 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize(); 1469 } 1470 1471 // Write section table 1472 for (OutputSection *sec : outputSections) { 1473 sec->writeHeaderTo(buf); 1474 buf += sizeof(coff_section); 1475 } 1476 sectionTable = ArrayRef<uint8_t>( 1477 buf - outputSections.size() * sizeof(coff_section), buf); 1478 1479 if (outputSymtab.empty() && strtab.empty()) 1480 return; 1481 1482 coff->PointerToSymbolTable = pointerToSymbolTable; 1483 uint32_t numberOfSymbols = outputSymtab.size(); 1484 coff->NumberOfSymbols = numberOfSymbols; 1485 auto *symbolTable = reinterpret_cast<coff_symbol16 *>( 1486 buffer->getBufferStart() + coff->PointerToSymbolTable); 1487 for (size_t i = 0; i != numberOfSymbols; ++i) 1488 symbolTable[i] = outputSymtab[i]; 1489 // Create the string table, it follows immediately after the symbol table. 1490 // The first 4 bytes is length including itself. 1491 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]); 1492 write32le(buf, strtab.size() + 4); 1493 if (!strtab.empty()) 1494 memcpy(buf + 4, strtab.data(), strtab.size()); 1495 } 1496 1497 void Writer::openFile(StringRef path) { 1498 buffer = CHECK( 1499 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable), 1500 "failed to open " + path); 1501 } 1502 1503 void Writer::createSEHTable() { 1504 SymbolRVASet handlers; 1505 for (ObjFile *file : ObjFile::instances) { 1506 if (!file->hasSafeSEH()) 1507 error("/safeseh: " + file->getName() + " is not compatible with SEH"); 1508 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers); 1509 } 1510 1511 // Set the "no SEH" characteristic if there really were no handlers, or if 1512 // there is no load config object to point to the table of handlers. 1513 setNoSEHCharacteristic = 1514 handlers.empty() || !symtab->findUnderscore("_load_config_used"); 1515 1516 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table", 1517 "__safe_se_handler_count"); 1518 } 1519 1520 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set 1521 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the 1522 // symbol's offset into that Chunk. 1523 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) { 1524 Chunk *c = s->getChunk(); 1525 if (auto *sc = dyn_cast<SectionChunk>(c)) 1526 c = sc->repl; // Look through ICF replacement. 1527 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0); 1528 rvaSet.insert({c, off}); 1529 } 1530 1531 // Given a symbol, add it to the GFIDs table if it is a live, defined, function 1532 // symbol in an executable section. 1533 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms, 1534 Symbol *s) { 1535 if (!s) 1536 return; 1537 1538 switch (s->kind()) { 1539 case Symbol::DefinedLocalImportKind: 1540 case Symbol::DefinedImportDataKind: 1541 // Defines an __imp_ pointer, so it is data, so it is ignored. 1542 break; 1543 case Symbol::DefinedCommonKind: 1544 // Common is always data, so it is ignored. 1545 break; 1546 case Symbol::DefinedAbsoluteKind: 1547 case Symbol::DefinedSyntheticKind: 1548 // Absolute is never code, synthetic generally isn't and usually isn't 1549 // determinable. 1550 break; 1551 case Symbol::LazyArchiveKind: 1552 case Symbol::LazyObjectKind: 1553 case Symbol::UndefinedKind: 1554 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy 1555 // symbols shouldn't have relocations. 1556 break; 1557 1558 case Symbol::DefinedImportThunkKind: 1559 // Thunks are always code, include them. 1560 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s)); 1561 break; 1562 1563 case Symbol::DefinedRegularKind: { 1564 // This is a regular, defined, symbol from a COFF file. Mark the symbol as 1565 // address taken if the symbol type is function and it's in an executable 1566 // section. 1567 auto *d = cast<DefinedRegular>(s); 1568 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) { 1569 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk()); 1570 if (sc && sc->live && 1571 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) 1572 addSymbolToRVASet(addressTakenSyms, d); 1573 } 1574 break; 1575 } 1576 } 1577 } 1578 1579 // Visit all relocations from all section contributions of this object file and 1580 // mark the relocation target as address-taken. 1581 static void markSymbolsWithRelocations(ObjFile *file, 1582 SymbolRVASet &usedSymbols) { 1583 for (Chunk *c : file->getChunks()) { 1584 // We only care about live section chunks. Common chunks and other chunks 1585 // don't generally contain relocations. 1586 SectionChunk *sc = dyn_cast<SectionChunk>(c); 1587 if (!sc || !sc->live) 1588 continue; 1589 1590 for (const coff_relocation &reloc : sc->getRelocs()) { 1591 if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32) 1592 // Ignore relative relocations on x86. On x86_64 they can't be ignored 1593 // since they're also used to compute absolute addresses. 1594 continue; 1595 1596 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex); 1597 maybeAddAddressTakenFunction(usedSymbols, ref); 1598 } 1599 } 1600 } 1601 1602 // Create the guard function id table. This is a table of RVAs of all 1603 // address-taken functions. It is sorted and uniqued, just like the safe SEH 1604 // table. 1605 void Writer::createGuardCFTables() { 1606 SymbolRVASet addressTakenSyms; 1607 SymbolRVASet longJmpTargets; 1608 for (ObjFile *file : ObjFile::instances) { 1609 // If the object was compiled with /guard:cf, the address taken symbols 1610 // are in .gfids$y sections, and the longjmp targets are in .gljmp$y 1611 // sections. If the object was not compiled with /guard:cf, we assume there 1612 // were no setjmp targets, and that all code symbols with relocations are 1613 // possibly address-taken. 1614 if (file->hasGuardCF()) { 1615 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms); 1616 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets); 1617 } else { 1618 markSymbolsWithRelocations(file, addressTakenSyms); 1619 } 1620 } 1621 1622 // Mark the image entry as address-taken. 1623 if (config->entry) 1624 maybeAddAddressTakenFunction(addressTakenSyms, config->entry); 1625 1626 // Mark exported symbols in executable sections as address-taken. 1627 for (Export &e : config->exports) 1628 maybeAddAddressTakenFunction(addressTakenSyms, e.sym); 1629 1630 // Ensure sections referenced in the gfid table are 16-byte aligned. 1631 for (const ChunkAndOffset &c : addressTakenSyms) 1632 if (c.inputChunk->getAlignment() < 16) 1633 c.inputChunk->setAlignment(16); 1634 1635 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table", 1636 "__guard_fids_count"); 1637 1638 // Add the longjmp target table unless the user told us not to. 1639 if (config->guardCF == GuardCFLevel::Full) 1640 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table", 1641 "__guard_longjmp_count"); 1642 1643 // Set __guard_flags, which will be used in the load config to indicate that 1644 // /guard:cf was enabled. 1645 uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) | 1646 uint32_t(coff_guard_flags::HasFidTable); 1647 if (config->guardCF == GuardCFLevel::Full) 1648 guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable); 1649 Symbol *flagSym = symtab->findUnderscore("__guard_flags"); 1650 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags); 1651 } 1652 1653 // Take a list of input sections containing symbol table indices and add those 1654 // symbols to an RVA table. The challenge is that symbol RVAs are not known and 1655 // depend on the table size, so we can't directly build a set of integers. 1656 void Writer::markSymbolsForRVATable(ObjFile *file, 1657 ArrayRef<SectionChunk *> symIdxChunks, 1658 SymbolRVASet &tableSymbols) { 1659 for (SectionChunk *c : symIdxChunks) { 1660 // Skip sections discarded by linker GC. This comes up when a .gfids section 1661 // is associated with something like a vtable and the vtable is discarded. 1662 // In this case, the associated gfids section is discarded, and we don't 1663 // mark the virtual member functions as address-taken by the vtable. 1664 if (!c->live) 1665 continue; 1666 1667 // Validate that the contents look like symbol table indices. 1668 ArrayRef<uint8_t> data = c->getContents(); 1669 if (data.size() % 4 != 0) { 1670 warn("ignoring " + c->getSectionName() + 1671 " symbol table index section in object " + toString(file)); 1672 continue; 1673 } 1674 1675 // Read each symbol table index and check if that symbol was included in the 1676 // final link. If so, add it to the table symbol set. 1677 ArrayRef<ulittle32_t> symIndices( 1678 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4); 1679 ArrayRef<Symbol *> objSymbols = file->getSymbols(); 1680 for (uint32_t symIndex : symIndices) { 1681 if (symIndex >= objSymbols.size()) { 1682 warn("ignoring invalid symbol table index in section " + 1683 c->getSectionName() + " in object " + toString(file)); 1684 continue; 1685 } 1686 if (Symbol *s = objSymbols[symIndex]) { 1687 if (s->isLive()) 1688 addSymbolToRVASet(tableSymbols, cast<Defined>(s)); 1689 } 1690 } 1691 } 1692 } 1693 1694 // Replace the absolute table symbol with a synthetic symbol pointing to 1695 // tableChunk so that we can emit base relocations for it and resolve section 1696 // relative relocations. 1697 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, 1698 StringRef countSym) { 1699 if (tableSymbols.empty()) 1700 return; 1701 1702 RVATableChunk *tableChunk = make<RVATableChunk>(std::move(tableSymbols)); 1703 rdataSec->addChunk(tableChunk); 1704 1705 Symbol *t = symtab->findUnderscore(tableSym); 1706 Symbol *c = symtab->findUnderscore(countSym); 1707 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk); 1708 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / 4); 1709 } 1710 1711 // MinGW specific. Gather all relocations that are imported from a DLL even 1712 // though the code didn't expect it to, produce the table that the runtime 1713 // uses for fixing them up, and provide the synthetic symbols that the 1714 // runtime uses for finding the table. 1715 void Writer::createRuntimePseudoRelocs() { 1716 std::vector<RuntimePseudoReloc> rels; 1717 1718 for (Chunk *c : symtab->getChunks()) { 1719 auto *sc = dyn_cast<SectionChunk>(c); 1720 if (!sc || !sc->live) 1721 continue; 1722 sc->getRuntimePseudoRelocs(rels); 1723 } 1724 1725 if (!config->pseudoRelocs) { 1726 // Not writing any pseudo relocs; if some were needed, error out and 1727 // indicate what required them. 1728 for (const RuntimePseudoReloc &rpr : rels) 1729 error("automatic dllimport of " + rpr.sym->getName() + " in " + 1730 toString(rpr.target->file) + " requires pseudo relocations"); 1731 return; 1732 } 1733 1734 if (!rels.empty()) 1735 log("Writing " + Twine(rels.size()) + " runtime pseudo relocations"); 1736 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels); 1737 rdataSec->addChunk(table); 1738 EmptyChunk *endOfList = make<EmptyChunk>(); 1739 rdataSec->addChunk(endOfList); 1740 1741 Symbol *headSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__"); 1742 Symbol *endSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__"); 1743 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table); 1744 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList); 1745 } 1746 1747 // MinGW specific. 1748 // The MinGW .ctors and .dtors lists have sentinels at each end; 1749 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end. 1750 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__ 1751 // and __DTOR_LIST__ respectively. 1752 void Writer::insertCtorDtorSymbols() { 1753 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1); 1754 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0); 1755 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1); 1756 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0); 1757 ctorsSec->insertChunkAtStart(ctorListHead); 1758 ctorsSec->addChunk(ctorListEnd); 1759 dtorsSec->insertChunkAtStart(dtorListHead); 1760 dtorsSec->addChunk(dtorListEnd); 1761 1762 Symbol *ctorListSym = symtab->findUnderscore("__CTOR_LIST__"); 1763 Symbol *dtorListSym = symtab->findUnderscore("__DTOR_LIST__"); 1764 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(), 1765 ctorListHead); 1766 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(), 1767 dtorListHead); 1768 } 1769 1770 // Handles /section options to allow users to overwrite 1771 // section attributes. 1772 void Writer::setSectionPermissions() { 1773 for (auto &p : config->section) { 1774 StringRef name = p.first; 1775 uint32_t perm = p.second; 1776 for (OutputSection *sec : outputSections) 1777 if (sec->name == name) 1778 sec->setPermissions(perm); 1779 } 1780 } 1781 1782 // Write section contents to a mmap'ed file. 1783 void Writer::writeSections() { 1784 // Record the number of sections to apply section index relocations 1785 // against absolute symbols. See applySecIdx in Chunks.cpp.. 1786 DefinedAbsolute::numOutputSections = outputSections.size(); 1787 1788 uint8_t *buf = buffer->getBufferStart(); 1789 for (OutputSection *sec : outputSections) { 1790 uint8_t *secBuf = buf + sec->getFileOff(); 1791 // Fill gaps between functions in .text with INT3 instructions 1792 // instead of leaving as NUL bytes (which can be interpreted as 1793 // ADD instructions). 1794 if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) 1795 memset(secBuf, 0xCC, sec->getRawSize()); 1796 parallelForEach(sec->chunks, [&](Chunk *c) { 1797 c->writeTo(secBuf + c->getRVA() - sec->getRVA()); 1798 }); 1799 } 1800 } 1801 1802 void Writer::writeBuildId() { 1803 // There are two important parts to the build ID. 1804 // 1) If building with debug info, the COFF debug directory contains a 1805 // timestamp as well as a Guid and Age of the PDB. 1806 // 2) In all cases, the PE COFF file header also contains a timestamp. 1807 // For reproducibility, instead of a timestamp we want to use a hash of the 1808 // PE contents. 1809 if (config->debug) { 1810 assert(buildId && "BuildId is not set!"); 1811 // BuildId->BuildId was filled in when the PDB was written. 1812 } 1813 1814 // At this point the only fields in the COFF file which remain unset are the 1815 // "timestamp" in the COFF file header, and the ones in the coff debug 1816 // directory. Now we can hash the file and write that hash to the various 1817 // timestamp fields in the file. 1818 StringRef outputFileData( 1819 reinterpret_cast<const char *>(buffer->getBufferStart()), 1820 buffer->getBufferSize()); 1821 1822 uint32_t timestamp = config->timestamp; 1823 uint64_t hash = 0; 1824 bool generateSyntheticBuildId = 1825 config->mingw && config->debug && config->pdbPath.empty(); 1826 1827 if (config->repro || generateSyntheticBuildId) 1828 hash = xxHash64(outputFileData); 1829 1830 if (config->repro) 1831 timestamp = static_cast<uint32_t>(hash); 1832 1833 if (generateSyntheticBuildId) { 1834 // For MinGW builds without a PDB file, we still generate a build id 1835 // to allow associating a crash dump to the executable. 1836 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70; 1837 buildId->buildId->PDB70.Age = 1; 1838 memcpy(buildId->buildId->PDB70.Signature, &hash, 8); 1839 // xxhash only gives us 8 bytes, so put some fixed data in the other half. 1840 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8); 1841 } 1842 1843 if (debugDirectory) 1844 debugDirectory->setTimeDateStamp(timestamp); 1845 1846 uint8_t *buf = buffer->getBufferStart(); 1847 buf += dosStubSize + sizeof(PEMagic); 1848 object::coff_file_header *coffHeader = 1849 reinterpret_cast<coff_file_header *>(buf); 1850 coffHeader->TimeDateStamp = timestamp; 1851 } 1852 1853 // Sort .pdata section contents according to PE/COFF spec 5.5. 1854 void Writer::sortExceptionTable() { 1855 if (!firstPdata) 1856 return; 1857 // We assume .pdata contains function table entries only. 1858 auto bufAddr = [&](Chunk *c) { 1859 OutputSection *os = c->getOutputSection(); 1860 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() - 1861 os->getRVA(); 1862 }; 1863 uint8_t *begin = bufAddr(firstPdata); 1864 uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize(); 1865 if (config->machine == AMD64) { 1866 struct Entry { ulittle32_t begin, end, unwind; }; 1867 if ((end - begin) % sizeof(Entry) != 0) { 1868 fatal("unexpected .pdata size: " + Twine(end - begin) + 1869 " is not a multiple of " + Twine(sizeof(Entry))); 1870 } 1871 parallelSort( 1872 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end), 1873 [](const Entry &a, const Entry &b) { return a.begin < b.begin; }); 1874 return; 1875 } 1876 if (config->machine == ARMNT || config->machine == ARM64) { 1877 struct Entry { ulittle32_t begin, unwind; }; 1878 if ((end - begin) % sizeof(Entry) != 0) { 1879 fatal("unexpected .pdata size: " + Twine(end - begin) + 1880 " is not a multiple of " + Twine(sizeof(Entry))); 1881 } 1882 parallelSort( 1883 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end), 1884 [](const Entry &a, const Entry &b) { return a.begin < b.begin; }); 1885 return; 1886 } 1887 lld::errs() << "warning: don't know how to handle .pdata.\n"; 1888 } 1889 1890 // The CRT section contains, among other things, the array of function 1891 // pointers that initialize every global variable that is not trivially 1892 // constructed. The CRT calls them one after the other prior to invoking 1893 // main(). 1894 // 1895 // As per C++ spec, 3.6.2/2.3, 1896 // "Variables with ordered initialization defined within a single 1897 // translation unit shall be initialized in the order of their definitions 1898 // in the translation unit" 1899 // 1900 // It is therefore critical to sort the chunks containing the function 1901 // pointers in the order that they are listed in the object file (top to 1902 // bottom), otherwise global objects might not be initialized in the 1903 // correct order. 1904 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) { 1905 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) { 1906 auto sa = dyn_cast<SectionChunk>(a); 1907 auto sb = dyn_cast<SectionChunk>(b); 1908 assert(sa && sb && "Non-section chunks in CRT section!"); 1909 1910 StringRef sAObj = sa->file->mb.getBufferIdentifier(); 1911 StringRef sBObj = sb->file->mb.getBufferIdentifier(); 1912 1913 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber(); 1914 }; 1915 llvm::stable_sort(chunks, sectionChunkOrder); 1916 1917 if (config->verbose) { 1918 for (auto &c : chunks) { 1919 auto sc = dyn_cast<SectionChunk>(c); 1920 log(" " + sc->file->mb.getBufferIdentifier().str() + 1921 ", SectionID: " + Twine(sc->getSectionNumber())); 1922 } 1923 } 1924 } 1925 1926 OutputSection *Writer::findSection(StringRef name) { 1927 for (OutputSection *sec : outputSections) 1928 if (sec->name == name) 1929 return sec; 1930 return nullptr; 1931 } 1932 1933 uint32_t Writer::getSizeOfInitializedData() { 1934 uint32_t res = 0; 1935 for (OutputSection *s : outputSections) 1936 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA) 1937 res += s->getRawSize(); 1938 return res; 1939 } 1940 1941 // Add base relocations to .reloc section. 1942 void Writer::addBaserels() { 1943 if (!config->relocatable) 1944 return; 1945 relocSec->chunks.clear(); 1946 std::vector<Baserel> v; 1947 for (OutputSection *sec : outputSections) { 1948 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) 1949 continue; 1950 // Collect all locations for base relocations. 1951 for (Chunk *c : sec->chunks) 1952 c->getBaserels(&v); 1953 // Add the addresses to .reloc section. 1954 if (!v.empty()) 1955 addBaserelBlocks(v); 1956 v.clear(); 1957 } 1958 } 1959 1960 // Add addresses to .reloc section. Note that addresses are grouped by page. 1961 void Writer::addBaserelBlocks(std::vector<Baserel> &v) { 1962 const uint32_t mask = ~uint32_t(pageSize - 1); 1963 uint32_t page = v[0].rva & mask; 1964 size_t i = 0, j = 1; 1965 for (size_t e = v.size(); j < e; ++j) { 1966 uint32_t p = v[j].rva & mask; 1967 if (p == page) 1968 continue; 1969 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j)); 1970 i = j; 1971 page = p; 1972 } 1973 if (i == j) 1974 return; 1975 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j)); 1976 } 1977 1978 PartialSection *Writer::createPartialSection(StringRef name, 1979 uint32_t outChars) { 1980 PartialSection *&pSec = partialSections[{name, outChars}]; 1981 if (pSec) 1982 return pSec; 1983 pSec = make<PartialSection>(name, outChars); 1984 return pSec; 1985 } 1986 1987 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) { 1988 auto it = partialSections.find({name, outChars}); 1989 if (it != partialSections.end()) 1990 return it->second; 1991 return nullptr; 1992 } 1993