xref: /freebsd/contrib/llvm-project/lld/COFF/Writer.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "COFFLinkerContext.h"
11 #include "CallGraphSort.h"
12 #include "Config.h"
13 #include "DLL.h"
14 #include "InputFiles.h"
15 #include "LLDMapFile.h"
16 #include "MapFile.h"
17 #include "PDB.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "lld/Common/Timer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/Support/BinaryStreamReader.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/FileOutputBuffer.h"
31 #include "llvm/Support/Parallel.h"
32 #include "llvm/Support/Path.h"
33 #include "llvm/Support/RandomNumberGenerator.h"
34 #include "llvm/Support/TimeProfiler.h"
35 #include "llvm/Support/xxhash.h"
36 #include <algorithm>
37 #include <cstdio>
38 #include <map>
39 #include <memory>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace llvm::COFF;
44 using namespace llvm::object;
45 using namespace llvm::support;
46 using namespace llvm::support::endian;
47 using namespace lld;
48 using namespace lld::coff;
49 
50 /* To re-generate DOSProgram:
51 $ cat > /tmp/DOSProgram.asm
52 org 0
53         ; Copy cs to ds.
54         push cs
55         pop ds
56         ; Point ds:dx at the $-terminated string.
57         mov dx, str
58         ; Int 21/AH=09h: Write string to standard output.
59         mov ah, 0x9
60         int 0x21
61         ; Int 21/AH=4Ch: Exit with return code (in AL).
62         mov ax, 0x4C01
63         int 0x21
64 str:
65         db 'This program cannot be run in DOS mode.$'
66 align 8, db 0
67 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
68 $ xxd -i /tmp/DOSProgram.bin
69 */
70 static unsigned char dosProgram[] = {
71   0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
72   0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
73   0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
74   0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
75   0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
76 };
77 static_assert(sizeof(dosProgram) % 8 == 0,
78               "DOSProgram size must be multiple of 8");
79 
80 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
81 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
82 
83 static const int numberOfDataDirectory = 16;
84 
85 namespace {
86 
87 class DebugDirectoryChunk : public NonSectionChunk {
88 public:
89   DebugDirectoryChunk(const COFFLinkerContext &c,
90                       const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
91                       bool writeRepro)
92       : records(r), writeRepro(writeRepro), ctx(c) {}
93 
94   size_t getSize() const override {
95     return (records.size() + int(writeRepro)) * sizeof(debug_directory);
96   }
97 
98   void writeTo(uint8_t *b) const override {
99     auto *d = reinterpret_cast<debug_directory *>(b);
100 
101     for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
102       Chunk *c = record.second;
103       const OutputSection *os = ctx.getOutputSection(c);
104       uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
105       fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
106       ++d;
107     }
108 
109     if (writeRepro) {
110       // FIXME: The COFF spec allows either a 0-sized entry to just say
111       // "the timestamp field is really a hash", or a 4-byte size field
112       // followed by that many bytes containing a longer hash (with the
113       // lowest 4 bytes usually being the timestamp in little-endian order).
114       // Consider storing the full 8 bytes computed by xxh3_64bits here.
115       fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
116     }
117   }
118 
119   void setTimeDateStamp(uint32_t timeDateStamp) {
120     for (support::ulittle32_t *tds : timeDateStamps)
121       *tds = timeDateStamp;
122   }
123 
124 private:
125   void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
126                  uint64_t rva, uint64_t offs) const {
127     d->Characteristics = 0;
128     d->TimeDateStamp = 0;
129     d->MajorVersion = 0;
130     d->MinorVersion = 0;
131     d->Type = debugType;
132     d->SizeOfData = size;
133     d->AddressOfRawData = rva;
134     d->PointerToRawData = offs;
135 
136     timeDateStamps.push_back(&d->TimeDateStamp);
137   }
138 
139   mutable std::vector<support::ulittle32_t *> timeDateStamps;
140   const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
141   bool writeRepro;
142   const COFFLinkerContext &ctx;
143 };
144 
145 class CVDebugRecordChunk : public NonSectionChunk {
146 public:
147   CVDebugRecordChunk(const COFFLinkerContext &c) : ctx(c) {}
148 
149   size_t getSize() const override {
150     return sizeof(codeview::DebugInfo) + ctx.config.pdbAltPath.size() + 1;
151   }
152 
153   void writeTo(uint8_t *b) const override {
154     // Save off the DebugInfo entry to backfill the file signature (build id)
155     // in Writer::writeBuildId
156     buildId = reinterpret_cast<codeview::DebugInfo *>(b);
157 
158     // variable sized field (PDB Path)
159     char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
160     if (!ctx.config.pdbAltPath.empty())
161       memcpy(p, ctx.config.pdbAltPath.data(), ctx.config.pdbAltPath.size());
162     p[ctx.config.pdbAltPath.size()] = '\0';
163   }
164 
165   mutable codeview::DebugInfo *buildId = nullptr;
166 
167 private:
168   const COFFLinkerContext &ctx;
169 };
170 
171 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
172 public:
173   ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
174 
175   size_t getSize() const override { return 4; }
176 
177   void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
178 
179   uint32_t characteristics = 0;
180 };
181 
182 // PartialSection represents a group of chunks that contribute to an
183 // OutputSection. Collating a collection of PartialSections of same name and
184 // characteristics constitutes the OutputSection.
185 class PartialSectionKey {
186 public:
187   StringRef name;
188   unsigned characteristics;
189 
190   bool operator<(const PartialSectionKey &other) const {
191     int c = name.compare(other.name);
192     if (c > 0)
193       return false;
194     if (c == 0)
195       return characteristics < other.characteristics;
196     return true;
197   }
198 };
199 
200 struct ChunkRange {
201   Chunk *first = nullptr, *last;
202 };
203 
204 // The writer writes a SymbolTable result to a file.
205 class Writer {
206 public:
207   Writer(COFFLinkerContext &c)
208       : buffer(errorHandler().outputBuffer), delayIdata(c), edata(c), ctx(c) {}
209   void run();
210 
211 private:
212   void createSections();
213   void createMiscChunks();
214   void createImportTables();
215   void appendImportThunks();
216   void locateImportTables();
217   void createExportTable();
218   void mergeSections();
219   void sortECChunks();
220   void removeUnusedSections();
221   void assignAddresses();
222   bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin);
223   std::pair<Defined *, bool> getThunk(DenseMap<uint64_t, Defined *> &lastThunks,
224                                       Defined *target, uint64_t p,
225                                       uint16_t type, int margin);
226   bool createThunks(OutputSection *os, int margin);
227   bool verifyRanges(const std::vector<Chunk *> chunks);
228   void createECCodeMap();
229   void finalizeAddresses();
230   void removeEmptySections();
231   void assignOutputSectionIndices();
232   void createSymbolAndStringTable();
233   void openFile(StringRef outputPath);
234   template <typename PEHeaderTy> void writeHeader();
235   void createSEHTable();
236   void createRuntimePseudoRelocs();
237   void createECChunks();
238   void insertCtorDtorSymbols();
239   void markSymbolsWithRelocations(ObjFile *file, SymbolRVASet &usedSymbols);
240   void createGuardCFTables();
241   void markSymbolsForRVATable(ObjFile *file,
242                               ArrayRef<SectionChunk *> symIdxChunks,
243                               SymbolRVASet &tableSymbols);
244   void getSymbolsFromSections(ObjFile *file,
245                               ArrayRef<SectionChunk *> symIdxChunks,
246                               std::vector<Symbol *> &symbols);
247   void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
248                         StringRef countSym, bool hasFlag=false);
249   void setSectionPermissions();
250   void setECSymbols();
251   void writeSections();
252   void writeBuildId();
253   void writePEChecksum();
254   void sortSections();
255   template <typename T> void sortExceptionTable(ChunkRange &exceptionTable);
256   void sortExceptionTables();
257   void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
258   void addSyntheticIdata();
259   void sortBySectionOrder(std::vector<Chunk *> &chunks);
260   void fixPartialSectionChars(StringRef name, uint32_t chars);
261   bool fixGnuImportChunks();
262   void fixTlsAlignment();
263   PartialSection *createPartialSection(StringRef name, uint32_t outChars);
264   PartialSection *findPartialSection(StringRef name, uint32_t outChars);
265 
266   std::optional<coff_symbol16> createSymbol(Defined *d);
267   size_t addEntryToStringTable(StringRef str);
268 
269   OutputSection *findSection(StringRef name);
270   void addBaserels();
271   void addBaserelBlocks(std::vector<Baserel> &v);
272 
273   uint32_t getSizeOfInitializedData();
274 
275   void prepareLoadConfig();
276   template <typename T> void prepareLoadConfig(T *loadConfig);
277   template <typename T> void checkLoadConfigGuardData(const T *loadConfig);
278 
279   std::unique_ptr<FileOutputBuffer> &buffer;
280   std::map<PartialSectionKey, PartialSection *> partialSections;
281   std::vector<char> strtab;
282   std::vector<llvm::object::coff_symbol16> outputSymtab;
283   std::vector<ECCodeMapEntry> codeMap;
284   IdataContents idata;
285   Chunk *importTableStart = nullptr;
286   uint64_t importTableSize = 0;
287   Chunk *edataStart = nullptr;
288   Chunk *edataEnd = nullptr;
289   Chunk *iatStart = nullptr;
290   uint64_t iatSize = 0;
291   DelayLoadContents delayIdata;
292   EdataContents edata;
293   bool setNoSEHCharacteristic = false;
294   uint32_t tlsAlignment = 0;
295 
296   DebugDirectoryChunk *debugDirectory = nullptr;
297   std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
298   CVDebugRecordChunk *buildId = nullptr;
299   ArrayRef<uint8_t> sectionTable;
300 
301   uint64_t fileSize;
302   uint32_t pointerToSymbolTable = 0;
303   uint64_t sizeOfImage;
304   uint64_t sizeOfHeaders;
305 
306   OutputSection *textSec;
307   OutputSection *rdataSec;
308   OutputSection *buildidSec;
309   OutputSection *dataSec;
310   OutputSection *pdataSec;
311   OutputSection *idataSec;
312   OutputSection *edataSec;
313   OutputSection *didatSec;
314   OutputSection *rsrcSec;
315   OutputSection *relocSec;
316   OutputSection *ctorsSec;
317   OutputSection *dtorsSec;
318   // Either .rdata section or .buildid section.
319   OutputSection *debugInfoSec;
320 
321   // The range of .pdata sections in the output file.
322   //
323   // We need to keep track of the location of .pdata in whichever section it
324   // gets merged into so that we can sort its contents and emit a correct data
325   // directory entry for the exception table. This is also the case for some
326   // other sections (such as .edata) but because the contents of those sections
327   // are entirely linker-generated we can keep track of their locations using
328   // the chunks that the linker creates. All .pdata chunks come from input
329   // files, so we need to keep track of them separately.
330   ChunkRange pdata;
331 
332   // x86_64 .pdata sections on ARM64EC/ARM64X targets.
333   ChunkRange hybridPdata;
334 
335   COFFLinkerContext &ctx;
336 };
337 } // anonymous namespace
338 
339 void lld::coff::writeResult(COFFLinkerContext &ctx) {
340   llvm::TimeTraceScope timeScope("Write output(s)");
341   Writer(ctx).run();
342 }
343 
344 void OutputSection::addChunk(Chunk *c) {
345   chunks.push_back(c);
346 }
347 
348 void OutputSection::insertChunkAtStart(Chunk *c) {
349   chunks.insert(chunks.begin(), c);
350 }
351 
352 void OutputSection::setPermissions(uint32_t c) {
353   header.Characteristics &= ~permMask;
354   header.Characteristics |= c;
355 }
356 
357 void OutputSection::merge(OutputSection *other) {
358   chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
359   other->chunks.clear();
360   contribSections.insert(contribSections.end(), other->contribSections.begin(),
361                          other->contribSections.end());
362   other->contribSections.clear();
363 
364   // MS link.exe compatibility: when merging a code section into a data section,
365   // mark the target section as a code section.
366   if (other->header.Characteristics & IMAGE_SCN_CNT_CODE) {
367     header.Characteristics |= IMAGE_SCN_CNT_CODE;
368     header.Characteristics &=
369         ~(IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_CNT_UNINITIALIZED_DATA);
370   }
371 }
372 
373 // Write the section header to a given buffer.
374 void OutputSection::writeHeaderTo(uint8_t *buf, bool isDebug) {
375   auto *hdr = reinterpret_cast<coff_section *>(buf);
376   *hdr = header;
377   if (stringTableOff) {
378     // If name is too long, write offset into the string table as a name.
379     encodeSectionName(hdr->Name, stringTableOff);
380   } else {
381     assert(!isDebug || name.size() <= COFF::NameSize ||
382            (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
383     strncpy(hdr->Name, name.data(),
384             std::min(name.size(), (size_t)COFF::NameSize));
385   }
386 }
387 
388 void OutputSection::addContributingPartialSection(PartialSection *sec) {
389   contribSections.push_back(sec);
390 }
391 
392 // Check whether the target address S is in range from a relocation
393 // of type relType at address P.
394 bool Writer::isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
395   if (ctx.config.machine == ARMNT) {
396     int64_t diff = AbsoluteDifference(s, p + 4) + margin;
397     switch (relType) {
398     case IMAGE_REL_ARM_BRANCH20T:
399       return isInt<21>(diff);
400     case IMAGE_REL_ARM_BRANCH24T:
401     case IMAGE_REL_ARM_BLX23T:
402       return isInt<25>(diff);
403     default:
404       return true;
405     }
406   } else if (ctx.config.machine == ARM64) {
407     int64_t diff = AbsoluteDifference(s, p) + margin;
408     switch (relType) {
409     case IMAGE_REL_ARM64_BRANCH26:
410       return isInt<28>(diff);
411     case IMAGE_REL_ARM64_BRANCH19:
412       return isInt<21>(diff);
413     case IMAGE_REL_ARM64_BRANCH14:
414       return isInt<16>(diff);
415     default:
416       return true;
417     }
418   } else {
419     llvm_unreachable("Unexpected architecture");
420   }
421 }
422 
423 // Return the last thunk for the given target if it is in range,
424 // or create a new one.
425 std::pair<Defined *, bool>
426 Writer::getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target,
427                  uint64_t p, uint16_t type, int margin) {
428   Defined *&lastThunk = lastThunks[target->getRVA()];
429   if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
430     return {lastThunk, false};
431   Chunk *c;
432   switch (ctx.config.machine) {
433   case ARMNT:
434     c = make<RangeExtensionThunkARM>(ctx, target);
435     break;
436   case ARM64:
437     c = make<RangeExtensionThunkARM64>(ctx, target);
438     break;
439   default:
440     llvm_unreachable("Unexpected architecture");
441   }
442   Defined *d = make<DefinedSynthetic>("range_extension_thunk", c);
443   lastThunk = d;
444   return {d, true};
445 }
446 
447 // This checks all relocations, and for any relocation which isn't in range
448 // it adds a thunk after the section chunk that contains the relocation.
449 // If the latest thunk for the specific target is in range, that is used
450 // instead of creating a new thunk. All range checks are done with the
451 // specified margin, to make sure that relocations that originally are in
452 // range, but only barely, also get thunks - in case other added thunks makes
453 // the target go out of range.
454 //
455 // After adding thunks, we verify that all relocations are in range (with
456 // no extra margin requirements). If this failed, we restart (throwing away
457 // the previously created thunks) and retry with a wider margin.
458 bool Writer::createThunks(OutputSection *os, int margin) {
459   bool addressesChanged = false;
460   DenseMap<uint64_t, Defined *> lastThunks;
461   DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
462   size_t thunksSize = 0;
463   // Recheck Chunks.size() each iteration, since we can insert more
464   // elements into it.
465   for (size_t i = 0; i != os->chunks.size(); ++i) {
466     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
467     if (!sc)
468       continue;
469     size_t thunkInsertionSpot = i + 1;
470 
471     // Try to get a good enough estimate of where new thunks will be placed.
472     // Offset this by the size of the new thunks added so far, to make the
473     // estimate slightly better.
474     size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
475     ObjFile *file = sc->file;
476     std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
477     ArrayRef<coff_relocation> originalRelocs =
478         file->getCOFFObj()->getRelocations(sc->header);
479     for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
480       const coff_relocation &rel = originalRelocs[j];
481       Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
482 
483       // The estimate of the source address P should be pretty accurate,
484       // but we don't know whether the target Symbol address should be
485       // offset by thunksSize or not (or by some of thunksSize but not all of
486       // it), giving us some uncertainty once we have added one thunk.
487       uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
488 
489       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
490       if (!sym)
491         continue;
492 
493       uint64_t s = sym->getRVA();
494 
495       if (isInRange(rel.Type, s, p, margin))
496         continue;
497 
498       // If the target isn't in range, hook it up to an existing or new thunk.
499       auto [thunk, wasNew] = getThunk(lastThunks, sym, p, rel.Type, margin);
500       if (wasNew) {
501         Chunk *thunkChunk = thunk->getChunk();
502         thunkChunk->setRVA(
503             thunkInsertionRVA); // Estimate of where it will be located.
504         os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
505         thunkInsertionSpot++;
506         thunksSize += thunkChunk->getSize();
507         thunkInsertionRVA += thunkChunk->getSize();
508         addressesChanged = true;
509       }
510 
511       // To redirect the relocation, add a symbol to the parent object file's
512       // symbol table, and replace the relocation symbol table index with the
513       // new index.
514       auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
515       uint32_t &thunkSymbolIndex = insertion.first->second;
516       if (insertion.second)
517         thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
518       relocReplacements.emplace_back(j, thunkSymbolIndex);
519     }
520 
521     // Get a writable copy of this section's relocations so they can be
522     // modified. If the relocations point into the object file, allocate new
523     // memory. Otherwise, this must be previously allocated memory that can be
524     // modified in place.
525     ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
526     MutableArrayRef<coff_relocation> newRelocs;
527     if (originalRelocs.data() == curRelocs.data()) {
528       newRelocs = MutableArrayRef(
529           bAlloc().Allocate<coff_relocation>(originalRelocs.size()),
530           originalRelocs.size());
531     } else {
532       newRelocs = MutableArrayRef(
533           const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
534     }
535 
536     // Copy each relocation, but replace the symbol table indices which need
537     // thunks.
538     auto nextReplacement = relocReplacements.begin();
539     auto endReplacement = relocReplacements.end();
540     for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
541       newRelocs[i] = originalRelocs[i];
542       if (nextReplacement != endReplacement && nextReplacement->first == i) {
543         newRelocs[i].SymbolTableIndex = nextReplacement->second;
544         ++nextReplacement;
545       }
546     }
547 
548     sc->setRelocs(newRelocs);
549   }
550   return addressesChanged;
551 }
552 
553 // Create a code map for CHPE metadata.
554 void Writer::createECCodeMap() {
555   if (!isArm64EC(ctx.config.machine))
556     return;
557 
558   // Clear the map in case we were're recomputing the map after adding
559   // a range extension thunk.
560   codeMap.clear();
561 
562   std::optional<chpe_range_type> lastType;
563   Chunk *first, *last;
564 
565   auto closeRange = [&]() {
566     if (lastType) {
567       codeMap.push_back({first, last, *lastType});
568       lastType.reset();
569     }
570   };
571 
572   for (OutputSection *sec : ctx.outputSections) {
573     for (Chunk *c : sec->chunks) {
574       // Skip empty section chunks. MS link.exe does not seem to do that and
575       // generates empty code ranges in some cases.
576       if (isa<SectionChunk>(c) && !c->getSize())
577         continue;
578 
579       std::optional<chpe_range_type> chunkType = c->getArm64ECRangeType();
580       if (chunkType != lastType) {
581         closeRange();
582         first = c;
583         lastType = chunkType;
584       }
585       last = c;
586     }
587   }
588 
589   closeRange();
590 
591   Symbol *tableCountSym = ctx.symtab.findUnderscore("__hybrid_code_map_count");
592   cast<DefinedAbsolute>(tableCountSym)->setVA(codeMap.size());
593 }
594 
595 // Verify that all relocations are in range, with no extra margin requirements.
596 bool Writer::verifyRanges(const std::vector<Chunk *> chunks) {
597   for (Chunk *c : chunks) {
598     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
599     if (!sc)
600       continue;
601 
602     ArrayRef<coff_relocation> relocs = sc->getRelocs();
603     for (const coff_relocation &rel : relocs) {
604       Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
605 
606       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
607       if (!sym)
608         continue;
609 
610       uint64_t p = sc->getRVA() + rel.VirtualAddress;
611       uint64_t s = sym->getRVA();
612 
613       if (!isInRange(rel.Type, s, p, 0))
614         return false;
615     }
616   }
617   return true;
618 }
619 
620 // Assign addresses and add thunks if necessary.
621 void Writer::finalizeAddresses() {
622   assignAddresses();
623   if (ctx.config.machine != ARMNT && ctx.config.machine != ARM64)
624     return;
625 
626   size_t origNumChunks = 0;
627   for (OutputSection *sec : ctx.outputSections) {
628     sec->origChunks = sec->chunks;
629     origNumChunks += sec->chunks.size();
630   }
631 
632   int pass = 0;
633   int margin = 1024 * 100;
634   while (true) {
635     llvm::TimeTraceScope timeScope2("Add thunks pass");
636 
637     // First check whether we need thunks at all, or if the previous pass of
638     // adding them turned out ok.
639     bool rangesOk = true;
640     size_t numChunks = 0;
641     {
642       llvm::TimeTraceScope timeScope3("Verify ranges");
643       for (OutputSection *sec : ctx.outputSections) {
644         if (!verifyRanges(sec->chunks)) {
645           rangesOk = false;
646           break;
647         }
648         numChunks += sec->chunks.size();
649       }
650     }
651     if (rangesOk) {
652       if (pass > 0)
653         log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
654             "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
655       return;
656     }
657 
658     if (pass >= 10)
659       fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
660 
661     if (pass > 0) {
662       // If the previous pass didn't work out, reset everything back to the
663       // original conditions before retrying with a wider margin. This should
664       // ideally never happen under real circumstances.
665       for (OutputSection *sec : ctx.outputSections)
666         sec->chunks = sec->origChunks;
667       margin *= 2;
668     }
669 
670     // Try adding thunks everywhere where it is needed, with a margin
671     // to avoid things going out of range due to the added thunks.
672     bool addressesChanged = false;
673     {
674       llvm::TimeTraceScope timeScope3("Create thunks");
675       for (OutputSection *sec : ctx.outputSections)
676         addressesChanged |= createThunks(sec, margin);
677     }
678     // If the verification above thought we needed thunks, we should have
679     // added some.
680     assert(addressesChanged);
681     (void)addressesChanged;
682 
683     // Recalculate the layout for the whole image (and verify the ranges at
684     // the start of the next round).
685     assignAddresses();
686 
687     pass++;
688   }
689 }
690 
691 void Writer::writePEChecksum() {
692   if (!ctx.config.writeCheckSum) {
693     return;
694   }
695 
696   llvm::TimeTraceScope timeScope("PE checksum");
697 
698   // https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#checksum
699   uint32_t *buf = (uint32_t *)buffer->getBufferStart();
700   uint32_t size = (uint32_t)(buffer->getBufferSize());
701 
702   coff_file_header *coffHeader =
703       (coff_file_header *)((uint8_t *)buf + dosStubSize + sizeof(PEMagic));
704   pe32_header *peHeader =
705       (pe32_header *)((uint8_t *)coffHeader + sizeof(coff_file_header));
706 
707   uint64_t sum = 0;
708   uint32_t count = size;
709   ulittle16_t *addr = (ulittle16_t *)buf;
710 
711   // The PE checksum algorithm, implemented as suggested in RFC1071
712   while (count > 1) {
713     sum += *addr++;
714     count -= 2;
715   }
716 
717   // Add left-over byte, if any
718   if (count > 0)
719     sum += *(unsigned char *)addr;
720 
721   // Fold 32-bit sum to 16 bits
722   while (sum >> 16) {
723     sum = (sum & 0xffff) + (sum >> 16);
724   }
725 
726   sum += size;
727   peHeader->CheckSum = sum;
728 }
729 
730 // The main function of the writer.
731 void Writer::run() {
732   {
733     llvm::TimeTraceScope timeScope("Write PE");
734     ScopedTimer t1(ctx.codeLayoutTimer);
735 
736     createImportTables();
737     createSections();
738     appendImportThunks();
739     // Import thunks must be added before the Control Flow Guard tables are
740     // added.
741     createMiscChunks();
742     createExportTable();
743     mergeSections();
744     sortECChunks();
745     removeUnusedSections();
746     finalizeAddresses();
747     removeEmptySections();
748     assignOutputSectionIndices();
749     setSectionPermissions();
750     setECSymbols();
751     createSymbolAndStringTable();
752 
753     if (fileSize > UINT32_MAX)
754       fatal("image size (" + Twine(fileSize) + ") " +
755             "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
756 
757     openFile(ctx.config.outputFile);
758     if (ctx.config.is64()) {
759       writeHeader<pe32plus_header>();
760     } else {
761       writeHeader<pe32_header>();
762     }
763     writeSections();
764     prepareLoadConfig();
765     sortExceptionTables();
766 
767     // Fix up the alignment in the TLS Directory's characteristic field,
768     // if a specific alignment value is needed
769     if (tlsAlignment)
770       fixTlsAlignment();
771   }
772 
773   if (!ctx.config.pdbPath.empty() && ctx.config.debug) {
774     assert(buildId);
775     createPDB(ctx, sectionTable, buildId->buildId);
776   }
777   writeBuildId();
778 
779   writeLLDMapFile(ctx);
780   writeMapFile(ctx);
781 
782   writePEChecksum();
783 
784   if (errorCount())
785     return;
786 
787   llvm::TimeTraceScope timeScope("Commit PE to disk");
788   ScopedTimer t2(ctx.outputCommitTimer);
789   if (auto e = buffer->commit())
790     fatal("failed to write output '" + buffer->getPath() +
791           "': " + toString(std::move(e)));
792 }
793 
794 static StringRef getOutputSectionName(StringRef name) {
795   StringRef s = name.split('$').first;
796 
797   // Treat a later period as a separator for MinGW, for sections like
798   // ".ctors.01234".
799   return s.substr(0, s.find('.', 1));
800 }
801 
802 // For /order.
803 void Writer::sortBySectionOrder(std::vector<Chunk *> &chunks) {
804   auto getPriority = [&ctx = ctx](const Chunk *c) {
805     if (auto *sec = dyn_cast<SectionChunk>(c))
806       if (sec->sym)
807         return ctx.config.order.lookup(sec->sym->getName());
808     return 0;
809   };
810 
811   llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
812     return getPriority(a) < getPriority(b);
813   });
814 }
815 
816 // Change the characteristics of existing PartialSections that belong to the
817 // section Name to Chars.
818 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
819   for (auto it : partialSections) {
820     PartialSection *pSec = it.second;
821     StringRef curName = pSec->name;
822     if (!curName.consume_front(name) ||
823         (!curName.empty() && !curName.starts_with("$")))
824       continue;
825     if (pSec->characteristics == chars)
826       continue;
827     PartialSection *destSec = createPartialSection(pSec->name, chars);
828     destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
829                            pSec->chunks.end());
830     pSec->chunks.clear();
831   }
832 }
833 
834 // Sort concrete section chunks from GNU import libraries.
835 //
836 // GNU binutils doesn't use short import files, but instead produces import
837 // libraries that consist of object files, with section chunks for the .idata$*
838 // sections. These are linked just as regular static libraries. Each import
839 // library consists of one header object, one object file for every imported
840 // symbol, and one trailer object. In order for the .idata tables/lists to
841 // be formed correctly, the section chunks within each .idata$* section need
842 // to be grouped by library, and sorted alphabetically within each library
843 // (which makes sure the header comes first and the trailer last).
844 bool Writer::fixGnuImportChunks() {
845   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
846 
847   // Make sure all .idata$* section chunks are mapped as RDATA in order to
848   // be sorted into the same sections as our own synthesized .idata chunks.
849   fixPartialSectionChars(".idata", rdata);
850 
851   bool hasIdata = false;
852   // Sort all .idata$* chunks, grouping chunks from the same library,
853   // with alphabetical ordering of the object files within a library.
854   for (auto it : partialSections) {
855     PartialSection *pSec = it.second;
856     if (!pSec->name.starts_with(".idata"))
857       continue;
858 
859     if (!pSec->chunks.empty())
860       hasIdata = true;
861     llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
862       SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
863       SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
864       if (!sc1 || !sc2) {
865         // if SC1, order them ascending. If SC2 or both null,
866         // S is not less than T.
867         return sc1 != nullptr;
868       }
869       // Make a string with "libraryname/objectfile" for sorting, achieving
870       // both grouping by library and sorting of objects within a library,
871       // at once.
872       std::string key1 =
873           (sc1->file->parentName + "/" + sc1->file->getName()).str();
874       std::string key2 =
875           (sc2->file->parentName + "/" + sc2->file->getName()).str();
876       return key1 < key2;
877     });
878   }
879   return hasIdata;
880 }
881 
882 // Add generated idata chunks, for imported symbols and DLLs, and a
883 // terminator in .idata$2.
884 void Writer::addSyntheticIdata() {
885   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
886   idata.create(ctx);
887 
888   // Add the .idata content in the right section groups, to allow
889   // chunks from other linked in object files to be grouped together.
890   // See Microsoft PE/COFF spec 5.4 for details.
891   auto add = [&](StringRef n, std::vector<Chunk *> &v) {
892     PartialSection *pSec = createPartialSection(n, rdata);
893     pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
894   };
895 
896   // The loader assumes a specific order of data.
897   // Add each type in the correct order.
898   add(".idata$2", idata.dirs);
899   add(".idata$4", idata.lookups);
900   add(".idata$5", idata.addresses);
901   if (!idata.hints.empty())
902     add(".idata$6", idata.hints);
903   add(".idata$7", idata.dllNames);
904 }
905 
906 // Locate the first Chunk and size of the import directory list and the
907 // IAT.
908 void Writer::locateImportTables() {
909   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
910 
911   if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
912     if (!importDirs->chunks.empty())
913       importTableStart = importDirs->chunks.front();
914     for (Chunk *c : importDirs->chunks)
915       importTableSize += c->getSize();
916   }
917 
918   if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
919     if (!importAddresses->chunks.empty())
920       iatStart = importAddresses->chunks.front();
921     for (Chunk *c : importAddresses->chunks)
922       iatSize += c->getSize();
923   }
924 }
925 
926 // Return whether a SectionChunk's suffix (the dollar and any trailing
927 // suffix) should be removed and sorted into the main suffixless
928 // PartialSection.
929 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name,
930                                      bool isMinGW) {
931   // On MinGW, comdat groups are formed by putting the comdat group name
932   // after the '$' in the section name. For .eh_frame$<symbol>, that must
933   // still be sorted before the .eh_frame trailer from crtend.o, thus just
934   // strip the section name trailer. For other sections, such as
935   // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
936   // ".tls$"), they must be strictly sorted after .tls. And for the
937   // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
938   // suffix for sorting. Thus, to play it safe, only strip the suffix for
939   // the standard sections.
940   if (!isMinGW)
941     return false;
942   if (!sc || !sc->isCOMDAT())
943     return false;
944   return name.starts_with(".text$") || name.starts_with(".data$") ||
945          name.starts_with(".rdata$") || name.starts_with(".pdata$") ||
946          name.starts_with(".xdata$") || name.starts_with(".eh_frame$");
947 }
948 
949 void Writer::sortSections() {
950   if (!ctx.config.callGraphProfile.empty()) {
951     DenseMap<const SectionChunk *, int> order =
952         computeCallGraphProfileOrder(ctx);
953     for (auto it : order) {
954       if (DefinedRegular *sym = it.first->sym)
955         ctx.config.order[sym->getName()] = it.second;
956     }
957   }
958   if (!ctx.config.order.empty())
959     for (auto it : partialSections)
960       sortBySectionOrder(it.second->chunks);
961 }
962 
963 // Create output section objects and add them to OutputSections.
964 void Writer::createSections() {
965   llvm::TimeTraceScope timeScope("Output sections");
966   // First, create the builtin sections.
967   const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
968   const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
969   const uint32_t code = IMAGE_SCN_CNT_CODE;
970   const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
971   const uint32_t r = IMAGE_SCN_MEM_READ;
972   const uint32_t w = IMAGE_SCN_MEM_WRITE;
973   const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
974 
975   SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
976   auto createSection = [&](StringRef name, uint32_t outChars) {
977     OutputSection *&sec = sections[{name, outChars}];
978     if (!sec) {
979       sec = make<OutputSection>(name, outChars);
980       ctx.outputSections.push_back(sec);
981     }
982     return sec;
983   };
984 
985   // Try to match the section order used by link.exe.
986   textSec = createSection(".text", code | r | x);
987   createSection(".bss", bss | r | w);
988   rdataSec = createSection(".rdata", data | r);
989   buildidSec = createSection(".buildid", data | r);
990   dataSec = createSection(".data", data | r | w);
991   pdataSec = createSection(".pdata", data | r);
992   idataSec = createSection(".idata", data | r);
993   edataSec = createSection(".edata", data | r);
994   didatSec = createSection(".didat", data | r);
995   rsrcSec = createSection(".rsrc", data | r);
996   relocSec = createSection(".reloc", data | discardable | r);
997   ctorsSec = createSection(".ctors", data | r | w);
998   dtorsSec = createSection(".dtors", data | r | w);
999 
1000   // Then bin chunks by name and output characteristics.
1001   for (Chunk *c : ctx.symtab.getChunks()) {
1002     auto *sc = dyn_cast<SectionChunk>(c);
1003     if (sc && !sc->live) {
1004       if (ctx.config.verbose)
1005         sc->printDiscardedMessage();
1006       continue;
1007     }
1008     StringRef name = c->getSectionName();
1009     if (shouldStripSectionSuffix(sc, name, ctx.config.mingw))
1010       name = name.split('$').first;
1011 
1012     if (name.starts_with(".tls"))
1013       tlsAlignment = std::max(tlsAlignment, c->getAlignment());
1014 
1015     PartialSection *pSec = createPartialSection(name,
1016                                                 c->getOutputCharacteristics());
1017     pSec->chunks.push_back(c);
1018   }
1019 
1020   fixPartialSectionChars(".rsrc", data | r);
1021   fixPartialSectionChars(".edata", data | r);
1022   // Even in non MinGW cases, we might need to link against GNU import
1023   // libraries.
1024   bool hasIdata = fixGnuImportChunks();
1025   if (!idata.empty())
1026     hasIdata = true;
1027 
1028   if (hasIdata)
1029     addSyntheticIdata();
1030 
1031   sortSections();
1032 
1033   if (hasIdata)
1034     locateImportTables();
1035 
1036   // Then create an OutputSection for each section.
1037   // '$' and all following characters in input section names are
1038   // discarded when determining output section. So, .text$foo
1039   // contributes to .text, for example. See PE/COFF spec 3.2.
1040   for (auto it : partialSections) {
1041     PartialSection *pSec = it.second;
1042     StringRef name = getOutputSectionName(pSec->name);
1043     uint32_t outChars = pSec->characteristics;
1044 
1045     if (name == ".CRT") {
1046       // In link.exe, there is a special case for the I386 target where .CRT
1047       // sections are treated as if they have output characteristics DATA | R if
1048       // their characteristics are DATA | R | W. This implements the same
1049       // special case for all architectures.
1050       outChars = data | r;
1051 
1052       log("Processing section " + pSec->name + " -> " + name);
1053 
1054       sortCRTSectionChunks(pSec->chunks);
1055     }
1056 
1057     OutputSection *sec = createSection(name, outChars);
1058     for (Chunk *c : pSec->chunks)
1059       sec->addChunk(c);
1060 
1061     sec->addContributingPartialSection(pSec);
1062   }
1063 
1064   // Finally, move some output sections to the end.
1065   auto sectionOrder = [&](const OutputSection *s) {
1066     // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
1067     // because the loader cannot handle holes. Stripping can remove other
1068     // discardable ones than .reloc, which is first of them (created early).
1069     if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) {
1070       // Move discardable sections named .debug_ to the end, after other
1071       // discardable sections. Stripping only removes the sections named
1072       // .debug_* - thus try to avoid leaving holes after stripping.
1073       if (s->name.starts_with(".debug_"))
1074         return 3;
1075       return 2;
1076     }
1077     // .rsrc should come at the end of the non-discardable sections because its
1078     // size may change by the Win32 UpdateResources() function, causing
1079     // subsequent sections to move (see https://crbug.com/827082).
1080     if (s == rsrcSec)
1081       return 1;
1082     return 0;
1083   };
1084   llvm::stable_sort(ctx.outputSections,
1085                     [&](const OutputSection *s, const OutputSection *t) {
1086                       return sectionOrder(s) < sectionOrder(t);
1087                     });
1088 }
1089 
1090 void Writer::createMiscChunks() {
1091   llvm::TimeTraceScope timeScope("Misc chunks");
1092   Configuration *config = &ctx.config;
1093 
1094   for (MergeChunk *p : ctx.mergeChunkInstances) {
1095     if (p) {
1096       p->finalizeContents();
1097       rdataSec->addChunk(p);
1098     }
1099   }
1100 
1101   // Create thunks for locally-dllimported symbols.
1102   if (!ctx.symtab.localImportChunks.empty()) {
1103     for (Chunk *c : ctx.symtab.localImportChunks)
1104       rdataSec->addChunk(c);
1105   }
1106 
1107   // Create Debug Information Chunks
1108   debugInfoSec = config->mingw ? buildidSec : rdataSec;
1109   if (config->buildIDHash != BuildIDHash::None || config->debug ||
1110       config->repro || config->cetCompat) {
1111     debugDirectory =
1112         make<DebugDirectoryChunk>(ctx, debugRecords, config->repro);
1113     debugDirectory->setAlignment(4);
1114     debugInfoSec->addChunk(debugDirectory);
1115   }
1116 
1117   if (config->debug || config->buildIDHash != BuildIDHash::None) {
1118     // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified.  We
1119     // output a PDB no matter what, and this chunk provides the only means of
1120     // allowing a debugger to match a PDB and an executable.  So we need it even
1121     // if we're ultimately not going to write CodeView data to the PDB.
1122     buildId = make<CVDebugRecordChunk>(ctx);
1123     debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId);
1124     if (Symbol *buildidSym = ctx.symtab.findUnderscore("__buildid"))
1125       replaceSymbol<DefinedSynthetic>(buildidSym, buildidSym->getName(),
1126                                       buildId, 4);
1127   }
1128 
1129   if (config->cetCompat) {
1130     debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
1131                               make<ExtendedDllCharacteristicsChunk>(
1132                                   IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT));
1133   }
1134 
1135   // Align and add each chunk referenced by the debug data directory.
1136   for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
1137     r.second->setAlignment(4);
1138     debugInfoSec->addChunk(r.second);
1139   }
1140 
1141   // Create SEH table. x86-only.
1142   if (config->safeSEH)
1143     createSEHTable();
1144 
1145   // Create /guard:cf tables if requested.
1146   if (config->guardCF != GuardCFLevel::Off)
1147     createGuardCFTables();
1148 
1149   if (isArm64EC(config->machine))
1150     createECChunks();
1151 
1152   if (config->autoImport)
1153     createRuntimePseudoRelocs();
1154 
1155   if (config->mingw)
1156     insertCtorDtorSymbols();
1157 }
1158 
1159 // Create .idata section for the DLL-imported symbol table.
1160 // The format of this section is inherently Windows-specific.
1161 // IdataContents class abstracted away the details for us,
1162 // so we just let it create chunks and add them to the section.
1163 void Writer::createImportTables() {
1164   llvm::TimeTraceScope timeScope("Import tables");
1165   // Initialize DLLOrder so that import entries are ordered in
1166   // the same order as in the command line. (That affects DLL
1167   // initialization order, and this ordering is MSVC-compatible.)
1168   for (ImportFile *file : ctx.importFileInstances) {
1169     if (!file->live)
1170       continue;
1171 
1172     std::string dll = StringRef(file->dllName).lower();
1173     if (ctx.config.dllOrder.count(dll) == 0)
1174       ctx.config.dllOrder[dll] = ctx.config.dllOrder.size();
1175 
1176     if (file->impSym && !isa<DefinedImportData>(file->impSym))
1177       fatal(toString(ctx, *file->impSym) + " was replaced");
1178     DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1179     if (ctx.config.delayLoads.count(StringRef(file->dllName).lower())) {
1180       if (!file->thunkSym)
1181         fatal("cannot delay-load " + toString(file) +
1182               " due to import of data: " + toString(ctx, *impSym));
1183       delayIdata.add(impSym);
1184     } else {
1185       idata.add(impSym);
1186     }
1187   }
1188 }
1189 
1190 void Writer::appendImportThunks() {
1191   if (ctx.importFileInstances.empty())
1192     return;
1193 
1194   llvm::TimeTraceScope timeScope("Import thunks");
1195   for (ImportFile *file : ctx.importFileInstances) {
1196     if (!file->live)
1197       continue;
1198 
1199     if (!file->thunkSym)
1200       continue;
1201 
1202     if (!isa<DefinedImportThunk>(file->thunkSym))
1203       fatal(toString(ctx, *file->thunkSym) + " was replaced");
1204     DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1205     if (file->thunkLive)
1206       textSec->addChunk(thunk->getChunk());
1207   }
1208 
1209   if (!delayIdata.empty()) {
1210     Defined *helper = cast<Defined>(ctx.config.delayLoadHelper);
1211     delayIdata.create(helper);
1212     for (Chunk *c : delayIdata.getChunks())
1213       didatSec->addChunk(c);
1214     for (Chunk *c : delayIdata.getDataChunks())
1215       dataSec->addChunk(c);
1216     for (Chunk *c : delayIdata.getCodeChunks())
1217       textSec->addChunk(c);
1218     for (Chunk *c : delayIdata.getCodePData())
1219       pdataSec->addChunk(c);
1220     for (Chunk *c : delayIdata.getCodeUnwindInfo())
1221       rdataSec->addChunk(c);
1222   }
1223 }
1224 
1225 void Writer::createExportTable() {
1226   llvm::TimeTraceScope timeScope("Export table");
1227   if (!edataSec->chunks.empty()) {
1228     // Allow using a custom built export table from input object files, instead
1229     // of having the linker synthesize the tables.
1230     if (ctx.config.hadExplicitExports)
1231       warn("literal .edata sections override exports");
1232   } else if (!ctx.config.exports.empty()) {
1233     for (Chunk *c : edata.chunks)
1234       edataSec->addChunk(c);
1235   }
1236   if (!edataSec->chunks.empty()) {
1237     edataStart = edataSec->chunks.front();
1238     edataEnd = edataSec->chunks.back();
1239   }
1240   // Warn on exported deleting destructor.
1241   for (auto e : ctx.config.exports)
1242     if (e.sym && e.sym->getName().starts_with("??_G"))
1243       warn("export of deleting dtor: " + toString(ctx, *e.sym));
1244 }
1245 
1246 void Writer::removeUnusedSections() {
1247   llvm::TimeTraceScope timeScope("Remove unused sections");
1248   // Remove sections that we can be sure won't get content, to avoid
1249   // allocating space for their section headers.
1250   auto isUnused = [this](OutputSection *s) {
1251     if (s == relocSec)
1252       return false; // This section is populated later.
1253     // MergeChunks have zero size at this point, as their size is finalized
1254     // later. Only remove sections that have no Chunks at all.
1255     return s->chunks.empty();
1256   };
1257   llvm::erase_if(ctx.outputSections, isUnused);
1258 }
1259 
1260 // The Windows loader doesn't seem to like empty sections,
1261 // so we remove them if any.
1262 void Writer::removeEmptySections() {
1263   llvm::TimeTraceScope timeScope("Remove empty sections");
1264   auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1265   llvm::erase_if(ctx.outputSections, isEmpty);
1266 }
1267 
1268 void Writer::assignOutputSectionIndices() {
1269   llvm::TimeTraceScope timeScope("Output sections indices");
1270   // Assign final output section indices, and assign each chunk to its output
1271   // section.
1272   uint32_t idx = 1;
1273   for (OutputSection *os : ctx.outputSections) {
1274     os->sectionIndex = idx;
1275     for (Chunk *c : os->chunks)
1276       c->setOutputSectionIdx(idx);
1277     ++idx;
1278   }
1279 
1280   // Merge chunks are containers of chunks, so assign those an output section
1281   // too.
1282   for (MergeChunk *mc : ctx.mergeChunkInstances)
1283     if (mc)
1284       for (SectionChunk *sc : mc->sections)
1285         if (sc && sc->live)
1286           sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1287 }
1288 
1289 size_t Writer::addEntryToStringTable(StringRef str) {
1290   assert(str.size() > COFF::NameSize);
1291   size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1292   strtab.insert(strtab.end(), str.begin(), str.end());
1293   strtab.push_back('\0');
1294   return offsetOfEntry;
1295 }
1296 
1297 std::optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1298   coff_symbol16 sym;
1299   switch (def->kind()) {
1300   case Symbol::DefinedAbsoluteKind: {
1301     auto *da = dyn_cast<DefinedAbsolute>(def);
1302     // Note: COFF symbol can only store 32-bit values, so 64-bit absolute
1303     // values will be truncated.
1304     sym.Value = da->getVA();
1305     sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1306     break;
1307   }
1308   default: {
1309     // Don't write symbols that won't be written to the output to the symbol
1310     // table.
1311     // We also try to write DefinedSynthetic as a normal symbol. Some of these
1312     // symbols do point to an actual chunk, like __safe_se_handler_table. Others
1313     // like __ImageBase are outside of sections and thus cannot be represented.
1314     Chunk *c = def->getChunk();
1315     if (!c)
1316       return std::nullopt;
1317     OutputSection *os = ctx.getOutputSection(c);
1318     if (!os)
1319       return std::nullopt;
1320 
1321     sym.Value = def->getRVA() - os->getRVA();
1322     sym.SectionNumber = os->sectionIndex;
1323     break;
1324   }
1325   }
1326 
1327   // Symbols that are runtime pseudo relocations don't point to the actual
1328   // symbol data itself (as they are imported), but points to the IAT entry
1329   // instead. Avoid emitting them to the symbol table, as they can confuse
1330   // debuggers.
1331   if (def->isRuntimePseudoReloc)
1332     return std::nullopt;
1333 
1334   StringRef name = def->getName();
1335   if (name.size() > COFF::NameSize) {
1336     sym.Name.Offset.Zeroes = 0;
1337     sym.Name.Offset.Offset = addEntryToStringTable(name);
1338   } else {
1339     memset(sym.Name.ShortName, 0, COFF::NameSize);
1340     memcpy(sym.Name.ShortName, name.data(), name.size());
1341   }
1342 
1343   if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1344     COFFSymbolRef ref = d->getCOFFSymbol();
1345     sym.Type = ref.getType();
1346     sym.StorageClass = ref.getStorageClass();
1347   } else if (def->kind() == Symbol::DefinedImportThunkKind) {
1348     sym.Type = (IMAGE_SYM_DTYPE_FUNCTION << SCT_COMPLEX_TYPE_SHIFT) |
1349                IMAGE_SYM_TYPE_NULL;
1350     sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1351   } else {
1352     sym.Type = IMAGE_SYM_TYPE_NULL;
1353     sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1354   }
1355   sym.NumberOfAuxSymbols = 0;
1356   return sym;
1357 }
1358 
1359 void Writer::createSymbolAndStringTable() {
1360   llvm::TimeTraceScope timeScope("Symbol and string table");
1361   // PE/COFF images are limited to 8 byte section names. Longer names can be
1362   // supported by writing a non-standard string table, but this string table is
1363   // not mapped at runtime and the long names will therefore be inaccessible.
1364   // link.exe always truncates section names to 8 bytes, whereas binutils always
1365   // preserves long section names via the string table. LLD adopts a hybrid
1366   // solution where discardable sections have long names preserved and
1367   // non-discardable sections have their names truncated, to ensure that any
1368   // section which is mapped at runtime also has its name mapped at runtime.
1369   for (OutputSection *sec : ctx.outputSections) {
1370     if (sec->name.size() <= COFF::NameSize)
1371       continue;
1372     if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1373       continue;
1374     if (ctx.config.warnLongSectionNames) {
1375       warn("section name " + sec->name +
1376            " is longer than 8 characters and will use a non-standard string "
1377            "table");
1378     }
1379     sec->setStringTableOff(addEntryToStringTable(sec->name));
1380   }
1381 
1382   if (ctx.config.writeSymtab) {
1383     for (ObjFile *file : ctx.objFileInstances) {
1384       for (Symbol *b : file->getSymbols()) {
1385         auto *d = dyn_cast_or_null<Defined>(b);
1386         if (!d || d->writtenToSymtab)
1387           continue;
1388         d->writtenToSymtab = true;
1389         if (auto *dc = dyn_cast_or_null<DefinedCOFF>(d)) {
1390           COFFSymbolRef symRef = dc->getCOFFSymbol();
1391           if (symRef.isSectionDefinition() ||
1392               symRef.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL)
1393             continue;
1394         }
1395 
1396         if (std::optional<coff_symbol16> sym = createSymbol(d))
1397           outputSymtab.push_back(*sym);
1398 
1399         if (auto *dthunk = dyn_cast<DefinedImportThunk>(d)) {
1400           if (!dthunk->wrappedSym->writtenToSymtab) {
1401             dthunk->wrappedSym->writtenToSymtab = true;
1402             if (std::optional<coff_symbol16> sym =
1403                     createSymbol(dthunk->wrappedSym))
1404               outputSymtab.push_back(*sym);
1405           }
1406         }
1407       }
1408     }
1409   }
1410 
1411   if (outputSymtab.empty() && strtab.empty())
1412     return;
1413 
1414   // We position the symbol table to be adjacent to the end of the last section.
1415   uint64_t fileOff = fileSize;
1416   pointerToSymbolTable = fileOff;
1417   fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1418   fileOff += 4 + strtab.size();
1419   fileSize = alignTo(fileOff, ctx.config.fileAlign);
1420 }
1421 
1422 void Writer::mergeSections() {
1423   llvm::TimeTraceScope timeScope("Merge sections");
1424   if (!pdataSec->chunks.empty()) {
1425     if (isArm64EC(ctx.config.machine)) {
1426       // On ARM64EC .pdata may contain both ARM64 and X64 data. Split them by
1427       // sorting and store their regions separately.
1428       llvm::stable_sort(pdataSec->chunks, [=](const Chunk *a, const Chunk *b) {
1429         return (a->getMachine() == AMD64) < (b->getMachine() == AMD64);
1430       });
1431 
1432       for (auto chunk : pdataSec->chunks) {
1433         if (chunk->getMachine() == AMD64) {
1434           hybridPdata.first = chunk;
1435           hybridPdata.last = pdataSec->chunks.back();
1436           break;
1437         }
1438 
1439         if (!pdata.first)
1440           pdata.first = chunk;
1441         pdata.last = chunk;
1442       }
1443     } else {
1444       pdata.first = pdataSec->chunks.front();
1445       pdata.last = pdataSec->chunks.back();
1446     }
1447   }
1448 
1449   for (auto &p : ctx.config.merge) {
1450     StringRef toName = p.second;
1451     if (p.first == toName)
1452       continue;
1453     StringSet<> names;
1454     while (true) {
1455       if (!names.insert(toName).second)
1456         fatal("/merge: cycle found for section '" + p.first + "'");
1457       auto i = ctx.config.merge.find(toName);
1458       if (i == ctx.config.merge.end())
1459         break;
1460       toName = i->second;
1461     }
1462     OutputSection *from = findSection(p.first);
1463     OutputSection *to = findSection(toName);
1464     if (!from)
1465       continue;
1466     if (!to) {
1467       from->name = toName;
1468       continue;
1469     }
1470     to->merge(from);
1471   }
1472 }
1473 
1474 // EC targets may have chunks of various architectures mixed together at this
1475 // point. Group code chunks of the same architecture together by sorting chunks
1476 // by their EC range type.
1477 void Writer::sortECChunks() {
1478   if (!isArm64EC(ctx.config.machine))
1479     return;
1480 
1481   for (OutputSection *sec : ctx.outputSections) {
1482     if (sec->isCodeSection())
1483       llvm::stable_sort(sec->chunks, [=](const Chunk *a, const Chunk *b) {
1484         std::optional<chpe_range_type> aType = a->getArm64ECRangeType(),
1485                                        bType = b->getArm64ECRangeType();
1486         return bType && (!aType || *aType < *bType);
1487       });
1488   }
1489 }
1490 
1491 // Visits all sections to assign incremental, non-overlapping RVAs and
1492 // file offsets.
1493 void Writer::assignAddresses() {
1494   llvm::TimeTraceScope timeScope("Assign addresses");
1495   Configuration *config = &ctx.config;
1496 
1497   // We need to create EC code map so that ECCodeMapChunk knows its size.
1498   // We do it here to make sure that we account for range extension chunks.
1499   createECCodeMap();
1500 
1501   sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1502                   sizeof(data_directory) * numberOfDataDirectory +
1503                   sizeof(coff_section) * ctx.outputSections.size();
1504   sizeOfHeaders +=
1505       config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1506   sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1507   fileSize = sizeOfHeaders;
1508 
1509   // The first page is kept unmapped.
1510   uint64_t rva = alignTo(sizeOfHeaders, config->align);
1511 
1512   for (OutputSection *sec : ctx.outputSections) {
1513     llvm::TimeTraceScope timeScope("Section: ", sec->name);
1514     if (sec == relocSec)
1515       addBaserels();
1516     uint64_t rawSize = 0, virtualSize = 0;
1517     sec->header.VirtualAddress = rva;
1518 
1519     // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1520     // hotpatchable image.
1521     uint32_t padding = sec->isCodeSection() ? config->functionPadMin : 0;
1522     std::optional<chpe_range_type> prevECRange;
1523 
1524     for (Chunk *c : sec->chunks) {
1525       // Alignment EC code range baudaries.
1526       if (isArm64EC(ctx.config.machine) && sec->isCodeSection()) {
1527         std::optional<chpe_range_type> rangeType = c->getArm64ECRangeType();
1528         if (rangeType != prevECRange) {
1529           virtualSize = alignTo(virtualSize, 4096);
1530           prevECRange = rangeType;
1531         }
1532       }
1533       if (padding && c->isHotPatchable())
1534         virtualSize += padding;
1535       virtualSize = alignTo(virtualSize, c->getAlignment());
1536       c->setRVA(rva + virtualSize);
1537       virtualSize += c->getSize();
1538       if (c->hasData)
1539         rawSize = alignTo(virtualSize, config->fileAlign);
1540     }
1541     if (virtualSize > UINT32_MAX)
1542       error("section larger than 4 GiB: " + sec->name);
1543     sec->header.VirtualSize = virtualSize;
1544     sec->header.SizeOfRawData = rawSize;
1545     if (rawSize != 0)
1546       sec->header.PointerToRawData = fileSize;
1547     rva += alignTo(virtualSize, config->align);
1548     fileSize += alignTo(rawSize, config->fileAlign);
1549   }
1550   sizeOfImage = alignTo(rva, config->align);
1551 
1552   // Assign addresses to sections in MergeChunks.
1553   for (MergeChunk *mc : ctx.mergeChunkInstances)
1554     if (mc)
1555       mc->assignSubsectionRVAs();
1556 }
1557 
1558 template <typename PEHeaderTy> void Writer::writeHeader() {
1559   // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1560   // executable consists of an MS-DOS MZ executable. If the executable is run
1561   // under DOS, that program gets run (usually to just print an error message).
1562   // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1563   // the PE header instead.
1564   Configuration *config = &ctx.config;
1565   uint8_t *buf = buffer->getBufferStart();
1566   auto *dos = reinterpret_cast<dos_header *>(buf);
1567   buf += sizeof(dos_header);
1568   dos->Magic[0] = 'M';
1569   dos->Magic[1] = 'Z';
1570   dos->UsedBytesInTheLastPage = dosStubSize % 512;
1571   dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1572   dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1573 
1574   dos->AddressOfRelocationTable = sizeof(dos_header);
1575   dos->AddressOfNewExeHeader = dosStubSize;
1576 
1577   // Write DOS program.
1578   memcpy(buf, dosProgram, sizeof(dosProgram));
1579   buf += sizeof(dosProgram);
1580 
1581   // Write PE magic
1582   memcpy(buf, PEMagic, sizeof(PEMagic));
1583   buf += sizeof(PEMagic);
1584 
1585   // Write COFF header
1586   auto *coff = reinterpret_cast<coff_file_header *>(buf);
1587   buf += sizeof(*coff);
1588   switch (config->machine) {
1589   case ARM64EC:
1590     coff->Machine = AMD64;
1591     break;
1592   case ARM64X:
1593     coff->Machine = ARM64;
1594     break;
1595   default:
1596     coff->Machine = config->machine;
1597   }
1598   coff->NumberOfSections = ctx.outputSections.size();
1599   coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1600   if (config->largeAddressAware)
1601     coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1602   if (!config->is64())
1603     coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1604   if (config->dll)
1605     coff->Characteristics |= IMAGE_FILE_DLL;
1606   if (config->driverUponly)
1607     coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1608   if (!config->relocatable)
1609     coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1610   if (config->swaprunCD)
1611     coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1612   if (config->swaprunNet)
1613     coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1614   coff->SizeOfOptionalHeader =
1615       sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1616 
1617   // Write PE header
1618   auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1619   buf += sizeof(*pe);
1620   pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1621 
1622   // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1623   // reason signing the resulting PE file with Authenticode produces a
1624   // signature that fails to validate on Windows 7 (but is OK on 10).
1625   // Set it to 14.0, which is what VS2015 outputs, and which avoids
1626   // that problem.
1627   pe->MajorLinkerVersion = 14;
1628   pe->MinorLinkerVersion = 0;
1629 
1630   pe->ImageBase = config->imageBase;
1631   pe->SectionAlignment = config->align;
1632   pe->FileAlignment = config->fileAlign;
1633   pe->MajorImageVersion = config->majorImageVersion;
1634   pe->MinorImageVersion = config->minorImageVersion;
1635   pe->MajorOperatingSystemVersion = config->majorOSVersion;
1636   pe->MinorOperatingSystemVersion = config->minorOSVersion;
1637   pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1638   pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1639   pe->Subsystem = config->subsystem;
1640   pe->SizeOfImage = sizeOfImage;
1641   pe->SizeOfHeaders = sizeOfHeaders;
1642   if (!config->noEntry) {
1643     Defined *entry = cast<Defined>(config->entry);
1644     pe->AddressOfEntryPoint = entry->getRVA();
1645     // Pointer to thumb code must have the LSB set, so adjust it.
1646     if (config->machine == ARMNT)
1647       pe->AddressOfEntryPoint |= 1;
1648   }
1649   pe->SizeOfStackReserve = config->stackReserve;
1650   pe->SizeOfStackCommit = config->stackCommit;
1651   pe->SizeOfHeapReserve = config->heapReserve;
1652   pe->SizeOfHeapCommit = config->heapCommit;
1653   if (config->appContainer)
1654     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1655   if (config->driverWdm)
1656     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1657   if (config->dynamicBase)
1658     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1659   if (config->highEntropyVA)
1660     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1661   if (!config->allowBind)
1662     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1663   if (config->nxCompat)
1664     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1665   if (!config->allowIsolation)
1666     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1667   if (config->guardCF != GuardCFLevel::Off)
1668     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1669   if (config->integrityCheck)
1670     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1671   if (setNoSEHCharacteristic || config->noSEH)
1672     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1673   if (config->terminalServerAware)
1674     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1675   pe->NumberOfRvaAndSize = numberOfDataDirectory;
1676   if (textSec->getVirtualSize()) {
1677     pe->BaseOfCode = textSec->getRVA();
1678     pe->SizeOfCode = textSec->getRawSize();
1679   }
1680   pe->SizeOfInitializedData = getSizeOfInitializedData();
1681 
1682   // Write data directory
1683   auto *dir = reinterpret_cast<data_directory *>(buf);
1684   buf += sizeof(*dir) * numberOfDataDirectory;
1685   if (edataStart) {
1686     dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1687     dir[EXPORT_TABLE].Size =
1688         edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1689   }
1690   if (importTableStart) {
1691     dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1692     dir[IMPORT_TABLE].Size = importTableSize;
1693   }
1694   if (iatStart) {
1695     dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1696     dir[IAT].Size = iatSize;
1697   }
1698   if (rsrcSec->getVirtualSize()) {
1699     dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1700     dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1701   }
1702   // ARM64EC (but not ARM64X) contains x86_64 exception table in data directory.
1703   ChunkRange &exceptionTable =
1704       ctx.config.machine == ARM64EC ? hybridPdata : pdata;
1705   if (exceptionTable.first) {
1706     dir[EXCEPTION_TABLE].RelativeVirtualAddress =
1707         exceptionTable.first->getRVA();
1708     dir[EXCEPTION_TABLE].Size = exceptionTable.last->getRVA() +
1709                                 exceptionTable.last->getSize() -
1710                                 exceptionTable.first->getRVA();
1711   }
1712   if (relocSec->getVirtualSize()) {
1713     dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1714     dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1715   }
1716   if (Symbol *sym = ctx.symtab.findUnderscore("_tls_used")) {
1717     if (Defined *b = dyn_cast<Defined>(sym)) {
1718       dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1719       dir[TLS_TABLE].Size = config->is64()
1720                                 ? sizeof(object::coff_tls_directory64)
1721                                 : sizeof(object::coff_tls_directory32);
1722     }
1723   }
1724   if (debugDirectory) {
1725     dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1726     dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1727   }
1728   if (Symbol *sym = ctx.symtab.findUnderscore("_load_config_used")) {
1729     if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1730       SectionChunk *sc = b->getChunk();
1731       assert(b->getRVA() >= sc->getRVA());
1732       uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1733       if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1734         fatal("_load_config_used is malformed");
1735 
1736       ArrayRef<uint8_t> secContents = sc->getContents();
1737       uint32_t loadConfigSize =
1738           *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1739       if (offsetInChunk + loadConfigSize > sc->getSize())
1740         fatal("_load_config_used is too large");
1741       dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1742       dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1743     }
1744   }
1745   if (!delayIdata.empty()) {
1746     dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1747         delayIdata.getDirRVA();
1748     dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1749   }
1750 
1751   // Write section table
1752   for (OutputSection *sec : ctx.outputSections) {
1753     sec->writeHeaderTo(buf, config->debug);
1754     buf += sizeof(coff_section);
1755   }
1756   sectionTable = ArrayRef<uint8_t>(
1757       buf - ctx.outputSections.size() * sizeof(coff_section), buf);
1758 
1759   if (outputSymtab.empty() && strtab.empty())
1760     return;
1761 
1762   coff->PointerToSymbolTable = pointerToSymbolTable;
1763   uint32_t numberOfSymbols = outputSymtab.size();
1764   coff->NumberOfSymbols = numberOfSymbols;
1765   auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1766       buffer->getBufferStart() + coff->PointerToSymbolTable);
1767   for (size_t i = 0; i != numberOfSymbols; ++i)
1768     symbolTable[i] = outputSymtab[i];
1769   // Create the string table, it follows immediately after the symbol table.
1770   // The first 4 bytes is length including itself.
1771   buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1772   write32le(buf, strtab.size() + 4);
1773   if (!strtab.empty())
1774     memcpy(buf + 4, strtab.data(), strtab.size());
1775 }
1776 
1777 void Writer::openFile(StringRef path) {
1778   buffer = CHECK(
1779       FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1780       "failed to open " + path);
1781 }
1782 
1783 void Writer::createSEHTable() {
1784   SymbolRVASet handlers;
1785   for (ObjFile *file : ctx.objFileInstances) {
1786     if (!file->hasSafeSEH())
1787       error("/safeseh: " + file->getName() + " is not compatible with SEH");
1788     markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1789   }
1790 
1791   // Set the "no SEH" characteristic if there really were no handlers, or if
1792   // there is no load config object to point to the table of handlers.
1793   setNoSEHCharacteristic =
1794       handlers.empty() || !ctx.symtab.findUnderscore("_load_config_used");
1795 
1796   maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1797                    "__safe_se_handler_count");
1798 }
1799 
1800 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1801 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1802 // symbol's offset into that Chunk.
1803 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1804   Chunk *c = s->getChunk();
1805   if (!c)
1806     return;
1807   if (auto *sc = dyn_cast<SectionChunk>(c))
1808     c = sc->repl; // Look through ICF replacement.
1809   uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1810   rvaSet.insert({c, off});
1811 }
1812 
1813 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1814 // symbol in an executable section.
1815 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1816                                          Symbol *s) {
1817   if (!s)
1818     return;
1819 
1820   switch (s->kind()) {
1821   case Symbol::DefinedLocalImportKind:
1822   case Symbol::DefinedImportDataKind:
1823     // Defines an __imp_ pointer, so it is data, so it is ignored.
1824     break;
1825   case Symbol::DefinedCommonKind:
1826     // Common is always data, so it is ignored.
1827     break;
1828   case Symbol::DefinedAbsoluteKind:
1829   case Symbol::DefinedSyntheticKind:
1830     // Absolute is never code, synthetic generally isn't and usually isn't
1831     // determinable.
1832     break;
1833   case Symbol::LazyArchiveKind:
1834   case Symbol::LazyObjectKind:
1835   case Symbol::LazyDLLSymbolKind:
1836   case Symbol::UndefinedKind:
1837     // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1838     // symbols shouldn't have relocations.
1839     break;
1840 
1841   case Symbol::DefinedImportThunkKind:
1842     // Thunks are always code, include them.
1843     addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1844     break;
1845 
1846   case Symbol::DefinedRegularKind: {
1847     // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1848     // address taken if the symbol type is function and it's in an executable
1849     // section.
1850     auto *d = cast<DefinedRegular>(s);
1851     if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1852       SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1853       if (sc && sc->live &&
1854           sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1855         addSymbolToRVASet(addressTakenSyms, d);
1856     }
1857     break;
1858   }
1859   }
1860 }
1861 
1862 // Visit all relocations from all section contributions of this object file and
1863 // mark the relocation target as address-taken.
1864 void Writer::markSymbolsWithRelocations(ObjFile *file,
1865                                         SymbolRVASet &usedSymbols) {
1866   for (Chunk *c : file->getChunks()) {
1867     // We only care about live section chunks. Common chunks and other chunks
1868     // don't generally contain relocations.
1869     SectionChunk *sc = dyn_cast<SectionChunk>(c);
1870     if (!sc || !sc->live)
1871       continue;
1872 
1873     for (const coff_relocation &reloc : sc->getRelocs()) {
1874       if (ctx.config.machine == I386 &&
1875           reloc.Type == COFF::IMAGE_REL_I386_REL32)
1876         // Ignore relative relocations on x86. On x86_64 they can't be ignored
1877         // since they're also used to compute absolute addresses.
1878         continue;
1879 
1880       Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1881       maybeAddAddressTakenFunction(usedSymbols, ref);
1882     }
1883   }
1884 }
1885 
1886 // Create the guard function id table. This is a table of RVAs of all
1887 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1888 // table.
1889 void Writer::createGuardCFTables() {
1890   Configuration *config = &ctx.config;
1891 
1892   SymbolRVASet addressTakenSyms;
1893   SymbolRVASet giatsRVASet;
1894   std::vector<Symbol *> giatsSymbols;
1895   SymbolRVASet longJmpTargets;
1896   SymbolRVASet ehContTargets;
1897   for (ObjFile *file : ctx.objFileInstances) {
1898     // If the object was compiled with /guard:cf, the address taken symbols
1899     // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
1900     // sections. If the object was not compiled with /guard:cf, we assume there
1901     // were no setjmp targets, and that all code symbols with relocations are
1902     // possibly address-taken.
1903     if (file->hasGuardCF()) {
1904       markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1905       markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
1906       getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
1907       markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1908     } else {
1909       markSymbolsWithRelocations(file, addressTakenSyms);
1910     }
1911     // If the object was compiled with /guard:ehcont, the ehcont targets are in
1912     // .gehcont$y sections.
1913     if (file->hasGuardEHCont())
1914       markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets);
1915   }
1916 
1917   // Mark the image entry as address-taken.
1918   if (config->entry)
1919     maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1920 
1921   // Mark exported symbols in executable sections as address-taken.
1922   for (Export &e : config->exports)
1923     maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1924 
1925   // For each entry in the .giats table, check if it has a corresponding load
1926   // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1927   // so, add the load thunk to the address taken (.gfids) table.
1928   for (Symbol *s : giatsSymbols) {
1929     if (auto *di = dyn_cast<DefinedImportData>(s)) {
1930       if (di->loadThunkSym)
1931         addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
1932     }
1933   }
1934 
1935   // Ensure sections referenced in the gfid table are 16-byte aligned.
1936   for (const ChunkAndOffset &c : addressTakenSyms)
1937     if (c.inputChunk->getAlignment() < 16)
1938       c.inputChunk->setAlignment(16);
1939 
1940   maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1941                    "__guard_fids_count");
1942 
1943   // Add the Guard Address Taken IAT Entry Table (.giats).
1944   maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
1945                    "__guard_iat_count");
1946 
1947   // Add the longjmp target table unless the user told us not to.
1948   if (config->guardCF & GuardCFLevel::LongJmp)
1949     maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1950                      "__guard_longjmp_count");
1951 
1952   // Add the ehcont target table unless the user told us not to.
1953   if (config->guardCF & GuardCFLevel::EHCont)
1954     maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table",
1955                      "__guard_eh_cont_count");
1956 
1957   // Set __guard_flags, which will be used in the load config to indicate that
1958   // /guard:cf was enabled.
1959   uint32_t guardFlags = uint32_t(GuardFlags::CF_INSTRUMENTED) |
1960                         uint32_t(GuardFlags::CF_FUNCTION_TABLE_PRESENT);
1961   if (config->guardCF & GuardCFLevel::LongJmp)
1962     guardFlags |= uint32_t(GuardFlags::CF_LONGJUMP_TABLE_PRESENT);
1963   if (config->guardCF & GuardCFLevel::EHCont)
1964     guardFlags |= uint32_t(GuardFlags::EH_CONTINUATION_TABLE_PRESENT);
1965   Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags");
1966   cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1967 }
1968 
1969 // Take a list of input sections containing symbol table indices and add those
1970 // symbols to a vector. The challenge is that symbol RVAs are not known and
1971 // depend on the table size, so we can't directly build a set of integers.
1972 void Writer::getSymbolsFromSections(ObjFile *file,
1973                                     ArrayRef<SectionChunk *> symIdxChunks,
1974                                     std::vector<Symbol *> &symbols) {
1975   for (SectionChunk *c : symIdxChunks) {
1976     // Skip sections discarded by linker GC. This comes up when a .gfids section
1977     // is associated with something like a vtable and the vtable is discarded.
1978     // In this case, the associated gfids section is discarded, and we don't
1979     // mark the virtual member functions as address-taken by the vtable.
1980     if (!c->live)
1981       continue;
1982 
1983     // Validate that the contents look like symbol table indices.
1984     ArrayRef<uint8_t> data = c->getContents();
1985     if (data.size() % 4 != 0) {
1986       warn("ignoring " + c->getSectionName() +
1987            " symbol table index section in object " + toString(file));
1988       continue;
1989     }
1990 
1991     // Read each symbol table index and check if that symbol was included in the
1992     // final link. If so, add it to the vector of symbols.
1993     ArrayRef<ulittle32_t> symIndices(
1994         reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1995     ArrayRef<Symbol *> objSymbols = file->getSymbols();
1996     for (uint32_t symIndex : symIndices) {
1997       if (symIndex >= objSymbols.size()) {
1998         warn("ignoring invalid symbol table index in section " +
1999              c->getSectionName() + " in object " + toString(file));
2000         continue;
2001       }
2002       if (Symbol *s = objSymbols[symIndex]) {
2003         if (s->isLive())
2004           symbols.push_back(cast<Symbol>(s));
2005       }
2006     }
2007   }
2008 }
2009 
2010 // Take a list of input sections containing symbol table indices and add those
2011 // symbols to an RVA table.
2012 void Writer::markSymbolsForRVATable(ObjFile *file,
2013                                     ArrayRef<SectionChunk *> symIdxChunks,
2014                                     SymbolRVASet &tableSymbols) {
2015   std::vector<Symbol *> syms;
2016   getSymbolsFromSections(file, symIdxChunks, syms);
2017 
2018   for (Symbol *s : syms)
2019     addSymbolToRVASet(tableSymbols, cast<Defined>(s));
2020 }
2021 
2022 // Replace the absolute table symbol with a synthetic symbol pointing to
2023 // tableChunk so that we can emit base relocations for it and resolve section
2024 // relative relocations.
2025 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
2026                               StringRef countSym, bool hasFlag) {
2027   if (tableSymbols.empty())
2028     return;
2029 
2030   NonSectionChunk *tableChunk;
2031   if (hasFlag)
2032     tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols));
2033   else
2034     tableChunk = make<RVATableChunk>(std::move(tableSymbols));
2035   rdataSec->addChunk(tableChunk);
2036 
2037   Symbol *t = ctx.symtab.findUnderscore(tableSym);
2038   Symbol *c = ctx.symtab.findUnderscore(countSym);
2039   replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
2040   cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4));
2041 }
2042 
2043 // Create CHPE metadata chunks.
2044 void Writer::createECChunks() {
2045   auto codeMapChunk = make<ECCodeMapChunk>(codeMap);
2046   rdataSec->addChunk(codeMapChunk);
2047   Symbol *codeMapSym = ctx.symtab.findUnderscore("__hybrid_code_map");
2048   replaceSymbol<DefinedSynthetic>(codeMapSym, codeMapSym->getName(),
2049                                   codeMapChunk);
2050 }
2051 
2052 // MinGW specific. Gather all relocations that are imported from a DLL even
2053 // though the code didn't expect it to, produce the table that the runtime
2054 // uses for fixing them up, and provide the synthetic symbols that the
2055 // runtime uses for finding the table.
2056 void Writer::createRuntimePseudoRelocs() {
2057   std::vector<RuntimePseudoReloc> rels;
2058 
2059   for (Chunk *c : ctx.symtab.getChunks()) {
2060     auto *sc = dyn_cast<SectionChunk>(c);
2061     if (!sc || !sc->live)
2062       continue;
2063     sc->getRuntimePseudoRelocs(rels);
2064   }
2065 
2066   if (!ctx.config.pseudoRelocs) {
2067     // Not writing any pseudo relocs; if some were needed, error out and
2068     // indicate what required them.
2069     for (const RuntimePseudoReloc &rpr : rels)
2070       error("automatic dllimport of " + rpr.sym->getName() + " in " +
2071             toString(rpr.target->file) + " requires pseudo relocations");
2072     return;
2073   }
2074 
2075   if (!rels.empty())
2076     log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
2077   PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
2078   rdataSec->addChunk(table);
2079   EmptyChunk *endOfList = make<EmptyChunk>();
2080   rdataSec->addChunk(endOfList);
2081 
2082   Symbol *headSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
2083   Symbol *endSym =
2084       ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
2085   replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
2086   replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
2087 }
2088 
2089 // MinGW specific.
2090 // The MinGW .ctors and .dtors lists have sentinels at each end;
2091 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
2092 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
2093 // and __DTOR_LIST__ respectively.
2094 void Writer::insertCtorDtorSymbols() {
2095   AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(ctx, -1);
2096   AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(ctx, 0);
2097   AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(ctx, -1);
2098   AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(ctx, 0);
2099   ctorsSec->insertChunkAtStart(ctorListHead);
2100   ctorsSec->addChunk(ctorListEnd);
2101   dtorsSec->insertChunkAtStart(dtorListHead);
2102   dtorsSec->addChunk(dtorListEnd);
2103 
2104   Symbol *ctorListSym = ctx.symtab.findUnderscore("__CTOR_LIST__");
2105   Symbol *dtorListSym = ctx.symtab.findUnderscore("__DTOR_LIST__");
2106   replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
2107                                   ctorListHead);
2108   replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
2109                                   dtorListHead);
2110 }
2111 
2112 // Handles /section options to allow users to overwrite
2113 // section attributes.
2114 void Writer::setSectionPermissions() {
2115   llvm::TimeTraceScope timeScope("Sections permissions");
2116   for (auto &p : ctx.config.section) {
2117     StringRef name = p.first;
2118     uint32_t perm = p.second;
2119     for (OutputSection *sec : ctx.outputSections)
2120       if (sec->name == name)
2121         sec->setPermissions(perm);
2122   }
2123 }
2124 
2125 // Set symbols used by ARM64EC metadata.
2126 void Writer::setECSymbols() {
2127   if (!isArm64EC(ctx.config.machine))
2128     return;
2129 
2130   Symbol *rfeTableSym = ctx.symtab.findUnderscore("__arm64x_extra_rfe_table");
2131   replaceSymbol<DefinedSynthetic>(rfeTableSym, "__arm64x_extra_rfe_table",
2132                                   pdata.first);
2133 
2134   if (pdata.first) {
2135     Symbol *rfeSizeSym =
2136         ctx.symtab.findUnderscore("__arm64x_extra_rfe_table_size");
2137     cast<DefinedAbsolute>(rfeSizeSym)
2138         ->setVA(pdata.last->getRVA() + pdata.last->getSize() -
2139                 pdata.first->getRVA());
2140   }
2141 }
2142 
2143 // Write section contents to a mmap'ed file.
2144 void Writer::writeSections() {
2145   llvm::TimeTraceScope timeScope("Write sections");
2146   uint8_t *buf = buffer->getBufferStart();
2147   for (OutputSection *sec : ctx.outputSections) {
2148     uint8_t *secBuf = buf + sec->getFileOff();
2149     // Fill gaps between functions in .text with INT3 instructions
2150     // instead of leaving as NUL bytes (which can be interpreted as
2151     // ADD instructions). Only fill the gaps between chunks. Most
2152     // chunks overwrite it anyway, but uninitialized data chunks
2153     // merged into a code section don't.
2154     if ((sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
2155         (ctx.config.machine == AMD64 || ctx.config.machine == I386)) {
2156       uint32_t prevEnd = 0;
2157       for (Chunk *c : sec->chunks) {
2158         uint32_t off = c->getRVA() - sec->getRVA();
2159         memset(secBuf + prevEnd, 0xCC, off - prevEnd);
2160         prevEnd = off + c->getSize();
2161       }
2162       memset(secBuf + prevEnd, 0xCC, sec->getRawSize() - prevEnd);
2163     }
2164 
2165     parallelForEach(sec->chunks, [&](Chunk *c) {
2166       c->writeTo(secBuf + c->getRVA() - sec->getRVA());
2167     });
2168   }
2169 }
2170 
2171 void Writer::writeBuildId() {
2172   llvm::TimeTraceScope timeScope("Write build ID");
2173 
2174   // There are two important parts to the build ID.
2175   // 1) If building with debug info, the COFF debug directory contains a
2176   //    timestamp as well as a Guid and Age of the PDB.
2177   // 2) In all cases, the PE COFF file header also contains a timestamp.
2178   // For reproducibility, instead of a timestamp we want to use a hash of the
2179   // PE contents.
2180   Configuration *config = &ctx.config;
2181   bool generateSyntheticBuildId = config->buildIDHash == BuildIDHash::Binary;
2182   if (generateSyntheticBuildId) {
2183     assert(buildId && "BuildId is not set!");
2184     // BuildId->BuildId was filled in when the PDB was written.
2185   }
2186 
2187   // At this point the only fields in the COFF file which remain unset are the
2188   // "timestamp" in the COFF file header, and the ones in the coff debug
2189   // directory.  Now we can hash the file and write that hash to the various
2190   // timestamp fields in the file.
2191   StringRef outputFileData(
2192       reinterpret_cast<const char *>(buffer->getBufferStart()),
2193       buffer->getBufferSize());
2194 
2195   uint32_t timestamp = config->timestamp;
2196   uint64_t hash = 0;
2197 
2198   if (config->repro || generateSyntheticBuildId)
2199     hash = xxh3_64bits(outputFileData);
2200 
2201   if (config->repro)
2202     timestamp = static_cast<uint32_t>(hash);
2203 
2204   if (generateSyntheticBuildId) {
2205     buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
2206     buildId->buildId->PDB70.Age = 1;
2207     memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
2208     // xxhash only gives us 8 bytes, so put some fixed data in the other half.
2209     memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
2210   }
2211 
2212   if (debugDirectory)
2213     debugDirectory->setTimeDateStamp(timestamp);
2214 
2215   uint8_t *buf = buffer->getBufferStart();
2216   buf += dosStubSize + sizeof(PEMagic);
2217   object::coff_file_header *coffHeader =
2218       reinterpret_cast<coff_file_header *>(buf);
2219   coffHeader->TimeDateStamp = timestamp;
2220 }
2221 
2222 // Sort .pdata section contents according to PE/COFF spec 5.5.
2223 template <typename T>
2224 void Writer::sortExceptionTable(ChunkRange &exceptionTable) {
2225   if (!exceptionTable.first)
2226     return;
2227 
2228   // We assume .pdata contains function table entries only.
2229   auto bufAddr = [&](Chunk *c) {
2230     OutputSection *os = ctx.getOutputSection(c);
2231     return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
2232            os->getRVA();
2233   };
2234   uint8_t *begin = bufAddr(exceptionTable.first);
2235   uint8_t *end = bufAddr(exceptionTable.last) + exceptionTable.last->getSize();
2236   if ((end - begin) % sizeof(T) != 0) {
2237     fatal("unexpected .pdata size: " + Twine(end - begin) +
2238           " is not a multiple of " + Twine(sizeof(T)));
2239   }
2240 
2241   parallelSort(MutableArrayRef<T>(reinterpret_cast<T *>(begin),
2242                                   reinterpret_cast<T *>(end)),
2243                [](const T &a, const T &b) { return a.begin < b.begin; });
2244 }
2245 
2246 // Sort .pdata section contents according to PE/COFF spec 5.5.
2247 void Writer::sortExceptionTables() {
2248   llvm::TimeTraceScope timeScope("Sort exception table");
2249 
2250   struct EntryX64 {
2251     ulittle32_t begin, end, unwind;
2252   };
2253   struct EntryArm {
2254     ulittle32_t begin, unwind;
2255   };
2256 
2257   switch (ctx.config.machine) {
2258   case AMD64:
2259     sortExceptionTable<EntryX64>(pdata);
2260     break;
2261   case ARM64EC:
2262   case ARM64X:
2263     sortExceptionTable<EntryX64>(hybridPdata);
2264     [[fallthrough]];
2265   case ARMNT:
2266   case ARM64:
2267     sortExceptionTable<EntryArm>(pdata);
2268     break;
2269   default:
2270     if (pdata.first)
2271       lld::errs() << "warning: don't know how to handle .pdata.\n";
2272     break;
2273   }
2274 }
2275 
2276 // The CRT section contains, among other things, the array of function
2277 // pointers that initialize every global variable that is not trivially
2278 // constructed. The CRT calls them one after the other prior to invoking
2279 // main().
2280 //
2281 // As per C++ spec, 3.6.2/2.3,
2282 // "Variables with ordered initialization defined within a single
2283 // translation unit shall be initialized in the order of their definitions
2284 // in the translation unit"
2285 //
2286 // It is therefore critical to sort the chunks containing the function
2287 // pointers in the order that they are listed in the object file (top to
2288 // bottom), otherwise global objects might not be initialized in the
2289 // correct order.
2290 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
2291   auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
2292     auto sa = dyn_cast<SectionChunk>(a);
2293     auto sb = dyn_cast<SectionChunk>(b);
2294     assert(sa && sb && "Non-section chunks in CRT section!");
2295 
2296     StringRef sAObj = sa->file->mb.getBufferIdentifier();
2297     StringRef sBObj = sb->file->mb.getBufferIdentifier();
2298 
2299     return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
2300   };
2301   llvm::stable_sort(chunks, sectionChunkOrder);
2302 
2303   if (ctx.config.verbose) {
2304     for (auto &c : chunks) {
2305       auto sc = dyn_cast<SectionChunk>(c);
2306       log("  " + sc->file->mb.getBufferIdentifier().str() +
2307           ", SectionID: " + Twine(sc->getSectionNumber()));
2308     }
2309   }
2310 }
2311 
2312 OutputSection *Writer::findSection(StringRef name) {
2313   for (OutputSection *sec : ctx.outputSections)
2314     if (sec->name == name)
2315       return sec;
2316   return nullptr;
2317 }
2318 
2319 uint32_t Writer::getSizeOfInitializedData() {
2320   uint32_t res = 0;
2321   for (OutputSection *s : ctx.outputSections)
2322     if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
2323       res += s->getRawSize();
2324   return res;
2325 }
2326 
2327 // Add base relocations to .reloc section.
2328 void Writer::addBaserels() {
2329   if (!ctx.config.relocatable)
2330     return;
2331   relocSec->chunks.clear();
2332   std::vector<Baserel> v;
2333   for (OutputSection *sec : ctx.outputSections) {
2334     if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2335       continue;
2336     llvm::TimeTraceScope timeScope("Base relocations: ", sec->name);
2337     // Collect all locations for base relocations.
2338     for (Chunk *c : sec->chunks)
2339       c->getBaserels(&v);
2340     // Add the addresses to .reloc section.
2341     if (!v.empty())
2342       addBaserelBlocks(v);
2343     v.clear();
2344   }
2345 }
2346 
2347 // Add addresses to .reloc section. Note that addresses are grouped by page.
2348 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2349   const uint32_t mask = ~uint32_t(pageSize - 1);
2350   uint32_t page = v[0].rva & mask;
2351   size_t i = 0, j = 1;
2352   for (size_t e = v.size(); j < e; ++j) {
2353     uint32_t p = v[j].rva & mask;
2354     if (p == page)
2355       continue;
2356     relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2357     i = j;
2358     page = p;
2359   }
2360   if (i == j)
2361     return;
2362   relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2363 }
2364 
2365 PartialSection *Writer::createPartialSection(StringRef name,
2366                                              uint32_t outChars) {
2367   PartialSection *&pSec = partialSections[{name, outChars}];
2368   if (pSec)
2369     return pSec;
2370   pSec = make<PartialSection>(name, outChars);
2371   return pSec;
2372 }
2373 
2374 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2375   auto it = partialSections.find({name, outChars});
2376   if (it != partialSections.end())
2377     return it->second;
2378   return nullptr;
2379 }
2380 
2381 void Writer::fixTlsAlignment() {
2382   Defined *tlsSym =
2383       dyn_cast_or_null<Defined>(ctx.symtab.findUnderscore("_tls_used"));
2384   if (!tlsSym)
2385     return;
2386 
2387   OutputSection *sec = ctx.getOutputSection(tlsSym->getChunk());
2388   assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2389          "no output section for _tls_used");
2390 
2391   uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2392   uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2393   uint64_t directorySize = ctx.config.is64()
2394                                ? sizeof(object::coff_tls_directory64)
2395                                : sizeof(object::coff_tls_directory32);
2396 
2397   if (tlsOffset + directorySize > sec->getRawSize())
2398     fatal("_tls_used sym is malformed");
2399 
2400   if (ctx.config.is64()) {
2401     object::coff_tls_directory64 *tlsDir =
2402         reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2403     tlsDir->setAlignment(tlsAlignment);
2404   } else {
2405     object::coff_tls_directory32 *tlsDir =
2406         reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2407     tlsDir->setAlignment(tlsAlignment);
2408   }
2409 }
2410 
2411 void Writer::prepareLoadConfig() {
2412   Symbol *sym = ctx.symtab.findUnderscore("_load_config_used");
2413   auto *b = cast_if_present<DefinedRegular>(sym);
2414   if (!b) {
2415     if (ctx.config.guardCF != GuardCFLevel::Off)
2416       warn("Control Flow Guard is enabled but '_load_config_used' is missing");
2417     return;
2418   }
2419 
2420   OutputSection *sec = ctx.getOutputSection(b->getChunk());
2421   uint8_t *buf = buffer->getBufferStart();
2422   uint8_t *secBuf = buf + sec->getFileOff();
2423   uint8_t *symBuf = secBuf + (b->getRVA() - sec->getRVA());
2424   uint32_t expectedAlign = ctx.config.is64() ? 8 : 4;
2425   if (b->getChunk()->getAlignment() < expectedAlign)
2426     warn("'_load_config_used' is misaligned (expected alignment to be " +
2427          Twine(expectedAlign) + " bytes, got " +
2428          Twine(b->getChunk()->getAlignment()) + " instead)");
2429   else if (!isAligned(Align(expectedAlign), b->getRVA()))
2430     warn("'_load_config_used' is misaligned (RVA is 0x" +
2431          Twine::utohexstr(b->getRVA()) + " not aligned to " +
2432          Twine(expectedAlign) + " bytes)");
2433 
2434   if (ctx.config.is64())
2435     prepareLoadConfig(reinterpret_cast<coff_load_configuration64 *>(symBuf));
2436   else
2437     prepareLoadConfig(reinterpret_cast<coff_load_configuration32 *>(symBuf));
2438 }
2439 
2440 template <typename T> void Writer::prepareLoadConfig(T *loadConfig) {
2441   if (ctx.config.dependentLoadFlags)
2442     loadConfig->DependentLoadFlags = ctx.config.dependentLoadFlags;
2443 
2444   checkLoadConfigGuardData(loadConfig);
2445 }
2446 
2447 template <typename T>
2448 void Writer::checkLoadConfigGuardData(const T *loadConfig) {
2449   size_t loadConfigSize = loadConfig->Size;
2450 
2451 #define RETURN_IF_NOT_CONTAINS(field)                                          \
2452   if (loadConfigSize < offsetof(T, field) + sizeof(T::field)) {                \
2453     warn("'_load_config_used' structure too small to include " #field);        \
2454     return;                                                                    \
2455   }
2456 
2457 #define IF_CONTAINS(field)                                                     \
2458   if (loadConfigSize >= offsetof(T, field) + sizeof(T::field))
2459 
2460 #define CHECK_VA(field, sym)                                                   \
2461   if (auto *s = dyn_cast<DefinedSynthetic>(ctx.symtab.findUnderscore(sym)))    \
2462     if (loadConfig->field != ctx.config.imageBase + s->getRVA())               \
2463       warn(#field " not set correctly in '_load_config_used'");
2464 
2465 #define CHECK_ABSOLUTE(field, sym)                                             \
2466   if (auto *s = dyn_cast<DefinedAbsolute>(ctx.symtab.findUnderscore(sym)))     \
2467     if (loadConfig->field != s->getVA())                                       \
2468       warn(#field " not set correctly in '_load_config_used'");
2469 
2470   if (ctx.config.guardCF == GuardCFLevel::Off)
2471     return;
2472   RETURN_IF_NOT_CONTAINS(GuardFlags)
2473   CHECK_VA(GuardCFFunctionTable, "__guard_fids_table")
2474   CHECK_ABSOLUTE(GuardCFFunctionCount, "__guard_fids_count")
2475   CHECK_ABSOLUTE(GuardFlags, "__guard_flags")
2476   IF_CONTAINS(GuardAddressTakenIatEntryCount) {
2477     CHECK_VA(GuardAddressTakenIatEntryTable, "__guard_iat_table")
2478     CHECK_ABSOLUTE(GuardAddressTakenIatEntryCount, "__guard_iat_count")
2479   }
2480 
2481   if (!(ctx.config.guardCF & GuardCFLevel::LongJmp))
2482     return;
2483   RETURN_IF_NOT_CONTAINS(GuardLongJumpTargetCount)
2484   CHECK_VA(GuardLongJumpTargetTable, "__guard_longjmp_table")
2485   CHECK_ABSOLUTE(GuardLongJumpTargetCount, "__guard_longjmp_count")
2486 
2487   if (!(ctx.config.guardCF & GuardCFLevel::EHCont))
2488     return;
2489   RETURN_IF_NOT_CONTAINS(GuardEHContinuationCount)
2490   CHECK_VA(GuardEHContinuationTable, "__guard_eh_cont_table")
2491   CHECK_ABSOLUTE(GuardEHContinuationCount, "__guard_eh_cont_count")
2492 
2493 #undef RETURN_IF_NOT_CONTAINS
2494 #undef IF_CONTAINS
2495 #undef CHECK_VA
2496 #undef CHECK_ABSOLUTE
2497 }
2498