1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "COFFLinkerContext.h" 11 #include "CallGraphSort.h" 12 #include "Config.h" 13 #include "DLL.h" 14 #include "InputFiles.h" 15 #include "LLDMapFile.h" 16 #include "MapFile.h" 17 #include "PDB.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "lld/Common/ErrorHandler.h" 21 #include "lld/Common/Memory.h" 22 #include "lld/Common/Timer.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/Support/BinaryStreamReader.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/FileOutputBuffer.h" 31 #include "llvm/Support/Parallel.h" 32 #include "llvm/Support/Path.h" 33 #include "llvm/Support/RandomNumberGenerator.h" 34 #include "llvm/Support/xxhash.h" 35 #include <algorithm> 36 #include <cstdio> 37 #include <map> 38 #include <memory> 39 #include <utility> 40 41 using namespace llvm; 42 using namespace llvm::COFF; 43 using namespace llvm::object; 44 using namespace llvm::support; 45 using namespace llvm::support::endian; 46 using namespace lld; 47 using namespace lld::coff; 48 49 /* To re-generate DOSProgram: 50 $ cat > /tmp/DOSProgram.asm 51 org 0 52 ; Copy cs to ds. 53 push cs 54 pop ds 55 ; Point ds:dx at the $-terminated string. 56 mov dx, str 57 ; Int 21/AH=09h: Write string to standard output. 58 mov ah, 0x9 59 int 0x21 60 ; Int 21/AH=4Ch: Exit with return code (in AL). 61 mov ax, 0x4C01 62 int 0x21 63 str: 64 db 'This program cannot be run in DOS mode.$' 65 align 8, db 0 66 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin 67 $ xxd -i /tmp/DOSProgram.bin 68 */ 69 static unsigned char dosProgram[] = { 70 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c, 71 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72, 72 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65, 73 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20, 74 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00 75 }; 76 static_assert(sizeof(dosProgram) % 8 == 0, 77 "DOSProgram size must be multiple of 8"); 78 79 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram); 80 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8"); 81 82 static const int numberOfDataDirectory = 16; 83 84 namespace { 85 86 class DebugDirectoryChunk : public NonSectionChunk { 87 public: 88 DebugDirectoryChunk(const COFFLinkerContext &c, 89 const std::vector<std::pair<COFF::DebugType, Chunk *>> &r, 90 bool writeRepro) 91 : records(r), writeRepro(writeRepro), ctx(c) {} 92 93 size_t getSize() const override { 94 return (records.size() + int(writeRepro)) * sizeof(debug_directory); 95 } 96 97 void writeTo(uint8_t *b) const override { 98 auto *d = reinterpret_cast<debug_directory *>(b); 99 100 for (const std::pair<COFF::DebugType, Chunk *>& record : records) { 101 Chunk *c = record.second; 102 const OutputSection *os = ctx.getOutputSection(c); 103 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA()); 104 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs); 105 ++d; 106 } 107 108 if (writeRepro) { 109 // FIXME: The COFF spec allows either a 0-sized entry to just say 110 // "the timestamp field is really a hash", or a 4-byte size field 111 // followed by that many bytes containing a longer hash (with the 112 // lowest 4 bytes usually being the timestamp in little-endian order). 113 // Consider storing the full 8 bytes computed by xxHash64 here. 114 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0); 115 } 116 } 117 118 void setTimeDateStamp(uint32_t timeDateStamp) { 119 for (support::ulittle32_t *tds : timeDateStamps) 120 *tds = timeDateStamp; 121 } 122 123 private: 124 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size, 125 uint64_t rva, uint64_t offs) const { 126 d->Characteristics = 0; 127 d->TimeDateStamp = 0; 128 d->MajorVersion = 0; 129 d->MinorVersion = 0; 130 d->Type = debugType; 131 d->SizeOfData = size; 132 d->AddressOfRawData = rva; 133 d->PointerToRawData = offs; 134 135 timeDateStamps.push_back(&d->TimeDateStamp); 136 } 137 138 mutable std::vector<support::ulittle32_t *> timeDateStamps; 139 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records; 140 bool writeRepro; 141 const COFFLinkerContext &ctx; 142 }; 143 144 class CVDebugRecordChunk : public NonSectionChunk { 145 public: 146 CVDebugRecordChunk(const COFFLinkerContext &c) : ctx(c) {} 147 148 size_t getSize() const override { 149 return sizeof(codeview::DebugInfo) + ctx.config.pdbAltPath.size() + 1; 150 } 151 152 void writeTo(uint8_t *b) const override { 153 // Save off the DebugInfo entry to backfill the file signature (build id) 154 // in Writer::writeBuildId 155 buildId = reinterpret_cast<codeview::DebugInfo *>(b); 156 157 // variable sized field (PDB Path) 158 char *p = reinterpret_cast<char *>(b + sizeof(*buildId)); 159 if (!ctx.config.pdbAltPath.empty()) 160 memcpy(p, ctx.config.pdbAltPath.data(), ctx.config.pdbAltPath.size()); 161 p[ctx.config.pdbAltPath.size()] = '\0'; 162 } 163 164 mutable codeview::DebugInfo *buildId = nullptr; 165 166 private: 167 const COFFLinkerContext &ctx; 168 }; 169 170 class ExtendedDllCharacteristicsChunk : public NonSectionChunk { 171 public: 172 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {} 173 174 size_t getSize() const override { return 4; } 175 176 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); } 177 178 uint32_t characteristics = 0; 179 }; 180 181 // PartialSection represents a group of chunks that contribute to an 182 // OutputSection. Collating a collection of PartialSections of same name and 183 // characteristics constitutes the OutputSection. 184 class PartialSectionKey { 185 public: 186 StringRef name; 187 unsigned characteristics; 188 189 bool operator<(const PartialSectionKey &other) const { 190 int c = name.compare(other.name); 191 if (c > 0) 192 return false; 193 if (c == 0) 194 return characteristics < other.characteristics; 195 return true; 196 } 197 }; 198 199 // The writer writes a SymbolTable result to a file. 200 class Writer { 201 public: 202 Writer(COFFLinkerContext &c) 203 : buffer(errorHandler().outputBuffer), delayIdata(c), edata(c), ctx(c) {} 204 void run(); 205 206 private: 207 void createSections(); 208 void createMiscChunks(); 209 void createImportTables(); 210 void appendImportThunks(); 211 void locateImportTables(); 212 void createExportTable(); 213 void mergeSections(); 214 void removeUnusedSections(); 215 void assignAddresses(); 216 bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin); 217 std::pair<Defined *, bool> getThunk(DenseMap<uint64_t, Defined *> &lastThunks, 218 Defined *target, uint64_t p, 219 uint16_t type, int margin); 220 bool createThunks(OutputSection *os, int margin); 221 bool verifyRanges(const std::vector<Chunk *> chunks); 222 void finalizeAddresses(); 223 void removeEmptySections(); 224 void assignOutputSectionIndices(); 225 void createSymbolAndStringTable(); 226 void openFile(StringRef outputPath); 227 template <typename PEHeaderTy> void writeHeader(); 228 void createSEHTable(); 229 void createRuntimePseudoRelocs(); 230 void insertCtorDtorSymbols(); 231 void markSymbolsWithRelocations(ObjFile *file, SymbolRVASet &usedSymbols); 232 void createGuardCFTables(); 233 void markSymbolsForRVATable(ObjFile *file, 234 ArrayRef<SectionChunk *> symIdxChunks, 235 SymbolRVASet &tableSymbols); 236 void getSymbolsFromSections(ObjFile *file, 237 ArrayRef<SectionChunk *> symIdxChunks, 238 std::vector<Symbol *> &symbols); 239 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, 240 StringRef countSym, bool hasFlag=false); 241 void setSectionPermissions(); 242 void writeSections(); 243 void writeBuildId(); 244 void writePEChecksum(); 245 void sortSections(); 246 void sortExceptionTable(); 247 void sortCRTSectionChunks(std::vector<Chunk *> &chunks); 248 void addSyntheticIdata(); 249 void sortBySectionOrder(std::vector<Chunk *> &chunks); 250 void fixPartialSectionChars(StringRef name, uint32_t chars); 251 bool fixGnuImportChunks(); 252 void fixTlsAlignment(); 253 PartialSection *createPartialSection(StringRef name, uint32_t outChars); 254 PartialSection *findPartialSection(StringRef name, uint32_t outChars); 255 256 std::optional<coff_symbol16> createSymbol(Defined *d); 257 size_t addEntryToStringTable(StringRef str); 258 259 OutputSection *findSection(StringRef name); 260 void addBaserels(); 261 void addBaserelBlocks(std::vector<Baserel> &v); 262 263 uint32_t getSizeOfInitializedData(); 264 265 void checkLoadConfig(); 266 template <typename T> void checkLoadConfigGuardData(const T *loadConfig); 267 268 std::unique_ptr<FileOutputBuffer> &buffer; 269 std::map<PartialSectionKey, PartialSection *> partialSections; 270 std::vector<char> strtab; 271 std::vector<llvm::object::coff_symbol16> outputSymtab; 272 IdataContents idata; 273 Chunk *importTableStart = nullptr; 274 uint64_t importTableSize = 0; 275 Chunk *edataStart = nullptr; 276 Chunk *edataEnd = nullptr; 277 Chunk *iatStart = nullptr; 278 uint64_t iatSize = 0; 279 DelayLoadContents delayIdata; 280 EdataContents edata; 281 bool setNoSEHCharacteristic = false; 282 uint32_t tlsAlignment = 0; 283 284 DebugDirectoryChunk *debugDirectory = nullptr; 285 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords; 286 CVDebugRecordChunk *buildId = nullptr; 287 ArrayRef<uint8_t> sectionTable; 288 289 uint64_t fileSize; 290 uint32_t pointerToSymbolTable = 0; 291 uint64_t sizeOfImage; 292 uint64_t sizeOfHeaders; 293 294 OutputSection *textSec; 295 OutputSection *rdataSec; 296 OutputSection *buildidSec; 297 OutputSection *dataSec; 298 OutputSection *pdataSec; 299 OutputSection *idataSec; 300 OutputSection *edataSec; 301 OutputSection *didatSec; 302 OutputSection *rsrcSec; 303 OutputSection *relocSec; 304 OutputSection *ctorsSec; 305 OutputSection *dtorsSec; 306 307 // The first and last .pdata sections in the output file. 308 // 309 // We need to keep track of the location of .pdata in whichever section it 310 // gets merged into so that we can sort its contents and emit a correct data 311 // directory entry for the exception table. This is also the case for some 312 // other sections (such as .edata) but because the contents of those sections 313 // are entirely linker-generated we can keep track of their locations using 314 // the chunks that the linker creates. All .pdata chunks come from input 315 // files, so we need to keep track of them separately. 316 Chunk *firstPdata = nullptr; 317 Chunk *lastPdata; 318 319 COFFLinkerContext &ctx; 320 }; 321 } // anonymous namespace 322 323 void lld::coff::writeResult(COFFLinkerContext &ctx) { Writer(ctx).run(); } 324 325 void OutputSection::addChunk(Chunk *c) { 326 chunks.push_back(c); 327 } 328 329 void OutputSection::insertChunkAtStart(Chunk *c) { 330 chunks.insert(chunks.begin(), c); 331 } 332 333 void OutputSection::setPermissions(uint32_t c) { 334 header.Characteristics &= ~permMask; 335 header.Characteristics |= c; 336 } 337 338 void OutputSection::merge(OutputSection *other) { 339 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end()); 340 other->chunks.clear(); 341 contribSections.insert(contribSections.end(), other->contribSections.begin(), 342 other->contribSections.end()); 343 other->contribSections.clear(); 344 } 345 346 // Write the section header to a given buffer. 347 void OutputSection::writeHeaderTo(uint8_t *buf, bool isDebug) { 348 auto *hdr = reinterpret_cast<coff_section *>(buf); 349 *hdr = header; 350 if (stringTableOff) { 351 // If name is too long, write offset into the string table as a name. 352 encodeSectionName(hdr->Name, stringTableOff); 353 } else { 354 assert(!isDebug || name.size() <= COFF::NameSize || 355 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0); 356 strncpy(hdr->Name, name.data(), 357 std::min(name.size(), (size_t)COFF::NameSize)); 358 } 359 } 360 361 void OutputSection::addContributingPartialSection(PartialSection *sec) { 362 contribSections.push_back(sec); 363 } 364 365 // Check whether the target address S is in range from a relocation 366 // of type relType at address P. 367 bool Writer::isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) { 368 if (ctx.config.machine == ARMNT) { 369 int64_t diff = AbsoluteDifference(s, p + 4) + margin; 370 switch (relType) { 371 case IMAGE_REL_ARM_BRANCH20T: 372 return isInt<21>(diff); 373 case IMAGE_REL_ARM_BRANCH24T: 374 case IMAGE_REL_ARM_BLX23T: 375 return isInt<25>(diff); 376 default: 377 return true; 378 } 379 } else if (ctx.config.machine == ARM64) { 380 int64_t diff = AbsoluteDifference(s, p) + margin; 381 switch (relType) { 382 case IMAGE_REL_ARM64_BRANCH26: 383 return isInt<28>(diff); 384 case IMAGE_REL_ARM64_BRANCH19: 385 return isInt<21>(diff); 386 case IMAGE_REL_ARM64_BRANCH14: 387 return isInt<16>(diff); 388 default: 389 return true; 390 } 391 } else { 392 llvm_unreachable("Unexpected architecture"); 393 } 394 } 395 396 // Return the last thunk for the given target if it is in range, 397 // or create a new one. 398 std::pair<Defined *, bool> 399 Writer::getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, 400 uint64_t p, uint16_t type, int margin) { 401 Defined *&lastThunk = lastThunks[target->getRVA()]; 402 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin)) 403 return {lastThunk, false}; 404 Chunk *c; 405 switch (ctx.config.machine) { 406 case ARMNT: 407 c = make<RangeExtensionThunkARM>(ctx, target); 408 break; 409 case ARM64: 410 c = make<RangeExtensionThunkARM64>(ctx, target); 411 break; 412 default: 413 llvm_unreachable("Unexpected architecture"); 414 } 415 Defined *d = make<DefinedSynthetic>("range_extension_thunk", c); 416 lastThunk = d; 417 return {d, true}; 418 } 419 420 // This checks all relocations, and for any relocation which isn't in range 421 // it adds a thunk after the section chunk that contains the relocation. 422 // If the latest thunk for the specific target is in range, that is used 423 // instead of creating a new thunk. All range checks are done with the 424 // specified margin, to make sure that relocations that originally are in 425 // range, but only barely, also get thunks - in case other added thunks makes 426 // the target go out of range. 427 // 428 // After adding thunks, we verify that all relocations are in range (with 429 // no extra margin requirements). If this failed, we restart (throwing away 430 // the previously created thunks) and retry with a wider margin. 431 bool Writer::createThunks(OutputSection *os, int margin) { 432 bool addressesChanged = false; 433 DenseMap<uint64_t, Defined *> lastThunks; 434 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices; 435 size_t thunksSize = 0; 436 // Recheck Chunks.size() each iteration, since we can insert more 437 // elements into it. 438 for (size_t i = 0; i != os->chunks.size(); ++i) { 439 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]); 440 if (!sc) 441 continue; 442 size_t thunkInsertionSpot = i + 1; 443 444 // Try to get a good enough estimate of where new thunks will be placed. 445 // Offset this by the size of the new thunks added so far, to make the 446 // estimate slightly better. 447 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize; 448 ObjFile *file = sc->file; 449 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements; 450 ArrayRef<coff_relocation> originalRelocs = 451 file->getCOFFObj()->getRelocations(sc->header); 452 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) { 453 const coff_relocation &rel = originalRelocs[j]; 454 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex); 455 456 // The estimate of the source address P should be pretty accurate, 457 // but we don't know whether the target Symbol address should be 458 // offset by thunksSize or not (or by some of thunksSize but not all of 459 // it), giving us some uncertainty once we have added one thunk. 460 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize; 461 462 Defined *sym = dyn_cast_or_null<Defined>(relocTarget); 463 if (!sym) 464 continue; 465 466 uint64_t s = sym->getRVA(); 467 468 if (isInRange(rel.Type, s, p, margin)) 469 continue; 470 471 // If the target isn't in range, hook it up to an existing or new thunk. 472 auto [thunk, wasNew] = getThunk(lastThunks, sym, p, rel.Type, margin); 473 if (wasNew) { 474 Chunk *thunkChunk = thunk->getChunk(); 475 thunkChunk->setRVA( 476 thunkInsertionRVA); // Estimate of where it will be located. 477 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk); 478 thunkInsertionSpot++; 479 thunksSize += thunkChunk->getSize(); 480 thunkInsertionRVA += thunkChunk->getSize(); 481 addressesChanged = true; 482 } 483 484 // To redirect the relocation, add a symbol to the parent object file's 485 // symbol table, and replace the relocation symbol table index with the 486 // new index. 487 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U}); 488 uint32_t &thunkSymbolIndex = insertion.first->second; 489 if (insertion.second) 490 thunkSymbolIndex = file->addRangeThunkSymbol(thunk); 491 relocReplacements.push_back({j, thunkSymbolIndex}); 492 } 493 494 // Get a writable copy of this section's relocations so they can be 495 // modified. If the relocations point into the object file, allocate new 496 // memory. Otherwise, this must be previously allocated memory that can be 497 // modified in place. 498 ArrayRef<coff_relocation> curRelocs = sc->getRelocs(); 499 MutableArrayRef<coff_relocation> newRelocs; 500 if (originalRelocs.data() == curRelocs.data()) { 501 newRelocs = MutableArrayRef( 502 bAlloc().Allocate<coff_relocation>(originalRelocs.size()), 503 originalRelocs.size()); 504 } else { 505 newRelocs = MutableArrayRef( 506 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size()); 507 } 508 509 // Copy each relocation, but replace the symbol table indices which need 510 // thunks. 511 auto nextReplacement = relocReplacements.begin(); 512 auto endReplacement = relocReplacements.end(); 513 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) { 514 newRelocs[i] = originalRelocs[i]; 515 if (nextReplacement != endReplacement && nextReplacement->first == i) { 516 newRelocs[i].SymbolTableIndex = nextReplacement->second; 517 ++nextReplacement; 518 } 519 } 520 521 sc->setRelocs(newRelocs); 522 } 523 return addressesChanged; 524 } 525 526 // Verify that all relocations are in range, with no extra margin requirements. 527 bool Writer::verifyRanges(const std::vector<Chunk *> chunks) { 528 for (Chunk *c : chunks) { 529 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c); 530 if (!sc) 531 continue; 532 533 ArrayRef<coff_relocation> relocs = sc->getRelocs(); 534 for (size_t j = 0, e = relocs.size(); j < e; ++j) { 535 const coff_relocation &rel = relocs[j]; 536 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex); 537 538 Defined *sym = dyn_cast_or_null<Defined>(relocTarget); 539 if (!sym) 540 continue; 541 542 uint64_t p = sc->getRVA() + rel.VirtualAddress; 543 uint64_t s = sym->getRVA(); 544 545 if (!isInRange(rel.Type, s, p, 0)) 546 return false; 547 } 548 } 549 return true; 550 } 551 552 // Assign addresses and add thunks if necessary. 553 void Writer::finalizeAddresses() { 554 assignAddresses(); 555 if (ctx.config.machine != ARMNT && ctx.config.machine != ARM64) 556 return; 557 558 size_t origNumChunks = 0; 559 for (OutputSection *sec : ctx.outputSections) { 560 sec->origChunks = sec->chunks; 561 origNumChunks += sec->chunks.size(); 562 } 563 564 int pass = 0; 565 int margin = 1024 * 100; 566 while (true) { 567 // First check whether we need thunks at all, or if the previous pass of 568 // adding them turned out ok. 569 bool rangesOk = true; 570 size_t numChunks = 0; 571 for (OutputSection *sec : ctx.outputSections) { 572 if (!verifyRanges(sec->chunks)) { 573 rangesOk = false; 574 break; 575 } 576 numChunks += sec->chunks.size(); 577 } 578 if (rangesOk) { 579 if (pass > 0) 580 log("Added " + Twine(numChunks - origNumChunks) + " thunks with " + 581 "margin " + Twine(margin) + " in " + Twine(pass) + " passes"); 582 return; 583 } 584 585 if (pass >= 10) 586 fatal("adding thunks hasn't converged after " + Twine(pass) + " passes"); 587 588 if (pass > 0) { 589 // If the previous pass didn't work out, reset everything back to the 590 // original conditions before retrying with a wider margin. This should 591 // ideally never happen under real circumstances. 592 for (OutputSection *sec : ctx.outputSections) 593 sec->chunks = sec->origChunks; 594 margin *= 2; 595 } 596 597 // Try adding thunks everywhere where it is needed, with a margin 598 // to avoid things going out of range due to the added thunks. 599 bool addressesChanged = false; 600 for (OutputSection *sec : ctx.outputSections) 601 addressesChanged |= createThunks(sec, margin); 602 // If the verification above thought we needed thunks, we should have 603 // added some. 604 assert(addressesChanged); 605 (void)addressesChanged; 606 607 // Recalculate the layout for the whole image (and verify the ranges at 608 // the start of the next round). 609 assignAddresses(); 610 611 pass++; 612 } 613 } 614 615 void Writer::writePEChecksum() { 616 if (!ctx.config.writeCheckSum) { 617 return; 618 } 619 620 // https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#checksum 621 uint32_t *buf = (uint32_t *)buffer->getBufferStart(); 622 uint32_t size = (uint32_t)(buffer->getBufferSize()); 623 624 coff_file_header *coffHeader = 625 (coff_file_header *)((uint8_t *)buf + dosStubSize + sizeof(PEMagic)); 626 pe32_header *peHeader = 627 (pe32_header *)((uint8_t *)coffHeader + sizeof(coff_file_header)); 628 629 uint64_t sum = 0; 630 uint32_t count = size; 631 ulittle16_t *addr = (ulittle16_t *)buf; 632 633 // The PE checksum algorithm, implemented as suggested in RFC1071 634 while (count > 1) { 635 sum += *addr++; 636 count -= 2; 637 } 638 639 // Add left-over byte, if any 640 if (count > 0) 641 sum += *(unsigned char *)addr; 642 643 // Fold 32-bit sum to 16 bits 644 while (sum >> 16) { 645 sum = (sum & 0xffff) + (sum >> 16); 646 } 647 648 sum += size; 649 peHeader->CheckSum = sum; 650 } 651 652 // The main function of the writer. 653 void Writer::run() { 654 ScopedTimer t1(ctx.codeLayoutTimer); 655 656 createImportTables(); 657 createSections(); 658 appendImportThunks(); 659 // Import thunks must be added before the Control Flow Guard tables are added. 660 createMiscChunks(); 661 createExportTable(); 662 mergeSections(); 663 removeUnusedSections(); 664 finalizeAddresses(); 665 removeEmptySections(); 666 assignOutputSectionIndices(); 667 setSectionPermissions(); 668 createSymbolAndStringTable(); 669 670 if (fileSize > UINT32_MAX) 671 fatal("image size (" + Twine(fileSize) + ") " + 672 "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")"); 673 674 openFile(ctx.config.outputFile); 675 if (ctx.config.is64()) { 676 writeHeader<pe32plus_header>(); 677 } else { 678 writeHeader<pe32_header>(); 679 } 680 writeSections(); 681 checkLoadConfig(); 682 sortExceptionTable(); 683 684 // Fix up the alignment in the TLS Directory's characteristic field, 685 // if a specific alignment value is needed 686 if (tlsAlignment) 687 fixTlsAlignment(); 688 689 t1.stop(); 690 691 if (!ctx.config.pdbPath.empty() && ctx.config.debug) { 692 assert(buildId); 693 createPDB(ctx, sectionTable, buildId->buildId); 694 } 695 writeBuildId(); 696 697 writeLLDMapFile(ctx); 698 writeMapFile(ctx); 699 700 writePEChecksum(); 701 702 if (errorCount()) 703 return; 704 705 ScopedTimer t2(ctx.outputCommitTimer); 706 if (auto e = buffer->commit()) 707 fatal("failed to write output '" + buffer->getPath() + 708 "': " + toString(std::move(e))); 709 } 710 711 static StringRef getOutputSectionName(StringRef name) { 712 StringRef s = name.split('$').first; 713 714 // Treat a later period as a separator for MinGW, for sections like 715 // ".ctors.01234". 716 return s.substr(0, s.find('.', 1)); 717 } 718 719 // For /order. 720 void Writer::sortBySectionOrder(std::vector<Chunk *> &chunks) { 721 auto getPriority = [&ctx = ctx](const Chunk *c) { 722 if (auto *sec = dyn_cast<SectionChunk>(c)) 723 if (sec->sym) 724 return ctx.config.order.lookup(sec->sym->getName()); 725 return 0; 726 }; 727 728 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) { 729 return getPriority(a) < getPriority(b); 730 }); 731 } 732 733 // Change the characteristics of existing PartialSections that belong to the 734 // section Name to Chars. 735 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) { 736 for (auto it : partialSections) { 737 PartialSection *pSec = it.second; 738 StringRef curName = pSec->name; 739 if (!curName.consume_front(name) || 740 (!curName.empty() && !curName.startswith("$"))) 741 continue; 742 if (pSec->characteristics == chars) 743 continue; 744 PartialSection *destSec = createPartialSection(pSec->name, chars); 745 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(), 746 pSec->chunks.end()); 747 pSec->chunks.clear(); 748 } 749 } 750 751 // Sort concrete section chunks from GNU import libraries. 752 // 753 // GNU binutils doesn't use short import files, but instead produces import 754 // libraries that consist of object files, with section chunks for the .idata$* 755 // sections. These are linked just as regular static libraries. Each import 756 // library consists of one header object, one object file for every imported 757 // symbol, and one trailer object. In order for the .idata tables/lists to 758 // be formed correctly, the section chunks within each .idata$* section need 759 // to be grouped by library, and sorted alphabetically within each library 760 // (which makes sure the header comes first and the trailer last). 761 bool Writer::fixGnuImportChunks() { 762 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 763 764 // Make sure all .idata$* section chunks are mapped as RDATA in order to 765 // be sorted into the same sections as our own synthesized .idata chunks. 766 fixPartialSectionChars(".idata", rdata); 767 768 bool hasIdata = false; 769 // Sort all .idata$* chunks, grouping chunks from the same library, 770 // with alphabetical ordering of the object files within a library. 771 for (auto it : partialSections) { 772 PartialSection *pSec = it.second; 773 if (!pSec->name.startswith(".idata")) 774 continue; 775 776 if (!pSec->chunks.empty()) 777 hasIdata = true; 778 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) { 779 SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s); 780 SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t); 781 if (!sc1 || !sc2) { 782 // if SC1, order them ascending. If SC2 or both null, 783 // S is not less than T. 784 return sc1 != nullptr; 785 } 786 // Make a string with "libraryname/objectfile" for sorting, achieving 787 // both grouping by library and sorting of objects within a library, 788 // at once. 789 std::string key1 = 790 (sc1->file->parentName + "/" + sc1->file->getName()).str(); 791 std::string key2 = 792 (sc2->file->parentName + "/" + sc2->file->getName()).str(); 793 return key1 < key2; 794 }); 795 } 796 return hasIdata; 797 } 798 799 // Add generated idata chunks, for imported symbols and DLLs, and a 800 // terminator in .idata$2. 801 void Writer::addSyntheticIdata() { 802 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 803 idata.create(ctx); 804 805 // Add the .idata content in the right section groups, to allow 806 // chunks from other linked in object files to be grouped together. 807 // See Microsoft PE/COFF spec 5.4 for details. 808 auto add = [&](StringRef n, std::vector<Chunk *> &v) { 809 PartialSection *pSec = createPartialSection(n, rdata); 810 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end()); 811 }; 812 813 // The loader assumes a specific order of data. 814 // Add each type in the correct order. 815 add(".idata$2", idata.dirs); 816 add(".idata$4", idata.lookups); 817 add(".idata$5", idata.addresses); 818 if (!idata.hints.empty()) 819 add(".idata$6", idata.hints); 820 add(".idata$7", idata.dllNames); 821 } 822 823 // Locate the first Chunk and size of the import directory list and the 824 // IAT. 825 void Writer::locateImportTables() { 826 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 827 828 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) { 829 if (!importDirs->chunks.empty()) 830 importTableStart = importDirs->chunks.front(); 831 for (Chunk *c : importDirs->chunks) 832 importTableSize += c->getSize(); 833 } 834 835 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) { 836 if (!importAddresses->chunks.empty()) 837 iatStart = importAddresses->chunks.front(); 838 for (Chunk *c : importAddresses->chunks) 839 iatSize += c->getSize(); 840 } 841 } 842 843 // Return whether a SectionChunk's suffix (the dollar and any trailing 844 // suffix) should be removed and sorted into the main suffixless 845 // PartialSection. 846 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name, 847 bool isMinGW) { 848 // On MinGW, comdat groups are formed by putting the comdat group name 849 // after the '$' in the section name. For .eh_frame$<symbol>, that must 850 // still be sorted before the .eh_frame trailer from crtend.o, thus just 851 // strip the section name trailer. For other sections, such as 852 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in 853 // ".tls$"), they must be strictly sorted after .tls. And for the 854 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the 855 // suffix for sorting. Thus, to play it safe, only strip the suffix for 856 // the standard sections. 857 if (!isMinGW) 858 return false; 859 if (!sc || !sc->isCOMDAT()) 860 return false; 861 return name.startswith(".text$") || name.startswith(".data$") || 862 name.startswith(".rdata$") || name.startswith(".pdata$") || 863 name.startswith(".xdata$") || name.startswith(".eh_frame$"); 864 } 865 866 void Writer::sortSections() { 867 if (!ctx.config.callGraphProfile.empty()) { 868 DenseMap<const SectionChunk *, int> order = 869 computeCallGraphProfileOrder(ctx); 870 for (auto it : order) { 871 if (DefinedRegular *sym = it.first->sym) 872 ctx.config.order[sym->getName()] = it.second; 873 } 874 } 875 if (!ctx.config.order.empty()) 876 for (auto it : partialSections) 877 sortBySectionOrder(it.second->chunks); 878 } 879 880 // Create output section objects and add them to OutputSections. 881 void Writer::createSections() { 882 // First, create the builtin sections. 883 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA; 884 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA; 885 const uint32_t code = IMAGE_SCN_CNT_CODE; 886 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE; 887 const uint32_t r = IMAGE_SCN_MEM_READ; 888 const uint32_t w = IMAGE_SCN_MEM_WRITE; 889 const uint32_t x = IMAGE_SCN_MEM_EXECUTE; 890 891 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections; 892 auto createSection = [&](StringRef name, uint32_t outChars) { 893 OutputSection *&sec = sections[{name, outChars}]; 894 if (!sec) { 895 sec = make<OutputSection>(name, outChars); 896 ctx.outputSections.push_back(sec); 897 } 898 return sec; 899 }; 900 901 // Try to match the section order used by link.exe. 902 textSec = createSection(".text", code | r | x); 903 createSection(".bss", bss | r | w); 904 rdataSec = createSection(".rdata", data | r); 905 buildidSec = createSection(".buildid", data | r); 906 dataSec = createSection(".data", data | r | w); 907 pdataSec = createSection(".pdata", data | r); 908 idataSec = createSection(".idata", data | r); 909 edataSec = createSection(".edata", data | r); 910 didatSec = createSection(".didat", data | r); 911 rsrcSec = createSection(".rsrc", data | r); 912 relocSec = createSection(".reloc", data | discardable | r); 913 ctorsSec = createSection(".ctors", data | r | w); 914 dtorsSec = createSection(".dtors", data | r | w); 915 916 // Then bin chunks by name and output characteristics. 917 for (Chunk *c : ctx.symtab.getChunks()) { 918 auto *sc = dyn_cast<SectionChunk>(c); 919 if (sc && !sc->live) { 920 if (ctx.config.verbose) 921 sc->printDiscardedMessage(); 922 continue; 923 } 924 StringRef name = c->getSectionName(); 925 if (shouldStripSectionSuffix(sc, name, ctx.config.mingw)) 926 name = name.split('$').first; 927 928 if (name.startswith(".tls")) 929 tlsAlignment = std::max(tlsAlignment, c->getAlignment()); 930 931 PartialSection *pSec = createPartialSection(name, 932 c->getOutputCharacteristics()); 933 pSec->chunks.push_back(c); 934 } 935 936 fixPartialSectionChars(".rsrc", data | r); 937 fixPartialSectionChars(".edata", data | r); 938 // Even in non MinGW cases, we might need to link against GNU import 939 // libraries. 940 bool hasIdata = fixGnuImportChunks(); 941 if (!idata.empty()) 942 hasIdata = true; 943 944 if (hasIdata) 945 addSyntheticIdata(); 946 947 sortSections(); 948 949 if (hasIdata) 950 locateImportTables(); 951 952 // Then create an OutputSection for each section. 953 // '$' and all following characters in input section names are 954 // discarded when determining output section. So, .text$foo 955 // contributes to .text, for example. See PE/COFF spec 3.2. 956 for (auto it : partialSections) { 957 PartialSection *pSec = it.second; 958 StringRef name = getOutputSectionName(pSec->name); 959 uint32_t outChars = pSec->characteristics; 960 961 if (name == ".CRT") { 962 // In link.exe, there is a special case for the I386 target where .CRT 963 // sections are treated as if they have output characteristics DATA | R if 964 // their characteristics are DATA | R | W. This implements the same 965 // special case for all architectures. 966 outChars = data | r; 967 968 log("Processing section " + pSec->name + " -> " + name); 969 970 sortCRTSectionChunks(pSec->chunks); 971 } 972 973 OutputSection *sec = createSection(name, outChars); 974 for (Chunk *c : pSec->chunks) 975 sec->addChunk(c); 976 977 sec->addContributingPartialSection(pSec); 978 } 979 980 // Finally, move some output sections to the end. 981 auto sectionOrder = [&](const OutputSection *s) { 982 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file 983 // because the loader cannot handle holes. Stripping can remove other 984 // discardable ones than .reloc, which is first of them (created early). 985 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) { 986 // Move discardable sections named .debug_ to the end, after other 987 // discardable sections. Stripping only removes the sections named 988 // .debug_* - thus try to avoid leaving holes after stripping. 989 if (s->name.startswith(".debug_")) 990 return 3; 991 return 2; 992 } 993 // .rsrc should come at the end of the non-discardable sections because its 994 // size may change by the Win32 UpdateResources() function, causing 995 // subsequent sections to move (see https://crbug.com/827082). 996 if (s == rsrcSec) 997 return 1; 998 return 0; 999 }; 1000 llvm::stable_sort(ctx.outputSections, 1001 [&](const OutputSection *s, const OutputSection *t) { 1002 return sectionOrder(s) < sectionOrder(t); 1003 }); 1004 } 1005 1006 void Writer::createMiscChunks() { 1007 Configuration *config = &ctx.config; 1008 1009 for (MergeChunk *p : ctx.mergeChunkInstances) { 1010 if (p) { 1011 p->finalizeContents(); 1012 rdataSec->addChunk(p); 1013 } 1014 } 1015 1016 // Create thunks for locally-dllimported symbols. 1017 if (!ctx.symtab.localImportChunks.empty()) { 1018 for (Chunk *c : ctx.symtab.localImportChunks) 1019 rdataSec->addChunk(c); 1020 } 1021 1022 // Create Debug Information Chunks 1023 OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec; 1024 if (config->debug || config->repro || config->cetCompat) { 1025 debugDirectory = 1026 make<DebugDirectoryChunk>(ctx, debugRecords, config->repro); 1027 debugDirectory->setAlignment(4); 1028 debugInfoSec->addChunk(debugDirectory); 1029 } 1030 1031 if (config->debug) { 1032 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We 1033 // output a PDB no matter what, and this chunk provides the only means of 1034 // allowing a debugger to match a PDB and an executable. So we need it even 1035 // if we're ultimately not going to write CodeView data to the PDB. 1036 buildId = make<CVDebugRecordChunk>(ctx); 1037 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId}); 1038 } 1039 1040 if (config->cetCompat) { 1041 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS, 1042 make<ExtendedDllCharacteristicsChunk>( 1043 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)}); 1044 } 1045 1046 // Align and add each chunk referenced by the debug data directory. 1047 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) { 1048 r.second->setAlignment(4); 1049 debugInfoSec->addChunk(r.second); 1050 } 1051 1052 // Create SEH table. x86-only. 1053 if (config->safeSEH) 1054 createSEHTable(); 1055 1056 // Create /guard:cf tables if requested. 1057 if (config->guardCF != GuardCFLevel::Off) 1058 createGuardCFTables(); 1059 1060 if (config->autoImport) 1061 createRuntimePseudoRelocs(); 1062 1063 if (config->mingw) 1064 insertCtorDtorSymbols(); 1065 } 1066 1067 // Create .idata section for the DLL-imported symbol table. 1068 // The format of this section is inherently Windows-specific. 1069 // IdataContents class abstracted away the details for us, 1070 // so we just let it create chunks and add them to the section. 1071 void Writer::createImportTables() { 1072 // Initialize DLLOrder so that import entries are ordered in 1073 // the same order as in the command line. (That affects DLL 1074 // initialization order, and this ordering is MSVC-compatible.) 1075 for (ImportFile *file : ctx.importFileInstances) { 1076 if (!file->live) 1077 continue; 1078 1079 std::string dll = StringRef(file->dllName).lower(); 1080 if (ctx.config.dllOrder.count(dll) == 0) 1081 ctx.config.dllOrder[dll] = ctx.config.dllOrder.size(); 1082 1083 if (file->impSym && !isa<DefinedImportData>(file->impSym)) 1084 fatal(toString(ctx, *file->impSym) + " was replaced"); 1085 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym); 1086 if (ctx.config.delayLoads.count(StringRef(file->dllName).lower())) { 1087 if (!file->thunkSym) 1088 fatal("cannot delay-load " + toString(file) + 1089 " due to import of data: " + toString(ctx, *impSym)); 1090 delayIdata.add(impSym); 1091 } else { 1092 idata.add(impSym); 1093 } 1094 } 1095 } 1096 1097 void Writer::appendImportThunks() { 1098 if (ctx.importFileInstances.empty()) 1099 return; 1100 1101 for (ImportFile *file : ctx.importFileInstances) { 1102 if (!file->live) 1103 continue; 1104 1105 if (!file->thunkSym) 1106 continue; 1107 1108 if (!isa<DefinedImportThunk>(file->thunkSym)) 1109 fatal(toString(ctx, *file->thunkSym) + " was replaced"); 1110 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym); 1111 if (file->thunkLive) 1112 textSec->addChunk(thunk->getChunk()); 1113 } 1114 1115 if (!delayIdata.empty()) { 1116 Defined *helper = cast<Defined>(ctx.config.delayLoadHelper); 1117 delayIdata.create(helper); 1118 for (Chunk *c : delayIdata.getChunks()) 1119 didatSec->addChunk(c); 1120 for (Chunk *c : delayIdata.getDataChunks()) 1121 dataSec->addChunk(c); 1122 for (Chunk *c : delayIdata.getCodeChunks()) 1123 textSec->addChunk(c); 1124 for (Chunk *c : delayIdata.getCodePData()) 1125 pdataSec->addChunk(c); 1126 for (Chunk *c : delayIdata.getCodeUnwindInfo()) 1127 rdataSec->addChunk(c); 1128 } 1129 } 1130 1131 void Writer::createExportTable() { 1132 if (!edataSec->chunks.empty()) { 1133 // Allow using a custom built export table from input object files, instead 1134 // of having the linker synthesize the tables. 1135 if (ctx.config.hadExplicitExports) 1136 warn("literal .edata sections override exports"); 1137 } else if (!ctx.config.exports.empty()) { 1138 for (Chunk *c : edata.chunks) 1139 edataSec->addChunk(c); 1140 } 1141 if (!edataSec->chunks.empty()) { 1142 edataStart = edataSec->chunks.front(); 1143 edataEnd = edataSec->chunks.back(); 1144 } 1145 // Warn on exported deleting destructor. 1146 for (auto e : ctx.config.exports) 1147 if (e.sym && e.sym->getName().startswith("??_G")) 1148 warn("export of deleting dtor: " + toString(ctx, *e.sym)); 1149 } 1150 1151 void Writer::removeUnusedSections() { 1152 // Remove sections that we can be sure won't get content, to avoid 1153 // allocating space for their section headers. 1154 auto isUnused = [this](OutputSection *s) { 1155 if (s == relocSec) 1156 return false; // This section is populated later. 1157 // MergeChunks have zero size at this point, as their size is finalized 1158 // later. Only remove sections that have no Chunks at all. 1159 return s->chunks.empty(); 1160 }; 1161 llvm::erase_if(ctx.outputSections, isUnused); 1162 } 1163 1164 // The Windows loader doesn't seem to like empty sections, 1165 // so we remove them if any. 1166 void Writer::removeEmptySections() { 1167 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; }; 1168 llvm::erase_if(ctx.outputSections, isEmpty); 1169 } 1170 1171 void Writer::assignOutputSectionIndices() { 1172 // Assign final output section indices, and assign each chunk to its output 1173 // section. 1174 uint32_t idx = 1; 1175 for (OutputSection *os : ctx.outputSections) { 1176 os->sectionIndex = idx; 1177 for (Chunk *c : os->chunks) 1178 c->setOutputSectionIdx(idx); 1179 ++idx; 1180 } 1181 1182 // Merge chunks are containers of chunks, so assign those an output section 1183 // too. 1184 for (MergeChunk *mc : ctx.mergeChunkInstances) 1185 if (mc) 1186 for (SectionChunk *sc : mc->sections) 1187 if (sc && sc->live) 1188 sc->setOutputSectionIdx(mc->getOutputSectionIdx()); 1189 } 1190 1191 size_t Writer::addEntryToStringTable(StringRef str) { 1192 assert(str.size() > COFF::NameSize); 1193 size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field 1194 strtab.insert(strtab.end(), str.begin(), str.end()); 1195 strtab.push_back('\0'); 1196 return offsetOfEntry; 1197 } 1198 1199 std::optional<coff_symbol16> Writer::createSymbol(Defined *def) { 1200 coff_symbol16 sym; 1201 switch (def->kind()) { 1202 case Symbol::DefinedAbsoluteKind: { 1203 auto *da = dyn_cast<DefinedAbsolute>(def); 1204 // Note: COFF symbol can only store 32-bit values, so 64-bit absolute 1205 // values will be truncated. 1206 sym.Value = da->getVA(); 1207 sym.SectionNumber = IMAGE_SYM_ABSOLUTE; 1208 break; 1209 } 1210 default: { 1211 // Don't write symbols that won't be written to the output to the symbol 1212 // table. 1213 // We also try to write DefinedSynthetic as a normal symbol. Some of these 1214 // symbols do point to an actual chunk, like __safe_se_handler_table. Others 1215 // like __ImageBase are outside of sections and thus cannot be represented. 1216 Chunk *c = def->getChunk(); 1217 if (!c) 1218 return std::nullopt; 1219 OutputSection *os = ctx.getOutputSection(c); 1220 if (!os) 1221 return std::nullopt; 1222 1223 sym.Value = def->getRVA() - os->getRVA(); 1224 sym.SectionNumber = os->sectionIndex; 1225 break; 1226 } 1227 } 1228 1229 // Symbols that are runtime pseudo relocations don't point to the actual 1230 // symbol data itself (as they are imported), but points to the IAT entry 1231 // instead. Avoid emitting them to the symbol table, as they can confuse 1232 // debuggers. 1233 if (def->isRuntimePseudoReloc) 1234 return std::nullopt; 1235 1236 StringRef name = def->getName(); 1237 if (name.size() > COFF::NameSize) { 1238 sym.Name.Offset.Zeroes = 0; 1239 sym.Name.Offset.Offset = addEntryToStringTable(name); 1240 } else { 1241 memset(sym.Name.ShortName, 0, COFF::NameSize); 1242 memcpy(sym.Name.ShortName, name.data(), name.size()); 1243 } 1244 1245 if (auto *d = dyn_cast<DefinedCOFF>(def)) { 1246 COFFSymbolRef ref = d->getCOFFSymbol(); 1247 sym.Type = ref.getType(); 1248 sym.StorageClass = ref.getStorageClass(); 1249 } else if (def->kind() == Symbol::DefinedImportThunkKind) { 1250 sym.Type = (IMAGE_SYM_DTYPE_FUNCTION << SCT_COMPLEX_TYPE_SHIFT) | 1251 IMAGE_SYM_TYPE_NULL; 1252 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL; 1253 } else { 1254 sym.Type = IMAGE_SYM_TYPE_NULL; 1255 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL; 1256 } 1257 sym.NumberOfAuxSymbols = 0; 1258 return sym; 1259 } 1260 1261 void Writer::createSymbolAndStringTable() { 1262 // PE/COFF images are limited to 8 byte section names. Longer names can be 1263 // supported by writing a non-standard string table, but this string table is 1264 // not mapped at runtime and the long names will therefore be inaccessible. 1265 // link.exe always truncates section names to 8 bytes, whereas binutils always 1266 // preserves long section names via the string table. LLD adopts a hybrid 1267 // solution where discardable sections have long names preserved and 1268 // non-discardable sections have their names truncated, to ensure that any 1269 // section which is mapped at runtime also has its name mapped at runtime. 1270 for (OutputSection *sec : ctx.outputSections) { 1271 if (sec->name.size() <= COFF::NameSize) 1272 continue; 1273 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0) 1274 continue; 1275 if (ctx.config.warnLongSectionNames) { 1276 warn("section name " + sec->name + 1277 " is longer than 8 characters and will use a non-standard string " 1278 "table"); 1279 } 1280 sec->setStringTableOff(addEntryToStringTable(sec->name)); 1281 } 1282 1283 if (ctx.config.debugDwarf || ctx.config.debugSymtab) { 1284 for (ObjFile *file : ctx.objFileInstances) { 1285 for (Symbol *b : file->getSymbols()) { 1286 auto *d = dyn_cast_or_null<Defined>(b); 1287 if (!d || d->writtenToSymtab) 1288 continue; 1289 d->writtenToSymtab = true; 1290 if (auto *dc = dyn_cast_or_null<DefinedCOFF>(d)) { 1291 COFFSymbolRef symRef = dc->getCOFFSymbol(); 1292 if (symRef.isSectionDefinition() || 1293 symRef.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL) 1294 continue; 1295 } 1296 1297 if (std::optional<coff_symbol16> sym = createSymbol(d)) 1298 outputSymtab.push_back(*sym); 1299 1300 if (auto *dthunk = dyn_cast<DefinedImportThunk>(d)) { 1301 if (!dthunk->wrappedSym->writtenToSymtab) { 1302 dthunk->wrappedSym->writtenToSymtab = true; 1303 if (std::optional<coff_symbol16> sym = 1304 createSymbol(dthunk->wrappedSym)) 1305 outputSymtab.push_back(*sym); 1306 } 1307 } 1308 } 1309 } 1310 } 1311 1312 if (outputSymtab.empty() && strtab.empty()) 1313 return; 1314 1315 // We position the symbol table to be adjacent to the end of the last section. 1316 uint64_t fileOff = fileSize; 1317 pointerToSymbolTable = fileOff; 1318 fileOff += outputSymtab.size() * sizeof(coff_symbol16); 1319 fileOff += 4 + strtab.size(); 1320 fileSize = alignTo(fileOff, ctx.config.fileAlign); 1321 } 1322 1323 void Writer::mergeSections() { 1324 if (!pdataSec->chunks.empty()) { 1325 firstPdata = pdataSec->chunks.front(); 1326 lastPdata = pdataSec->chunks.back(); 1327 } 1328 1329 for (auto &p : ctx.config.merge) { 1330 StringRef toName = p.second; 1331 if (p.first == toName) 1332 continue; 1333 StringSet<> names; 1334 while (true) { 1335 if (!names.insert(toName).second) 1336 fatal("/merge: cycle found for section '" + p.first + "'"); 1337 auto i = ctx.config.merge.find(toName); 1338 if (i == ctx.config.merge.end()) 1339 break; 1340 toName = i->second; 1341 } 1342 OutputSection *from = findSection(p.first); 1343 OutputSection *to = findSection(toName); 1344 if (!from) 1345 continue; 1346 if (!to) { 1347 from->name = toName; 1348 continue; 1349 } 1350 to->merge(from); 1351 } 1352 } 1353 1354 // Visits all sections to assign incremental, non-overlapping RVAs and 1355 // file offsets. 1356 void Writer::assignAddresses() { 1357 Configuration *config = &ctx.config; 1358 1359 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) + 1360 sizeof(data_directory) * numberOfDataDirectory + 1361 sizeof(coff_section) * ctx.outputSections.size(); 1362 sizeOfHeaders += 1363 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header); 1364 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign); 1365 fileSize = sizeOfHeaders; 1366 1367 // The first page is kept unmapped. 1368 uint64_t rva = alignTo(sizeOfHeaders, config->align); 1369 1370 for (OutputSection *sec : ctx.outputSections) { 1371 if (sec == relocSec) 1372 addBaserels(); 1373 uint64_t rawSize = 0, virtualSize = 0; 1374 sec->header.VirtualAddress = rva; 1375 1376 // If /FUNCTIONPADMIN is used, functions are padded in order to create a 1377 // hotpatchable image. 1378 const bool isCodeSection = 1379 (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) && 1380 (sec->header.Characteristics & IMAGE_SCN_MEM_READ) && 1381 (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE); 1382 uint32_t padding = isCodeSection ? config->functionPadMin : 0; 1383 1384 for (Chunk *c : sec->chunks) { 1385 if (padding && c->isHotPatchable()) 1386 virtualSize += padding; 1387 virtualSize = alignTo(virtualSize, c->getAlignment()); 1388 c->setRVA(rva + virtualSize); 1389 virtualSize += c->getSize(); 1390 if (c->hasData) 1391 rawSize = alignTo(virtualSize, config->fileAlign); 1392 } 1393 if (virtualSize > UINT32_MAX) 1394 error("section larger than 4 GiB: " + sec->name); 1395 sec->header.VirtualSize = virtualSize; 1396 sec->header.SizeOfRawData = rawSize; 1397 if (rawSize != 0) 1398 sec->header.PointerToRawData = fileSize; 1399 rva += alignTo(virtualSize, config->align); 1400 fileSize += alignTo(rawSize, config->fileAlign); 1401 } 1402 sizeOfImage = alignTo(rva, config->align); 1403 1404 // Assign addresses to sections in MergeChunks. 1405 for (MergeChunk *mc : ctx.mergeChunkInstances) 1406 if (mc) 1407 mc->assignSubsectionRVAs(); 1408 } 1409 1410 template <typename PEHeaderTy> void Writer::writeHeader() { 1411 // Write DOS header. For backwards compatibility, the first part of a PE/COFF 1412 // executable consists of an MS-DOS MZ executable. If the executable is run 1413 // under DOS, that program gets run (usually to just print an error message). 1414 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses 1415 // the PE header instead. 1416 Configuration *config = &ctx.config; 1417 uint8_t *buf = buffer->getBufferStart(); 1418 auto *dos = reinterpret_cast<dos_header *>(buf); 1419 buf += sizeof(dos_header); 1420 dos->Magic[0] = 'M'; 1421 dos->Magic[1] = 'Z'; 1422 dos->UsedBytesInTheLastPage = dosStubSize % 512; 1423 dos->FileSizeInPages = divideCeil(dosStubSize, 512); 1424 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16; 1425 1426 dos->AddressOfRelocationTable = sizeof(dos_header); 1427 dos->AddressOfNewExeHeader = dosStubSize; 1428 1429 // Write DOS program. 1430 memcpy(buf, dosProgram, sizeof(dosProgram)); 1431 buf += sizeof(dosProgram); 1432 1433 // Write PE magic 1434 memcpy(buf, PEMagic, sizeof(PEMagic)); 1435 buf += sizeof(PEMagic); 1436 1437 // Write COFF header 1438 auto *coff = reinterpret_cast<coff_file_header *>(buf); 1439 buf += sizeof(*coff); 1440 coff->Machine = config->machine; 1441 coff->NumberOfSections = ctx.outputSections.size(); 1442 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE; 1443 if (config->largeAddressAware) 1444 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE; 1445 if (!config->is64()) 1446 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE; 1447 if (config->dll) 1448 coff->Characteristics |= IMAGE_FILE_DLL; 1449 if (config->driverUponly) 1450 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY; 1451 if (!config->relocatable) 1452 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED; 1453 if (config->swaprunCD) 1454 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP; 1455 if (config->swaprunNet) 1456 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP; 1457 coff->SizeOfOptionalHeader = 1458 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory; 1459 1460 // Write PE header 1461 auto *pe = reinterpret_cast<PEHeaderTy *>(buf); 1462 buf += sizeof(*pe); 1463 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32; 1464 1465 // If {Major,Minor}LinkerVersion is left at 0.0, then for some 1466 // reason signing the resulting PE file with Authenticode produces a 1467 // signature that fails to validate on Windows 7 (but is OK on 10). 1468 // Set it to 14.0, which is what VS2015 outputs, and which avoids 1469 // that problem. 1470 pe->MajorLinkerVersion = 14; 1471 pe->MinorLinkerVersion = 0; 1472 1473 pe->ImageBase = config->imageBase; 1474 pe->SectionAlignment = config->align; 1475 pe->FileAlignment = config->fileAlign; 1476 pe->MajorImageVersion = config->majorImageVersion; 1477 pe->MinorImageVersion = config->minorImageVersion; 1478 pe->MajorOperatingSystemVersion = config->majorOSVersion; 1479 pe->MinorOperatingSystemVersion = config->minorOSVersion; 1480 pe->MajorSubsystemVersion = config->majorSubsystemVersion; 1481 pe->MinorSubsystemVersion = config->minorSubsystemVersion; 1482 pe->Subsystem = config->subsystem; 1483 pe->SizeOfImage = sizeOfImage; 1484 pe->SizeOfHeaders = sizeOfHeaders; 1485 if (!config->noEntry) { 1486 Defined *entry = cast<Defined>(config->entry); 1487 pe->AddressOfEntryPoint = entry->getRVA(); 1488 // Pointer to thumb code must have the LSB set, so adjust it. 1489 if (config->machine == ARMNT) 1490 pe->AddressOfEntryPoint |= 1; 1491 } 1492 pe->SizeOfStackReserve = config->stackReserve; 1493 pe->SizeOfStackCommit = config->stackCommit; 1494 pe->SizeOfHeapReserve = config->heapReserve; 1495 pe->SizeOfHeapCommit = config->heapCommit; 1496 if (config->appContainer) 1497 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER; 1498 if (config->driverWdm) 1499 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER; 1500 if (config->dynamicBase) 1501 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE; 1502 if (config->highEntropyVA) 1503 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA; 1504 if (!config->allowBind) 1505 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND; 1506 if (config->nxCompat) 1507 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT; 1508 if (!config->allowIsolation) 1509 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION; 1510 if (config->guardCF != GuardCFLevel::Off) 1511 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF; 1512 if (config->integrityCheck) 1513 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY; 1514 if (setNoSEHCharacteristic || config->noSEH) 1515 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH; 1516 if (config->terminalServerAware) 1517 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE; 1518 pe->NumberOfRvaAndSize = numberOfDataDirectory; 1519 if (textSec->getVirtualSize()) { 1520 pe->BaseOfCode = textSec->getRVA(); 1521 pe->SizeOfCode = textSec->getRawSize(); 1522 } 1523 pe->SizeOfInitializedData = getSizeOfInitializedData(); 1524 1525 // Write data directory 1526 auto *dir = reinterpret_cast<data_directory *>(buf); 1527 buf += sizeof(*dir) * numberOfDataDirectory; 1528 if (edataStart) { 1529 dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA(); 1530 dir[EXPORT_TABLE].Size = 1531 edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA(); 1532 } 1533 if (importTableStart) { 1534 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA(); 1535 dir[IMPORT_TABLE].Size = importTableSize; 1536 } 1537 if (iatStart) { 1538 dir[IAT].RelativeVirtualAddress = iatStart->getRVA(); 1539 dir[IAT].Size = iatSize; 1540 } 1541 if (rsrcSec->getVirtualSize()) { 1542 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA(); 1543 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize(); 1544 } 1545 if (firstPdata) { 1546 dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA(); 1547 dir[EXCEPTION_TABLE].Size = 1548 lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA(); 1549 } 1550 if (relocSec->getVirtualSize()) { 1551 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA(); 1552 dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize(); 1553 } 1554 if (Symbol *sym = ctx.symtab.findUnderscore("_tls_used")) { 1555 if (Defined *b = dyn_cast<Defined>(sym)) { 1556 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA(); 1557 dir[TLS_TABLE].Size = config->is64() 1558 ? sizeof(object::coff_tls_directory64) 1559 : sizeof(object::coff_tls_directory32); 1560 } 1561 } 1562 if (debugDirectory) { 1563 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA(); 1564 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize(); 1565 } 1566 if (Symbol *sym = ctx.symtab.findUnderscore("_load_config_used")) { 1567 if (auto *b = dyn_cast<DefinedRegular>(sym)) { 1568 SectionChunk *sc = b->getChunk(); 1569 assert(b->getRVA() >= sc->getRVA()); 1570 uint64_t offsetInChunk = b->getRVA() - sc->getRVA(); 1571 if (!sc->hasData || offsetInChunk + 4 > sc->getSize()) 1572 fatal("_load_config_used is malformed"); 1573 1574 ArrayRef<uint8_t> secContents = sc->getContents(); 1575 uint32_t loadConfigSize = 1576 *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]); 1577 if (offsetInChunk + loadConfigSize > sc->getSize()) 1578 fatal("_load_config_used is too large"); 1579 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA(); 1580 dir[LOAD_CONFIG_TABLE].Size = loadConfigSize; 1581 } 1582 } 1583 if (!delayIdata.empty()) { 1584 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress = 1585 delayIdata.getDirRVA(); 1586 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize(); 1587 } 1588 1589 // Write section table 1590 for (OutputSection *sec : ctx.outputSections) { 1591 sec->writeHeaderTo(buf, config->debug); 1592 buf += sizeof(coff_section); 1593 } 1594 sectionTable = ArrayRef<uint8_t>( 1595 buf - ctx.outputSections.size() * sizeof(coff_section), buf); 1596 1597 if (outputSymtab.empty() && strtab.empty()) 1598 return; 1599 1600 coff->PointerToSymbolTable = pointerToSymbolTable; 1601 uint32_t numberOfSymbols = outputSymtab.size(); 1602 coff->NumberOfSymbols = numberOfSymbols; 1603 auto *symbolTable = reinterpret_cast<coff_symbol16 *>( 1604 buffer->getBufferStart() + coff->PointerToSymbolTable); 1605 for (size_t i = 0; i != numberOfSymbols; ++i) 1606 symbolTable[i] = outputSymtab[i]; 1607 // Create the string table, it follows immediately after the symbol table. 1608 // The first 4 bytes is length including itself. 1609 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]); 1610 write32le(buf, strtab.size() + 4); 1611 if (!strtab.empty()) 1612 memcpy(buf + 4, strtab.data(), strtab.size()); 1613 } 1614 1615 void Writer::openFile(StringRef path) { 1616 buffer = CHECK( 1617 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable), 1618 "failed to open " + path); 1619 } 1620 1621 void Writer::createSEHTable() { 1622 SymbolRVASet handlers; 1623 for (ObjFile *file : ctx.objFileInstances) { 1624 if (!file->hasSafeSEH()) 1625 error("/safeseh: " + file->getName() + " is not compatible with SEH"); 1626 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers); 1627 } 1628 1629 // Set the "no SEH" characteristic if there really were no handlers, or if 1630 // there is no load config object to point to the table of handlers. 1631 setNoSEHCharacteristic = 1632 handlers.empty() || !ctx.symtab.findUnderscore("_load_config_used"); 1633 1634 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table", 1635 "__safe_se_handler_count"); 1636 } 1637 1638 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set 1639 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the 1640 // symbol's offset into that Chunk. 1641 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) { 1642 Chunk *c = s->getChunk(); 1643 if (auto *sc = dyn_cast<SectionChunk>(c)) 1644 c = sc->repl; // Look through ICF replacement. 1645 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0); 1646 rvaSet.insert({c, off}); 1647 } 1648 1649 // Given a symbol, add it to the GFIDs table if it is a live, defined, function 1650 // symbol in an executable section. 1651 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms, 1652 Symbol *s) { 1653 if (!s) 1654 return; 1655 1656 switch (s->kind()) { 1657 case Symbol::DefinedLocalImportKind: 1658 case Symbol::DefinedImportDataKind: 1659 // Defines an __imp_ pointer, so it is data, so it is ignored. 1660 break; 1661 case Symbol::DefinedCommonKind: 1662 // Common is always data, so it is ignored. 1663 break; 1664 case Symbol::DefinedAbsoluteKind: 1665 case Symbol::DefinedSyntheticKind: 1666 // Absolute is never code, synthetic generally isn't and usually isn't 1667 // determinable. 1668 break; 1669 case Symbol::LazyArchiveKind: 1670 case Symbol::LazyObjectKind: 1671 case Symbol::LazyDLLSymbolKind: 1672 case Symbol::UndefinedKind: 1673 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy 1674 // symbols shouldn't have relocations. 1675 break; 1676 1677 case Symbol::DefinedImportThunkKind: 1678 // Thunks are always code, include them. 1679 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s)); 1680 break; 1681 1682 case Symbol::DefinedRegularKind: { 1683 // This is a regular, defined, symbol from a COFF file. Mark the symbol as 1684 // address taken if the symbol type is function and it's in an executable 1685 // section. 1686 auto *d = cast<DefinedRegular>(s); 1687 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) { 1688 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk()); 1689 if (sc && sc->live && 1690 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) 1691 addSymbolToRVASet(addressTakenSyms, d); 1692 } 1693 break; 1694 } 1695 } 1696 } 1697 1698 // Visit all relocations from all section contributions of this object file and 1699 // mark the relocation target as address-taken. 1700 void Writer::markSymbolsWithRelocations(ObjFile *file, 1701 SymbolRVASet &usedSymbols) { 1702 for (Chunk *c : file->getChunks()) { 1703 // We only care about live section chunks. Common chunks and other chunks 1704 // don't generally contain relocations. 1705 SectionChunk *sc = dyn_cast<SectionChunk>(c); 1706 if (!sc || !sc->live) 1707 continue; 1708 1709 for (const coff_relocation &reloc : sc->getRelocs()) { 1710 if (ctx.config.machine == I386 && 1711 reloc.Type == COFF::IMAGE_REL_I386_REL32) 1712 // Ignore relative relocations on x86. On x86_64 they can't be ignored 1713 // since they're also used to compute absolute addresses. 1714 continue; 1715 1716 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex); 1717 maybeAddAddressTakenFunction(usedSymbols, ref); 1718 } 1719 } 1720 } 1721 1722 // Create the guard function id table. This is a table of RVAs of all 1723 // address-taken functions. It is sorted and uniqued, just like the safe SEH 1724 // table. 1725 void Writer::createGuardCFTables() { 1726 Configuration *config = &ctx.config; 1727 1728 SymbolRVASet addressTakenSyms; 1729 SymbolRVASet giatsRVASet; 1730 std::vector<Symbol *> giatsSymbols; 1731 SymbolRVASet longJmpTargets; 1732 SymbolRVASet ehContTargets; 1733 for (ObjFile *file : ctx.objFileInstances) { 1734 // If the object was compiled with /guard:cf, the address taken symbols 1735 // are in .gfids$y sections, the longjmp targets are in .gljmp$y sections, 1736 // and ehcont targets are in .gehcont$y sections. If the object was not 1737 // compiled with /guard:cf, we assume there were no setjmp and ehcont 1738 // targets, and that all code symbols with relocations are possibly 1739 // address-taken. 1740 if (file->hasGuardCF()) { 1741 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms); 1742 markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet); 1743 getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols); 1744 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets); 1745 markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets); 1746 } else { 1747 markSymbolsWithRelocations(file, addressTakenSyms); 1748 } 1749 } 1750 1751 // Mark the image entry as address-taken. 1752 if (config->entry) 1753 maybeAddAddressTakenFunction(addressTakenSyms, config->entry); 1754 1755 // Mark exported symbols in executable sections as address-taken. 1756 for (Export &e : config->exports) 1757 maybeAddAddressTakenFunction(addressTakenSyms, e.sym); 1758 1759 // For each entry in the .giats table, check if it has a corresponding load 1760 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if 1761 // so, add the load thunk to the address taken (.gfids) table. 1762 for (Symbol *s : giatsSymbols) { 1763 if (auto *di = dyn_cast<DefinedImportData>(s)) { 1764 if (di->loadThunkSym) 1765 addSymbolToRVASet(addressTakenSyms, di->loadThunkSym); 1766 } 1767 } 1768 1769 // Ensure sections referenced in the gfid table are 16-byte aligned. 1770 for (const ChunkAndOffset &c : addressTakenSyms) 1771 if (c.inputChunk->getAlignment() < 16) 1772 c.inputChunk->setAlignment(16); 1773 1774 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table", 1775 "__guard_fids_count"); 1776 1777 // Add the Guard Address Taken IAT Entry Table (.giats). 1778 maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table", 1779 "__guard_iat_count"); 1780 1781 // Add the longjmp target table unless the user told us not to. 1782 if (config->guardCF & GuardCFLevel::LongJmp) 1783 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table", 1784 "__guard_longjmp_count"); 1785 1786 // Add the ehcont target table unless the user told us not to. 1787 if (config->guardCF & GuardCFLevel::EHCont) 1788 maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table", 1789 "__guard_eh_cont_count", true); 1790 1791 // Set __guard_flags, which will be used in the load config to indicate that 1792 // /guard:cf was enabled. 1793 uint32_t guardFlags = uint32_t(GuardFlags::CF_INSTRUMENTED) | 1794 uint32_t(GuardFlags::CF_FUNCTION_TABLE_PRESENT); 1795 if (config->guardCF & GuardCFLevel::LongJmp) 1796 guardFlags |= uint32_t(GuardFlags::CF_LONGJUMP_TABLE_PRESENT); 1797 if (config->guardCF & GuardCFLevel::EHCont) 1798 guardFlags |= uint32_t(GuardFlags::EH_CONTINUATION_TABLE_PRESENT); 1799 Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags"); 1800 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags); 1801 } 1802 1803 // Take a list of input sections containing symbol table indices and add those 1804 // symbols to a vector. The challenge is that symbol RVAs are not known and 1805 // depend on the table size, so we can't directly build a set of integers. 1806 void Writer::getSymbolsFromSections(ObjFile *file, 1807 ArrayRef<SectionChunk *> symIdxChunks, 1808 std::vector<Symbol *> &symbols) { 1809 for (SectionChunk *c : symIdxChunks) { 1810 // Skip sections discarded by linker GC. This comes up when a .gfids section 1811 // is associated with something like a vtable and the vtable is discarded. 1812 // In this case, the associated gfids section is discarded, and we don't 1813 // mark the virtual member functions as address-taken by the vtable. 1814 if (!c->live) 1815 continue; 1816 1817 // Validate that the contents look like symbol table indices. 1818 ArrayRef<uint8_t> data = c->getContents(); 1819 if (data.size() % 4 != 0) { 1820 warn("ignoring " + c->getSectionName() + 1821 " symbol table index section in object " + toString(file)); 1822 continue; 1823 } 1824 1825 // Read each symbol table index and check if that symbol was included in the 1826 // final link. If so, add it to the vector of symbols. 1827 ArrayRef<ulittle32_t> symIndices( 1828 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4); 1829 ArrayRef<Symbol *> objSymbols = file->getSymbols(); 1830 for (uint32_t symIndex : symIndices) { 1831 if (symIndex >= objSymbols.size()) { 1832 warn("ignoring invalid symbol table index in section " + 1833 c->getSectionName() + " in object " + toString(file)); 1834 continue; 1835 } 1836 if (Symbol *s = objSymbols[symIndex]) { 1837 if (s->isLive()) 1838 symbols.push_back(cast<Symbol>(s)); 1839 } 1840 } 1841 } 1842 } 1843 1844 // Take a list of input sections containing symbol table indices and add those 1845 // symbols to an RVA table. 1846 void Writer::markSymbolsForRVATable(ObjFile *file, 1847 ArrayRef<SectionChunk *> symIdxChunks, 1848 SymbolRVASet &tableSymbols) { 1849 std::vector<Symbol *> syms; 1850 getSymbolsFromSections(file, symIdxChunks, syms); 1851 1852 for (Symbol *s : syms) 1853 addSymbolToRVASet(tableSymbols, cast<Defined>(s)); 1854 } 1855 1856 // Replace the absolute table symbol with a synthetic symbol pointing to 1857 // tableChunk so that we can emit base relocations for it and resolve section 1858 // relative relocations. 1859 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, 1860 StringRef countSym, bool hasFlag) { 1861 if (tableSymbols.empty()) 1862 return; 1863 1864 NonSectionChunk *tableChunk; 1865 if (hasFlag) 1866 tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols)); 1867 else 1868 tableChunk = make<RVATableChunk>(std::move(tableSymbols)); 1869 rdataSec->addChunk(tableChunk); 1870 1871 Symbol *t = ctx.symtab.findUnderscore(tableSym); 1872 Symbol *c = ctx.symtab.findUnderscore(countSym); 1873 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk); 1874 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4)); 1875 } 1876 1877 // MinGW specific. Gather all relocations that are imported from a DLL even 1878 // though the code didn't expect it to, produce the table that the runtime 1879 // uses for fixing them up, and provide the synthetic symbols that the 1880 // runtime uses for finding the table. 1881 void Writer::createRuntimePseudoRelocs() { 1882 std::vector<RuntimePseudoReloc> rels; 1883 1884 for (Chunk *c : ctx.symtab.getChunks()) { 1885 auto *sc = dyn_cast<SectionChunk>(c); 1886 if (!sc || !sc->live) 1887 continue; 1888 sc->getRuntimePseudoRelocs(rels); 1889 } 1890 1891 if (!ctx.config.pseudoRelocs) { 1892 // Not writing any pseudo relocs; if some were needed, error out and 1893 // indicate what required them. 1894 for (const RuntimePseudoReloc &rpr : rels) 1895 error("automatic dllimport of " + rpr.sym->getName() + " in " + 1896 toString(rpr.target->file) + " requires pseudo relocations"); 1897 return; 1898 } 1899 1900 if (!rels.empty()) 1901 log("Writing " + Twine(rels.size()) + " runtime pseudo relocations"); 1902 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels); 1903 rdataSec->addChunk(table); 1904 EmptyChunk *endOfList = make<EmptyChunk>(); 1905 rdataSec->addChunk(endOfList); 1906 1907 Symbol *headSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__"); 1908 Symbol *endSym = 1909 ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__"); 1910 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table); 1911 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList); 1912 } 1913 1914 // MinGW specific. 1915 // The MinGW .ctors and .dtors lists have sentinels at each end; 1916 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end. 1917 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__ 1918 // and __DTOR_LIST__ respectively. 1919 void Writer::insertCtorDtorSymbols() { 1920 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(ctx, -1); 1921 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(ctx, 0); 1922 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(ctx, -1); 1923 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(ctx, 0); 1924 ctorsSec->insertChunkAtStart(ctorListHead); 1925 ctorsSec->addChunk(ctorListEnd); 1926 dtorsSec->insertChunkAtStart(dtorListHead); 1927 dtorsSec->addChunk(dtorListEnd); 1928 1929 Symbol *ctorListSym = ctx.symtab.findUnderscore("__CTOR_LIST__"); 1930 Symbol *dtorListSym = ctx.symtab.findUnderscore("__DTOR_LIST__"); 1931 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(), 1932 ctorListHead); 1933 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(), 1934 dtorListHead); 1935 } 1936 1937 // Handles /section options to allow users to overwrite 1938 // section attributes. 1939 void Writer::setSectionPermissions() { 1940 for (auto &p : ctx.config.section) { 1941 StringRef name = p.first; 1942 uint32_t perm = p.second; 1943 for (OutputSection *sec : ctx.outputSections) 1944 if (sec->name == name) 1945 sec->setPermissions(perm); 1946 } 1947 } 1948 1949 // Write section contents to a mmap'ed file. 1950 void Writer::writeSections() { 1951 uint8_t *buf = buffer->getBufferStart(); 1952 for (OutputSection *sec : ctx.outputSections) { 1953 uint8_t *secBuf = buf + sec->getFileOff(); 1954 // Fill gaps between functions in .text with INT3 instructions 1955 // instead of leaving as NUL bytes (which can be interpreted as 1956 // ADD instructions). 1957 if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) 1958 memset(secBuf, 0xCC, sec->getRawSize()); 1959 parallelForEach(sec->chunks, [&](Chunk *c) { 1960 c->writeTo(secBuf + c->getRVA() - sec->getRVA()); 1961 }); 1962 } 1963 } 1964 1965 void Writer::writeBuildId() { 1966 // There are two important parts to the build ID. 1967 // 1) If building with debug info, the COFF debug directory contains a 1968 // timestamp as well as a Guid and Age of the PDB. 1969 // 2) In all cases, the PE COFF file header also contains a timestamp. 1970 // For reproducibility, instead of a timestamp we want to use a hash of the 1971 // PE contents. 1972 Configuration *config = &ctx.config; 1973 1974 if (config->debug) { 1975 assert(buildId && "BuildId is not set!"); 1976 // BuildId->BuildId was filled in when the PDB was written. 1977 } 1978 1979 // At this point the only fields in the COFF file which remain unset are the 1980 // "timestamp" in the COFF file header, and the ones in the coff debug 1981 // directory. Now we can hash the file and write that hash to the various 1982 // timestamp fields in the file. 1983 StringRef outputFileData( 1984 reinterpret_cast<const char *>(buffer->getBufferStart()), 1985 buffer->getBufferSize()); 1986 1987 uint32_t timestamp = config->timestamp; 1988 uint64_t hash = 0; 1989 bool generateSyntheticBuildId = 1990 config->mingw && config->debug && config->pdbPath.empty(); 1991 1992 if (config->repro || generateSyntheticBuildId) 1993 hash = xxHash64(outputFileData); 1994 1995 if (config->repro) 1996 timestamp = static_cast<uint32_t>(hash); 1997 1998 if (generateSyntheticBuildId) { 1999 // For MinGW builds without a PDB file, we still generate a build id 2000 // to allow associating a crash dump to the executable. 2001 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70; 2002 buildId->buildId->PDB70.Age = 1; 2003 memcpy(buildId->buildId->PDB70.Signature, &hash, 8); 2004 // xxhash only gives us 8 bytes, so put some fixed data in the other half. 2005 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8); 2006 } 2007 2008 if (debugDirectory) 2009 debugDirectory->setTimeDateStamp(timestamp); 2010 2011 uint8_t *buf = buffer->getBufferStart(); 2012 buf += dosStubSize + sizeof(PEMagic); 2013 object::coff_file_header *coffHeader = 2014 reinterpret_cast<coff_file_header *>(buf); 2015 coffHeader->TimeDateStamp = timestamp; 2016 } 2017 2018 // Sort .pdata section contents according to PE/COFF spec 5.5. 2019 void Writer::sortExceptionTable() { 2020 if (!firstPdata) 2021 return; 2022 // We assume .pdata contains function table entries only. 2023 auto bufAddr = [&](Chunk *c) { 2024 OutputSection *os = ctx.getOutputSection(c); 2025 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() - 2026 os->getRVA(); 2027 }; 2028 uint8_t *begin = bufAddr(firstPdata); 2029 uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize(); 2030 if (ctx.config.machine == AMD64) { 2031 struct Entry { ulittle32_t begin, end, unwind; }; 2032 if ((end - begin) % sizeof(Entry) != 0) { 2033 fatal("unexpected .pdata size: " + Twine(end - begin) + 2034 " is not a multiple of " + Twine(sizeof(Entry))); 2035 } 2036 parallelSort( 2037 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end), 2038 [](const Entry &a, const Entry &b) { return a.begin < b.begin; }); 2039 return; 2040 } 2041 if (ctx.config.machine == ARMNT || ctx.config.machine == ARM64) { 2042 struct Entry { ulittle32_t begin, unwind; }; 2043 if ((end - begin) % sizeof(Entry) != 0) { 2044 fatal("unexpected .pdata size: " + Twine(end - begin) + 2045 " is not a multiple of " + Twine(sizeof(Entry))); 2046 } 2047 parallelSort( 2048 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end), 2049 [](const Entry &a, const Entry &b) { return a.begin < b.begin; }); 2050 return; 2051 } 2052 lld::errs() << "warning: don't know how to handle .pdata.\n"; 2053 } 2054 2055 // The CRT section contains, among other things, the array of function 2056 // pointers that initialize every global variable that is not trivially 2057 // constructed. The CRT calls them one after the other prior to invoking 2058 // main(). 2059 // 2060 // As per C++ spec, 3.6.2/2.3, 2061 // "Variables with ordered initialization defined within a single 2062 // translation unit shall be initialized in the order of their definitions 2063 // in the translation unit" 2064 // 2065 // It is therefore critical to sort the chunks containing the function 2066 // pointers in the order that they are listed in the object file (top to 2067 // bottom), otherwise global objects might not be initialized in the 2068 // correct order. 2069 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) { 2070 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) { 2071 auto sa = dyn_cast<SectionChunk>(a); 2072 auto sb = dyn_cast<SectionChunk>(b); 2073 assert(sa && sb && "Non-section chunks in CRT section!"); 2074 2075 StringRef sAObj = sa->file->mb.getBufferIdentifier(); 2076 StringRef sBObj = sb->file->mb.getBufferIdentifier(); 2077 2078 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber(); 2079 }; 2080 llvm::stable_sort(chunks, sectionChunkOrder); 2081 2082 if (ctx.config.verbose) { 2083 for (auto &c : chunks) { 2084 auto sc = dyn_cast<SectionChunk>(c); 2085 log(" " + sc->file->mb.getBufferIdentifier().str() + 2086 ", SectionID: " + Twine(sc->getSectionNumber())); 2087 } 2088 } 2089 } 2090 2091 OutputSection *Writer::findSection(StringRef name) { 2092 for (OutputSection *sec : ctx.outputSections) 2093 if (sec->name == name) 2094 return sec; 2095 return nullptr; 2096 } 2097 2098 uint32_t Writer::getSizeOfInitializedData() { 2099 uint32_t res = 0; 2100 for (OutputSection *s : ctx.outputSections) 2101 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA) 2102 res += s->getRawSize(); 2103 return res; 2104 } 2105 2106 // Add base relocations to .reloc section. 2107 void Writer::addBaserels() { 2108 if (!ctx.config.relocatable) 2109 return; 2110 relocSec->chunks.clear(); 2111 std::vector<Baserel> v; 2112 for (OutputSection *sec : ctx.outputSections) { 2113 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) 2114 continue; 2115 // Collect all locations for base relocations. 2116 for (Chunk *c : sec->chunks) 2117 c->getBaserels(&v); 2118 // Add the addresses to .reloc section. 2119 if (!v.empty()) 2120 addBaserelBlocks(v); 2121 v.clear(); 2122 } 2123 } 2124 2125 // Add addresses to .reloc section. Note that addresses are grouped by page. 2126 void Writer::addBaserelBlocks(std::vector<Baserel> &v) { 2127 const uint32_t mask = ~uint32_t(pageSize - 1); 2128 uint32_t page = v[0].rva & mask; 2129 size_t i = 0, j = 1; 2130 for (size_t e = v.size(); j < e; ++j) { 2131 uint32_t p = v[j].rva & mask; 2132 if (p == page) 2133 continue; 2134 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j)); 2135 i = j; 2136 page = p; 2137 } 2138 if (i == j) 2139 return; 2140 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j)); 2141 } 2142 2143 PartialSection *Writer::createPartialSection(StringRef name, 2144 uint32_t outChars) { 2145 PartialSection *&pSec = partialSections[{name, outChars}]; 2146 if (pSec) 2147 return pSec; 2148 pSec = make<PartialSection>(name, outChars); 2149 return pSec; 2150 } 2151 2152 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) { 2153 auto it = partialSections.find({name, outChars}); 2154 if (it != partialSections.end()) 2155 return it->second; 2156 return nullptr; 2157 } 2158 2159 void Writer::fixTlsAlignment() { 2160 Defined *tlsSym = 2161 dyn_cast_or_null<Defined>(ctx.symtab.findUnderscore("_tls_used")); 2162 if (!tlsSym) 2163 return; 2164 2165 OutputSection *sec = ctx.getOutputSection(tlsSym->getChunk()); 2166 assert(sec && tlsSym->getRVA() >= sec->getRVA() && 2167 "no output section for _tls_used"); 2168 2169 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff(); 2170 uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA(); 2171 uint64_t directorySize = ctx.config.is64() 2172 ? sizeof(object::coff_tls_directory64) 2173 : sizeof(object::coff_tls_directory32); 2174 2175 if (tlsOffset + directorySize > sec->getRawSize()) 2176 fatal("_tls_used sym is malformed"); 2177 2178 if (ctx.config.is64()) { 2179 object::coff_tls_directory64 *tlsDir = 2180 reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]); 2181 tlsDir->setAlignment(tlsAlignment); 2182 } else { 2183 object::coff_tls_directory32 *tlsDir = 2184 reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]); 2185 tlsDir->setAlignment(tlsAlignment); 2186 } 2187 } 2188 2189 void Writer::checkLoadConfig() { 2190 Symbol *sym = ctx.symtab.findUnderscore("_load_config_used"); 2191 auto *b = cast_if_present<DefinedRegular>(sym); 2192 if (!b) { 2193 if (ctx.config.guardCF != GuardCFLevel::Off) 2194 warn("Control Flow Guard is enabled but '_load_config_used' is missing"); 2195 return; 2196 } 2197 2198 OutputSection *sec = ctx.getOutputSection(b->getChunk()); 2199 uint8_t *buf = buffer->getBufferStart(); 2200 uint8_t *secBuf = buf + sec->getFileOff(); 2201 uint8_t *symBuf = secBuf + (b->getRVA() - sec->getRVA()); 2202 uint32_t expectedAlign = ctx.config.is64() ? 8 : 4; 2203 if (b->getChunk()->getAlignment() < expectedAlign) 2204 warn("'_load_config_used' is misaligned (expected alignment to be " + 2205 Twine(expectedAlign) + " bytes, got " + 2206 Twine(b->getChunk()->getAlignment()) + " instead)"); 2207 else if (!isAligned(Align(expectedAlign), b->getRVA())) 2208 warn("'_load_config_used' is misaligned (RVA is 0x" + 2209 Twine::utohexstr(b->getRVA()) + " not aligned to " + 2210 Twine(expectedAlign) + " bytes)"); 2211 2212 if (ctx.config.is64()) 2213 checkLoadConfigGuardData( 2214 reinterpret_cast<const coff_load_configuration64 *>(symBuf)); 2215 else 2216 checkLoadConfigGuardData( 2217 reinterpret_cast<const coff_load_configuration32 *>(symBuf)); 2218 } 2219 2220 template <typename T> 2221 void Writer::checkLoadConfigGuardData(const T *loadConfig) { 2222 size_t loadConfigSize = loadConfig->Size; 2223 2224 #define RETURN_IF_NOT_CONTAINS(field) \ 2225 if (loadConfigSize < offsetof(T, field) + sizeof(T::field)) { \ 2226 warn("'_load_config_used' structure too small to include " #field); \ 2227 return; \ 2228 } 2229 2230 #define IF_CONTAINS(field) \ 2231 if (loadConfigSize >= offsetof(T, field) + sizeof(T::field)) 2232 2233 #define CHECK_VA(field, sym) \ 2234 if (auto *s = dyn_cast<DefinedSynthetic>(ctx.symtab.findUnderscore(sym))) \ 2235 if (loadConfig->field != ctx.config.imageBase + s->getRVA()) \ 2236 warn(#field " not set correctly in '_load_config_used'"); 2237 2238 #define CHECK_ABSOLUTE(field, sym) \ 2239 if (auto *s = dyn_cast<DefinedAbsolute>(ctx.symtab.findUnderscore(sym))) \ 2240 if (loadConfig->field != s->getVA()) \ 2241 warn(#field " not set correctly in '_load_config_used'"); 2242 2243 if (ctx.config.guardCF == GuardCFLevel::Off) 2244 return; 2245 RETURN_IF_NOT_CONTAINS(GuardFlags) 2246 CHECK_VA(GuardCFFunctionTable, "__guard_fids_table") 2247 CHECK_ABSOLUTE(GuardCFFunctionCount, "__guard_fids_count") 2248 CHECK_ABSOLUTE(GuardFlags, "__guard_flags") 2249 IF_CONTAINS(GuardAddressTakenIatEntryCount) { 2250 CHECK_VA(GuardAddressTakenIatEntryTable, "__guard_iat_table") 2251 CHECK_ABSOLUTE(GuardAddressTakenIatEntryCount, "__guard_iat_count") 2252 } 2253 2254 if (!(ctx.config.guardCF & GuardCFLevel::LongJmp)) 2255 return; 2256 RETURN_IF_NOT_CONTAINS(GuardLongJumpTargetCount) 2257 CHECK_VA(GuardLongJumpTargetTable, "__guard_longjmp_table") 2258 CHECK_ABSOLUTE(GuardLongJumpTargetCount, "__guard_longjmp_count") 2259 2260 if (!(ctx.config.guardCF & GuardCFLevel::EHCont)) 2261 return; 2262 RETURN_IF_NOT_CONTAINS(GuardEHContinuationCount) 2263 CHECK_VA(GuardEHContinuationTable, "__guard_eh_cont_table") 2264 CHECK_ABSOLUTE(GuardEHContinuationCount, "__guard_eh_cont_count") 2265 2266 #undef RETURN_IF_NOT_CONTAINS 2267 #undef IF_CONTAINS 2268 #undef CHECK_VA 2269 #undef CHECK_ABSOLUTE 2270 } 2271