1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "COFFLinkerContext.h" 11 #include "CallGraphSort.h" 12 #include "Config.h" 13 #include "DLL.h" 14 #include "InputFiles.h" 15 #include "LLDMapFile.h" 16 #include "MapFile.h" 17 #include "PDB.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "lld/Common/ErrorHandler.h" 21 #include "lld/Common/Memory.h" 22 #include "lld/Common/Timer.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/Support/BinaryStreamReader.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/FileOutputBuffer.h" 31 #include "llvm/Support/Parallel.h" 32 #include "llvm/Support/Path.h" 33 #include "llvm/Support/RandomNumberGenerator.h" 34 #include "llvm/Support/xxhash.h" 35 #include <algorithm> 36 #include <cstdio> 37 #include <map> 38 #include <memory> 39 #include <utility> 40 41 using namespace llvm; 42 using namespace llvm::COFF; 43 using namespace llvm::object; 44 using namespace llvm::support; 45 using namespace llvm::support::endian; 46 using namespace lld; 47 using namespace lld::coff; 48 49 /* To re-generate DOSProgram: 50 $ cat > /tmp/DOSProgram.asm 51 org 0 52 ; Copy cs to ds. 53 push cs 54 pop ds 55 ; Point ds:dx at the $-terminated string. 56 mov dx, str 57 ; Int 21/AH=09h: Write string to standard output. 58 mov ah, 0x9 59 int 0x21 60 ; Int 21/AH=4Ch: Exit with return code (in AL). 61 mov ax, 0x4C01 62 int 0x21 63 str: 64 db 'This program cannot be run in DOS mode.$' 65 align 8, db 0 66 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin 67 $ xxd -i /tmp/DOSProgram.bin 68 */ 69 static unsigned char dosProgram[] = { 70 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c, 71 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72, 72 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65, 73 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20, 74 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00 75 }; 76 static_assert(sizeof(dosProgram) % 8 == 0, 77 "DOSProgram size must be multiple of 8"); 78 79 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram); 80 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8"); 81 82 static const int numberOfDataDirectory = 16; 83 84 namespace { 85 86 class DebugDirectoryChunk : public NonSectionChunk { 87 public: 88 DebugDirectoryChunk(const COFFLinkerContext &c, 89 const std::vector<std::pair<COFF::DebugType, Chunk *>> &r, 90 bool writeRepro) 91 : records(r), writeRepro(writeRepro), ctx(c) {} 92 93 size_t getSize() const override { 94 return (records.size() + int(writeRepro)) * sizeof(debug_directory); 95 } 96 97 void writeTo(uint8_t *b) const override { 98 auto *d = reinterpret_cast<debug_directory *>(b); 99 100 for (const std::pair<COFF::DebugType, Chunk *>& record : records) { 101 Chunk *c = record.second; 102 const OutputSection *os = ctx.getOutputSection(c); 103 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA()); 104 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs); 105 ++d; 106 } 107 108 if (writeRepro) { 109 // FIXME: The COFF spec allows either a 0-sized entry to just say 110 // "the timestamp field is really a hash", or a 4-byte size field 111 // followed by that many bytes containing a longer hash (with the 112 // lowest 4 bytes usually being the timestamp in little-endian order). 113 // Consider storing the full 8 bytes computed by xxh3_64bits here. 114 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0); 115 } 116 } 117 118 void setTimeDateStamp(uint32_t timeDateStamp) { 119 for (support::ulittle32_t *tds : timeDateStamps) 120 *tds = timeDateStamp; 121 } 122 123 private: 124 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size, 125 uint64_t rva, uint64_t offs) const { 126 d->Characteristics = 0; 127 d->TimeDateStamp = 0; 128 d->MajorVersion = 0; 129 d->MinorVersion = 0; 130 d->Type = debugType; 131 d->SizeOfData = size; 132 d->AddressOfRawData = rva; 133 d->PointerToRawData = offs; 134 135 timeDateStamps.push_back(&d->TimeDateStamp); 136 } 137 138 mutable std::vector<support::ulittle32_t *> timeDateStamps; 139 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records; 140 bool writeRepro; 141 const COFFLinkerContext &ctx; 142 }; 143 144 class CVDebugRecordChunk : public NonSectionChunk { 145 public: 146 CVDebugRecordChunk(const COFFLinkerContext &c) : ctx(c) {} 147 148 size_t getSize() const override { 149 return sizeof(codeview::DebugInfo) + ctx.config.pdbAltPath.size() + 1; 150 } 151 152 void writeTo(uint8_t *b) const override { 153 // Save off the DebugInfo entry to backfill the file signature (build id) 154 // in Writer::writeBuildId 155 buildId = reinterpret_cast<codeview::DebugInfo *>(b); 156 157 // variable sized field (PDB Path) 158 char *p = reinterpret_cast<char *>(b + sizeof(*buildId)); 159 if (!ctx.config.pdbAltPath.empty()) 160 memcpy(p, ctx.config.pdbAltPath.data(), ctx.config.pdbAltPath.size()); 161 p[ctx.config.pdbAltPath.size()] = '\0'; 162 } 163 164 mutable codeview::DebugInfo *buildId = nullptr; 165 166 private: 167 const COFFLinkerContext &ctx; 168 }; 169 170 class ExtendedDllCharacteristicsChunk : public NonSectionChunk { 171 public: 172 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {} 173 174 size_t getSize() const override { return 4; } 175 176 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); } 177 178 uint32_t characteristics = 0; 179 }; 180 181 // PartialSection represents a group of chunks that contribute to an 182 // OutputSection. Collating a collection of PartialSections of same name and 183 // characteristics constitutes the OutputSection. 184 class PartialSectionKey { 185 public: 186 StringRef name; 187 unsigned characteristics; 188 189 bool operator<(const PartialSectionKey &other) const { 190 int c = name.compare(other.name); 191 if (c > 0) 192 return false; 193 if (c == 0) 194 return characteristics < other.characteristics; 195 return true; 196 } 197 }; 198 199 // The writer writes a SymbolTable result to a file. 200 class Writer { 201 public: 202 Writer(COFFLinkerContext &c) 203 : buffer(errorHandler().outputBuffer), delayIdata(c), edata(c), ctx(c) {} 204 void run(); 205 206 private: 207 void createSections(); 208 void createMiscChunks(); 209 void createImportTables(); 210 void appendImportThunks(); 211 void locateImportTables(); 212 void createExportTable(); 213 void mergeSections(); 214 void removeUnusedSections(); 215 void assignAddresses(); 216 bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin); 217 std::pair<Defined *, bool> getThunk(DenseMap<uint64_t, Defined *> &lastThunks, 218 Defined *target, uint64_t p, 219 uint16_t type, int margin); 220 bool createThunks(OutputSection *os, int margin); 221 bool verifyRanges(const std::vector<Chunk *> chunks); 222 void finalizeAddresses(); 223 void removeEmptySections(); 224 void assignOutputSectionIndices(); 225 void createSymbolAndStringTable(); 226 void openFile(StringRef outputPath); 227 template <typename PEHeaderTy> void writeHeader(); 228 void createSEHTable(); 229 void createRuntimePseudoRelocs(); 230 void insertCtorDtorSymbols(); 231 void markSymbolsWithRelocations(ObjFile *file, SymbolRVASet &usedSymbols); 232 void createGuardCFTables(); 233 void markSymbolsForRVATable(ObjFile *file, 234 ArrayRef<SectionChunk *> symIdxChunks, 235 SymbolRVASet &tableSymbols); 236 void getSymbolsFromSections(ObjFile *file, 237 ArrayRef<SectionChunk *> symIdxChunks, 238 std::vector<Symbol *> &symbols); 239 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, 240 StringRef countSym, bool hasFlag=false); 241 void setSectionPermissions(); 242 void writeSections(); 243 void writeBuildId(); 244 void writePEChecksum(); 245 void sortSections(); 246 void sortExceptionTable(); 247 void sortCRTSectionChunks(std::vector<Chunk *> &chunks); 248 void addSyntheticIdata(); 249 void sortBySectionOrder(std::vector<Chunk *> &chunks); 250 void fixPartialSectionChars(StringRef name, uint32_t chars); 251 bool fixGnuImportChunks(); 252 void fixTlsAlignment(); 253 PartialSection *createPartialSection(StringRef name, uint32_t outChars); 254 PartialSection *findPartialSection(StringRef name, uint32_t outChars); 255 256 std::optional<coff_symbol16> createSymbol(Defined *d); 257 size_t addEntryToStringTable(StringRef str); 258 259 OutputSection *findSection(StringRef name); 260 void addBaserels(); 261 void addBaserelBlocks(std::vector<Baserel> &v); 262 263 uint32_t getSizeOfInitializedData(); 264 265 void checkLoadConfig(); 266 template <typename T> void checkLoadConfigGuardData(const T *loadConfig); 267 268 std::unique_ptr<FileOutputBuffer> &buffer; 269 std::map<PartialSectionKey, PartialSection *> partialSections; 270 std::vector<char> strtab; 271 std::vector<llvm::object::coff_symbol16> outputSymtab; 272 IdataContents idata; 273 Chunk *importTableStart = nullptr; 274 uint64_t importTableSize = 0; 275 Chunk *edataStart = nullptr; 276 Chunk *edataEnd = nullptr; 277 Chunk *iatStart = nullptr; 278 uint64_t iatSize = 0; 279 DelayLoadContents delayIdata; 280 EdataContents edata; 281 bool setNoSEHCharacteristic = false; 282 uint32_t tlsAlignment = 0; 283 284 DebugDirectoryChunk *debugDirectory = nullptr; 285 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords; 286 CVDebugRecordChunk *buildId = nullptr; 287 ArrayRef<uint8_t> sectionTable; 288 289 uint64_t fileSize; 290 uint32_t pointerToSymbolTable = 0; 291 uint64_t sizeOfImage; 292 uint64_t sizeOfHeaders; 293 294 OutputSection *textSec; 295 OutputSection *rdataSec; 296 OutputSection *buildidSec; 297 OutputSection *dataSec; 298 OutputSection *pdataSec; 299 OutputSection *idataSec; 300 OutputSection *edataSec; 301 OutputSection *didatSec; 302 OutputSection *rsrcSec; 303 OutputSection *relocSec; 304 OutputSection *ctorsSec; 305 OutputSection *dtorsSec; 306 307 // The first and last .pdata sections in the output file. 308 // 309 // We need to keep track of the location of .pdata in whichever section it 310 // gets merged into so that we can sort its contents and emit a correct data 311 // directory entry for the exception table. This is also the case for some 312 // other sections (such as .edata) but because the contents of those sections 313 // are entirely linker-generated we can keep track of their locations using 314 // the chunks that the linker creates. All .pdata chunks come from input 315 // files, so we need to keep track of them separately. 316 Chunk *firstPdata = nullptr; 317 Chunk *lastPdata; 318 319 COFFLinkerContext &ctx; 320 }; 321 } // anonymous namespace 322 323 void lld::coff::writeResult(COFFLinkerContext &ctx) { Writer(ctx).run(); } 324 325 void OutputSection::addChunk(Chunk *c) { 326 chunks.push_back(c); 327 } 328 329 void OutputSection::insertChunkAtStart(Chunk *c) { 330 chunks.insert(chunks.begin(), c); 331 } 332 333 void OutputSection::setPermissions(uint32_t c) { 334 header.Characteristics &= ~permMask; 335 header.Characteristics |= c; 336 } 337 338 void OutputSection::merge(OutputSection *other) { 339 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end()); 340 other->chunks.clear(); 341 contribSections.insert(contribSections.end(), other->contribSections.begin(), 342 other->contribSections.end()); 343 other->contribSections.clear(); 344 } 345 346 // Write the section header to a given buffer. 347 void OutputSection::writeHeaderTo(uint8_t *buf, bool isDebug) { 348 auto *hdr = reinterpret_cast<coff_section *>(buf); 349 *hdr = header; 350 if (stringTableOff) { 351 // If name is too long, write offset into the string table as a name. 352 encodeSectionName(hdr->Name, stringTableOff); 353 } else { 354 assert(!isDebug || name.size() <= COFF::NameSize || 355 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0); 356 strncpy(hdr->Name, name.data(), 357 std::min(name.size(), (size_t)COFF::NameSize)); 358 } 359 } 360 361 void OutputSection::addContributingPartialSection(PartialSection *sec) { 362 contribSections.push_back(sec); 363 } 364 365 // Check whether the target address S is in range from a relocation 366 // of type relType at address P. 367 bool Writer::isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) { 368 if (ctx.config.machine == ARMNT) { 369 int64_t diff = AbsoluteDifference(s, p + 4) + margin; 370 switch (relType) { 371 case IMAGE_REL_ARM_BRANCH20T: 372 return isInt<21>(diff); 373 case IMAGE_REL_ARM_BRANCH24T: 374 case IMAGE_REL_ARM_BLX23T: 375 return isInt<25>(diff); 376 default: 377 return true; 378 } 379 } else if (ctx.config.machine == ARM64) { 380 int64_t diff = AbsoluteDifference(s, p) + margin; 381 switch (relType) { 382 case IMAGE_REL_ARM64_BRANCH26: 383 return isInt<28>(diff); 384 case IMAGE_REL_ARM64_BRANCH19: 385 return isInt<21>(diff); 386 case IMAGE_REL_ARM64_BRANCH14: 387 return isInt<16>(diff); 388 default: 389 return true; 390 } 391 } else { 392 llvm_unreachable("Unexpected architecture"); 393 } 394 } 395 396 // Return the last thunk for the given target if it is in range, 397 // or create a new one. 398 std::pair<Defined *, bool> 399 Writer::getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, 400 uint64_t p, uint16_t type, int margin) { 401 Defined *&lastThunk = lastThunks[target->getRVA()]; 402 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin)) 403 return {lastThunk, false}; 404 Chunk *c; 405 switch (ctx.config.machine) { 406 case ARMNT: 407 c = make<RangeExtensionThunkARM>(ctx, target); 408 break; 409 case ARM64: 410 c = make<RangeExtensionThunkARM64>(ctx, target); 411 break; 412 default: 413 llvm_unreachable("Unexpected architecture"); 414 } 415 Defined *d = make<DefinedSynthetic>("range_extension_thunk", c); 416 lastThunk = d; 417 return {d, true}; 418 } 419 420 // This checks all relocations, and for any relocation which isn't in range 421 // it adds a thunk after the section chunk that contains the relocation. 422 // If the latest thunk for the specific target is in range, that is used 423 // instead of creating a new thunk. All range checks are done with the 424 // specified margin, to make sure that relocations that originally are in 425 // range, but only barely, also get thunks - in case other added thunks makes 426 // the target go out of range. 427 // 428 // After adding thunks, we verify that all relocations are in range (with 429 // no extra margin requirements). If this failed, we restart (throwing away 430 // the previously created thunks) and retry with a wider margin. 431 bool Writer::createThunks(OutputSection *os, int margin) { 432 bool addressesChanged = false; 433 DenseMap<uint64_t, Defined *> lastThunks; 434 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices; 435 size_t thunksSize = 0; 436 // Recheck Chunks.size() each iteration, since we can insert more 437 // elements into it. 438 for (size_t i = 0; i != os->chunks.size(); ++i) { 439 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]); 440 if (!sc) 441 continue; 442 size_t thunkInsertionSpot = i + 1; 443 444 // Try to get a good enough estimate of where new thunks will be placed. 445 // Offset this by the size of the new thunks added so far, to make the 446 // estimate slightly better. 447 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize; 448 ObjFile *file = sc->file; 449 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements; 450 ArrayRef<coff_relocation> originalRelocs = 451 file->getCOFFObj()->getRelocations(sc->header); 452 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) { 453 const coff_relocation &rel = originalRelocs[j]; 454 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex); 455 456 // The estimate of the source address P should be pretty accurate, 457 // but we don't know whether the target Symbol address should be 458 // offset by thunksSize or not (or by some of thunksSize but not all of 459 // it), giving us some uncertainty once we have added one thunk. 460 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize; 461 462 Defined *sym = dyn_cast_or_null<Defined>(relocTarget); 463 if (!sym) 464 continue; 465 466 uint64_t s = sym->getRVA(); 467 468 if (isInRange(rel.Type, s, p, margin)) 469 continue; 470 471 // If the target isn't in range, hook it up to an existing or new thunk. 472 auto [thunk, wasNew] = getThunk(lastThunks, sym, p, rel.Type, margin); 473 if (wasNew) { 474 Chunk *thunkChunk = thunk->getChunk(); 475 thunkChunk->setRVA( 476 thunkInsertionRVA); // Estimate of where it will be located. 477 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk); 478 thunkInsertionSpot++; 479 thunksSize += thunkChunk->getSize(); 480 thunkInsertionRVA += thunkChunk->getSize(); 481 addressesChanged = true; 482 } 483 484 // To redirect the relocation, add a symbol to the parent object file's 485 // symbol table, and replace the relocation symbol table index with the 486 // new index. 487 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U}); 488 uint32_t &thunkSymbolIndex = insertion.first->second; 489 if (insertion.second) 490 thunkSymbolIndex = file->addRangeThunkSymbol(thunk); 491 relocReplacements.emplace_back(j, thunkSymbolIndex); 492 } 493 494 // Get a writable copy of this section's relocations so they can be 495 // modified. If the relocations point into the object file, allocate new 496 // memory. Otherwise, this must be previously allocated memory that can be 497 // modified in place. 498 ArrayRef<coff_relocation> curRelocs = sc->getRelocs(); 499 MutableArrayRef<coff_relocation> newRelocs; 500 if (originalRelocs.data() == curRelocs.data()) { 501 newRelocs = MutableArrayRef( 502 bAlloc().Allocate<coff_relocation>(originalRelocs.size()), 503 originalRelocs.size()); 504 } else { 505 newRelocs = MutableArrayRef( 506 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size()); 507 } 508 509 // Copy each relocation, but replace the symbol table indices which need 510 // thunks. 511 auto nextReplacement = relocReplacements.begin(); 512 auto endReplacement = relocReplacements.end(); 513 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) { 514 newRelocs[i] = originalRelocs[i]; 515 if (nextReplacement != endReplacement && nextReplacement->first == i) { 516 newRelocs[i].SymbolTableIndex = nextReplacement->second; 517 ++nextReplacement; 518 } 519 } 520 521 sc->setRelocs(newRelocs); 522 } 523 return addressesChanged; 524 } 525 526 // Verify that all relocations are in range, with no extra margin requirements. 527 bool Writer::verifyRanges(const std::vector<Chunk *> chunks) { 528 for (Chunk *c : chunks) { 529 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c); 530 if (!sc) 531 continue; 532 533 ArrayRef<coff_relocation> relocs = sc->getRelocs(); 534 for (const coff_relocation &rel : relocs) { 535 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex); 536 537 Defined *sym = dyn_cast_or_null<Defined>(relocTarget); 538 if (!sym) 539 continue; 540 541 uint64_t p = sc->getRVA() + rel.VirtualAddress; 542 uint64_t s = sym->getRVA(); 543 544 if (!isInRange(rel.Type, s, p, 0)) 545 return false; 546 } 547 } 548 return true; 549 } 550 551 // Assign addresses and add thunks if necessary. 552 void Writer::finalizeAddresses() { 553 assignAddresses(); 554 if (ctx.config.machine != ARMNT && ctx.config.machine != ARM64) 555 return; 556 557 size_t origNumChunks = 0; 558 for (OutputSection *sec : ctx.outputSections) { 559 sec->origChunks = sec->chunks; 560 origNumChunks += sec->chunks.size(); 561 } 562 563 int pass = 0; 564 int margin = 1024 * 100; 565 while (true) { 566 // First check whether we need thunks at all, or if the previous pass of 567 // adding them turned out ok. 568 bool rangesOk = true; 569 size_t numChunks = 0; 570 for (OutputSection *sec : ctx.outputSections) { 571 if (!verifyRanges(sec->chunks)) { 572 rangesOk = false; 573 break; 574 } 575 numChunks += sec->chunks.size(); 576 } 577 if (rangesOk) { 578 if (pass > 0) 579 log("Added " + Twine(numChunks - origNumChunks) + " thunks with " + 580 "margin " + Twine(margin) + " in " + Twine(pass) + " passes"); 581 return; 582 } 583 584 if (pass >= 10) 585 fatal("adding thunks hasn't converged after " + Twine(pass) + " passes"); 586 587 if (pass > 0) { 588 // If the previous pass didn't work out, reset everything back to the 589 // original conditions before retrying with a wider margin. This should 590 // ideally never happen under real circumstances. 591 for (OutputSection *sec : ctx.outputSections) 592 sec->chunks = sec->origChunks; 593 margin *= 2; 594 } 595 596 // Try adding thunks everywhere where it is needed, with a margin 597 // to avoid things going out of range due to the added thunks. 598 bool addressesChanged = false; 599 for (OutputSection *sec : ctx.outputSections) 600 addressesChanged |= createThunks(sec, margin); 601 // If the verification above thought we needed thunks, we should have 602 // added some. 603 assert(addressesChanged); 604 (void)addressesChanged; 605 606 // Recalculate the layout for the whole image (and verify the ranges at 607 // the start of the next round). 608 assignAddresses(); 609 610 pass++; 611 } 612 } 613 614 void Writer::writePEChecksum() { 615 if (!ctx.config.writeCheckSum) { 616 return; 617 } 618 619 // https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#checksum 620 uint32_t *buf = (uint32_t *)buffer->getBufferStart(); 621 uint32_t size = (uint32_t)(buffer->getBufferSize()); 622 623 coff_file_header *coffHeader = 624 (coff_file_header *)((uint8_t *)buf + dosStubSize + sizeof(PEMagic)); 625 pe32_header *peHeader = 626 (pe32_header *)((uint8_t *)coffHeader + sizeof(coff_file_header)); 627 628 uint64_t sum = 0; 629 uint32_t count = size; 630 ulittle16_t *addr = (ulittle16_t *)buf; 631 632 // The PE checksum algorithm, implemented as suggested in RFC1071 633 while (count > 1) { 634 sum += *addr++; 635 count -= 2; 636 } 637 638 // Add left-over byte, if any 639 if (count > 0) 640 sum += *(unsigned char *)addr; 641 642 // Fold 32-bit sum to 16 bits 643 while (sum >> 16) { 644 sum = (sum & 0xffff) + (sum >> 16); 645 } 646 647 sum += size; 648 peHeader->CheckSum = sum; 649 } 650 651 // The main function of the writer. 652 void Writer::run() { 653 ScopedTimer t1(ctx.codeLayoutTimer); 654 655 createImportTables(); 656 createSections(); 657 appendImportThunks(); 658 // Import thunks must be added before the Control Flow Guard tables are added. 659 createMiscChunks(); 660 createExportTable(); 661 mergeSections(); 662 removeUnusedSections(); 663 finalizeAddresses(); 664 removeEmptySections(); 665 assignOutputSectionIndices(); 666 setSectionPermissions(); 667 createSymbolAndStringTable(); 668 669 if (fileSize > UINT32_MAX) 670 fatal("image size (" + Twine(fileSize) + ") " + 671 "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")"); 672 673 openFile(ctx.config.outputFile); 674 if (ctx.config.is64()) { 675 writeHeader<pe32plus_header>(); 676 } else { 677 writeHeader<pe32_header>(); 678 } 679 writeSections(); 680 checkLoadConfig(); 681 sortExceptionTable(); 682 683 // Fix up the alignment in the TLS Directory's characteristic field, 684 // if a specific alignment value is needed 685 if (tlsAlignment) 686 fixTlsAlignment(); 687 688 t1.stop(); 689 690 if (!ctx.config.pdbPath.empty() && ctx.config.debug) { 691 assert(buildId); 692 createPDB(ctx, sectionTable, buildId->buildId); 693 } 694 writeBuildId(); 695 696 writeLLDMapFile(ctx); 697 writeMapFile(ctx); 698 699 writePEChecksum(); 700 701 if (errorCount()) 702 return; 703 704 ScopedTimer t2(ctx.outputCommitTimer); 705 if (auto e = buffer->commit()) 706 fatal("failed to write output '" + buffer->getPath() + 707 "': " + toString(std::move(e))); 708 } 709 710 static StringRef getOutputSectionName(StringRef name) { 711 StringRef s = name.split('$').first; 712 713 // Treat a later period as a separator for MinGW, for sections like 714 // ".ctors.01234". 715 return s.substr(0, s.find('.', 1)); 716 } 717 718 // For /order. 719 void Writer::sortBySectionOrder(std::vector<Chunk *> &chunks) { 720 auto getPriority = [&ctx = ctx](const Chunk *c) { 721 if (auto *sec = dyn_cast<SectionChunk>(c)) 722 if (sec->sym) 723 return ctx.config.order.lookup(sec->sym->getName()); 724 return 0; 725 }; 726 727 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) { 728 return getPriority(a) < getPriority(b); 729 }); 730 } 731 732 // Change the characteristics of existing PartialSections that belong to the 733 // section Name to Chars. 734 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) { 735 for (auto it : partialSections) { 736 PartialSection *pSec = it.second; 737 StringRef curName = pSec->name; 738 if (!curName.consume_front(name) || 739 (!curName.empty() && !curName.starts_with("$"))) 740 continue; 741 if (pSec->characteristics == chars) 742 continue; 743 PartialSection *destSec = createPartialSection(pSec->name, chars); 744 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(), 745 pSec->chunks.end()); 746 pSec->chunks.clear(); 747 } 748 } 749 750 // Sort concrete section chunks from GNU import libraries. 751 // 752 // GNU binutils doesn't use short import files, but instead produces import 753 // libraries that consist of object files, with section chunks for the .idata$* 754 // sections. These are linked just as regular static libraries. Each import 755 // library consists of one header object, one object file for every imported 756 // symbol, and one trailer object. In order for the .idata tables/lists to 757 // be formed correctly, the section chunks within each .idata$* section need 758 // to be grouped by library, and sorted alphabetically within each library 759 // (which makes sure the header comes first and the trailer last). 760 bool Writer::fixGnuImportChunks() { 761 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 762 763 // Make sure all .idata$* section chunks are mapped as RDATA in order to 764 // be sorted into the same sections as our own synthesized .idata chunks. 765 fixPartialSectionChars(".idata", rdata); 766 767 bool hasIdata = false; 768 // Sort all .idata$* chunks, grouping chunks from the same library, 769 // with alphabetical ordering of the object files within a library. 770 for (auto it : partialSections) { 771 PartialSection *pSec = it.second; 772 if (!pSec->name.starts_with(".idata")) 773 continue; 774 775 if (!pSec->chunks.empty()) 776 hasIdata = true; 777 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) { 778 SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s); 779 SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t); 780 if (!sc1 || !sc2) { 781 // if SC1, order them ascending. If SC2 or both null, 782 // S is not less than T. 783 return sc1 != nullptr; 784 } 785 // Make a string with "libraryname/objectfile" for sorting, achieving 786 // both grouping by library and sorting of objects within a library, 787 // at once. 788 std::string key1 = 789 (sc1->file->parentName + "/" + sc1->file->getName()).str(); 790 std::string key2 = 791 (sc2->file->parentName + "/" + sc2->file->getName()).str(); 792 return key1 < key2; 793 }); 794 } 795 return hasIdata; 796 } 797 798 // Add generated idata chunks, for imported symbols and DLLs, and a 799 // terminator in .idata$2. 800 void Writer::addSyntheticIdata() { 801 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 802 idata.create(ctx); 803 804 // Add the .idata content in the right section groups, to allow 805 // chunks from other linked in object files to be grouped together. 806 // See Microsoft PE/COFF spec 5.4 for details. 807 auto add = [&](StringRef n, std::vector<Chunk *> &v) { 808 PartialSection *pSec = createPartialSection(n, rdata); 809 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end()); 810 }; 811 812 // The loader assumes a specific order of data. 813 // Add each type in the correct order. 814 add(".idata$2", idata.dirs); 815 add(".idata$4", idata.lookups); 816 add(".idata$5", idata.addresses); 817 if (!idata.hints.empty()) 818 add(".idata$6", idata.hints); 819 add(".idata$7", idata.dllNames); 820 } 821 822 // Locate the first Chunk and size of the import directory list and the 823 // IAT. 824 void Writer::locateImportTables() { 825 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 826 827 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) { 828 if (!importDirs->chunks.empty()) 829 importTableStart = importDirs->chunks.front(); 830 for (Chunk *c : importDirs->chunks) 831 importTableSize += c->getSize(); 832 } 833 834 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) { 835 if (!importAddresses->chunks.empty()) 836 iatStart = importAddresses->chunks.front(); 837 for (Chunk *c : importAddresses->chunks) 838 iatSize += c->getSize(); 839 } 840 } 841 842 // Return whether a SectionChunk's suffix (the dollar and any trailing 843 // suffix) should be removed and sorted into the main suffixless 844 // PartialSection. 845 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name, 846 bool isMinGW) { 847 // On MinGW, comdat groups are formed by putting the comdat group name 848 // after the '$' in the section name. For .eh_frame$<symbol>, that must 849 // still be sorted before the .eh_frame trailer from crtend.o, thus just 850 // strip the section name trailer. For other sections, such as 851 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in 852 // ".tls$"), they must be strictly sorted after .tls. And for the 853 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the 854 // suffix for sorting. Thus, to play it safe, only strip the suffix for 855 // the standard sections. 856 if (!isMinGW) 857 return false; 858 if (!sc || !sc->isCOMDAT()) 859 return false; 860 return name.starts_with(".text$") || name.starts_with(".data$") || 861 name.starts_with(".rdata$") || name.starts_with(".pdata$") || 862 name.starts_with(".xdata$") || name.starts_with(".eh_frame$"); 863 } 864 865 void Writer::sortSections() { 866 if (!ctx.config.callGraphProfile.empty()) { 867 DenseMap<const SectionChunk *, int> order = 868 computeCallGraphProfileOrder(ctx); 869 for (auto it : order) { 870 if (DefinedRegular *sym = it.first->sym) 871 ctx.config.order[sym->getName()] = it.second; 872 } 873 } 874 if (!ctx.config.order.empty()) 875 for (auto it : partialSections) 876 sortBySectionOrder(it.second->chunks); 877 } 878 879 // Create output section objects and add them to OutputSections. 880 void Writer::createSections() { 881 // First, create the builtin sections. 882 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA; 883 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA; 884 const uint32_t code = IMAGE_SCN_CNT_CODE; 885 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE; 886 const uint32_t r = IMAGE_SCN_MEM_READ; 887 const uint32_t w = IMAGE_SCN_MEM_WRITE; 888 const uint32_t x = IMAGE_SCN_MEM_EXECUTE; 889 890 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections; 891 auto createSection = [&](StringRef name, uint32_t outChars) { 892 OutputSection *&sec = sections[{name, outChars}]; 893 if (!sec) { 894 sec = make<OutputSection>(name, outChars); 895 ctx.outputSections.push_back(sec); 896 } 897 return sec; 898 }; 899 900 // Try to match the section order used by link.exe. 901 textSec = createSection(".text", code | r | x); 902 createSection(".bss", bss | r | w); 903 rdataSec = createSection(".rdata", data | r); 904 buildidSec = createSection(".buildid", data | r); 905 dataSec = createSection(".data", data | r | w); 906 pdataSec = createSection(".pdata", data | r); 907 idataSec = createSection(".idata", data | r); 908 edataSec = createSection(".edata", data | r); 909 didatSec = createSection(".didat", data | r); 910 rsrcSec = createSection(".rsrc", data | r); 911 relocSec = createSection(".reloc", data | discardable | r); 912 ctorsSec = createSection(".ctors", data | r | w); 913 dtorsSec = createSection(".dtors", data | r | w); 914 915 // Then bin chunks by name and output characteristics. 916 for (Chunk *c : ctx.symtab.getChunks()) { 917 auto *sc = dyn_cast<SectionChunk>(c); 918 if (sc && !sc->live) { 919 if (ctx.config.verbose) 920 sc->printDiscardedMessage(); 921 continue; 922 } 923 StringRef name = c->getSectionName(); 924 if (shouldStripSectionSuffix(sc, name, ctx.config.mingw)) 925 name = name.split('$').first; 926 927 if (name.starts_with(".tls")) 928 tlsAlignment = std::max(tlsAlignment, c->getAlignment()); 929 930 PartialSection *pSec = createPartialSection(name, 931 c->getOutputCharacteristics()); 932 pSec->chunks.push_back(c); 933 } 934 935 fixPartialSectionChars(".rsrc", data | r); 936 fixPartialSectionChars(".edata", data | r); 937 // Even in non MinGW cases, we might need to link against GNU import 938 // libraries. 939 bool hasIdata = fixGnuImportChunks(); 940 if (!idata.empty()) 941 hasIdata = true; 942 943 if (hasIdata) 944 addSyntheticIdata(); 945 946 sortSections(); 947 948 if (hasIdata) 949 locateImportTables(); 950 951 // Then create an OutputSection for each section. 952 // '$' and all following characters in input section names are 953 // discarded when determining output section. So, .text$foo 954 // contributes to .text, for example. See PE/COFF spec 3.2. 955 for (auto it : partialSections) { 956 PartialSection *pSec = it.second; 957 StringRef name = getOutputSectionName(pSec->name); 958 uint32_t outChars = pSec->characteristics; 959 960 if (name == ".CRT") { 961 // In link.exe, there is a special case for the I386 target where .CRT 962 // sections are treated as if they have output characteristics DATA | R if 963 // their characteristics are DATA | R | W. This implements the same 964 // special case for all architectures. 965 outChars = data | r; 966 967 log("Processing section " + pSec->name + " -> " + name); 968 969 sortCRTSectionChunks(pSec->chunks); 970 } 971 972 OutputSection *sec = createSection(name, outChars); 973 for (Chunk *c : pSec->chunks) 974 sec->addChunk(c); 975 976 sec->addContributingPartialSection(pSec); 977 } 978 979 // Finally, move some output sections to the end. 980 auto sectionOrder = [&](const OutputSection *s) { 981 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file 982 // because the loader cannot handle holes. Stripping can remove other 983 // discardable ones than .reloc, which is first of them (created early). 984 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) { 985 // Move discardable sections named .debug_ to the end, after other 986 // discardable sections. Stripping only removes the sections named 987 // .debug_* - thus try to avoid leaving holes after stripping. 988 if (s->name.starts_with(".debug_")) 989 return 3; 990 return 2; 991 } 992 // .rsrc should come at the end of the non-discardable sections because its 993 // size may change by the Win32 UpdateResources() function, causing 994 // subsequent sections to move (see https://crbug.com/827082). 995 if (s == rsrcSec) 996 return 1; 997 return 0; 998 }; 999 llvm::stable_sort(ctx.outputSections, 1000 [&](const OutputSection *s, const OutputSection *t) { 1001 return sectionOrder(s) < sectionOrder(t); 1002 }); 1003 } 1004 1005 void Writer::createMiscChunks() { 1006 Configuration *config = &ctx.config; 1007 1008 for (MergeChunk *p : ctx.mergeChunkInstances) { 1009 if (p) { 1010 p->finalizeContents(); 1011 rdataSec->addChunk(p); 1012 } 1013 } 1014 1015 // Create thunks for locally-dllimported symbols. 1016 if (!ctx.symtab.localImportChunks.empty()) { 1017 for (Chunk *c : ctx.symtab.localImportChunks) 1018 rdataSec->addChunk(c); 1019 } 1020 1021 // Create Debug Information Chunks 1022 OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec; 1023 if (config->debug || config->repro || config->cetCompat) { 1024 debugDirectory = 1025 make<DebugDirectoryChunk>(ctx, debugRecords, config->repro); 1026 debugDirectory->setAlignment(4); 1027 debugInfoSec->addChunk(debugDirectory); 1028 } 1029 1030 if (config->debug) { 1031 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We 1032 // output a PDB no matter what, and this chunk provides the only means of 1033 // allowing a debugger to match a PDB and an executable. So we need it even 1034 // if we're ultimately not going to write CodeView data to the PDB. 1035 buildId = make<CVDebugRecordChunk>(ctx); 1036 debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId); 1037 } 1038 1039 if (config->cetCompat) { 1040 debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS, 1041 make<ExtendedDllCharacteristicsChunk>( 1042 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)); 1043 } 1044 1045 // Align and add each chunk referenced by the debug data directory. 1046 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) { 1047 r.second->setAlignment(4); 1048 debugInfoSec->addChunk(r.second); 1049 } 1050 1051 // Create SEH table. x86-only. 1052 if (config->safeSEH) 1053 createSEHTable(); 1054 1055 // Create /guard:cf tables if requested. 1056 if (config->guardCF != GuardCFLevel::Off) 1057 createGuardCFTables(); 1058 1059 if (config->autoImport) 1060 createRuntimePseudoRelocs(); 1061 1062 if (config->mingw) 1063 insertCtorDtorSymbols(); 1064 } 1065 1066 // Create .idata section for the DLL-imported symbol table. 1067 // The format of this section is inherently Windows-specific. 1068 // IdataContents class abstracted away the details for us, 1069 // so we just let it create chunks and add them to the section. 1070 void Writer::createImportTables() { 1071 // Initialize DLLOrder so that import entries are ordered in 1072 // the same order as in the command line. (That affects DLL 1073 // initialization order, and this ordering is MSVC-compatible.) 1074 for (ImportFile *file : ctx.importFileInstances) { 1075 if (!file->live) 1076 continue; 1077 1078 std::string dll = StringRef(file->dllName).lower(); 1079 if (ctx.config.dllOrder.count(dll) == 0) 1080 ctx.config.dllOrder[dll] = ctx.config.dllOrder.size(); 1081 1082 if (file->impSym && !isa<DefinedImportData>(file->impSym)) 1083 fatal(toString(ctx, *file->impSym) + " was replaced"); 1084 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym); 1085 if (ctx.config.delayLoads.count(StringRef(file->dllName).lower())) { 1086 if (!file->thunkSym) 1087 fatal("cannot delay-load " + toString(file) + 1088 " due to import of data: " + toString(ctx, *impSym)); 1089 delayIdata.add(impSym); 1090 } else { 1091 idata.add(impSym); 1092 } 1093 } 1094 } 1095 1096 void Writer::appendImportThunks() { 1097 if (ctx.importFileInstances.empty()) 1098 return; 1099 1100 for (ImportFile *file : ctx.importFileInstances) { 1101 if (!file->live) 1102 continue; 1103 1104 if (!file->thunkSym) 1105 continue; 1106 1107 if (!isa<DefinedImportThunk>(file->thunkSym)) 1108 fatal(toString(ctx, *file->thunkSym) + " was replaced"); 1109 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym); 1110 if (file->thunkLive) 1111 textSec->addChunk(thunk->getChunk()); 1112 } 1113 1114 if (!delayIdata.empty()) { 1115 Defined *helper = cast<Defined>(ctx.config.delayLoadHelper); 1116 delayIdata.create(helper); 1117 for (Chunk *c : delayIdata.getChunks()) 1118 didatSec->addChunk(c); 1119 for (Chunk *c : delayIdata.getDataChunks()) 1120 dataSec->addChunk(c); 1121 for (Chunk *c : delayIdata.getCodeChunks()) 1122 textSec->addChunk(c); 1123 for (Chunk *c : delayIdata.getCodePData()) 1124 pdataSec->addChunk(c); 1125 for (Chunk *c : delayIdata.getCodeUnwindInfo()) 1126 rdataSec->addChunk(c); 1127 } 1128 } 1129 1130 void Writer::createExportTable() { 1131 if (!edataSec->chunks.empty()) { 1132 // Allow using a custom built export table from input object files, instead 1133 // of having the linker synthesize the tables. 1134 if (ctx.config.hadExplicitExports) 1135 warn("literal .edata sections override exports"); 1136 } else if (!ctx.config.exports.empty()) { 1137 for (Chunk *c : edata.chunks) 1138 edataSec->addChunk(c); 1139 } 1140 if (!edataSec->chunks.empty()) { 1141 edataStart = edataSec->chunks.front(); 1142 edataEnd = edataSec->chunks.back(); 1143 } 1144 // Warn on exported deleting destructor. 1145 for (auto e : ctx.config.exports) 1146 if (e.sym && e.sym->getName().starts_with("??_G")) 1147 warn("export of deleting dtor: " + toString(ctx, *e.sym)); 1148 } 1149 1150 void Writer::removeUnusedSections() { 1151 // Remove sections that we can be sure won't get content, to avoid 1152 // allocating space for their section headers. 1153 auto isUnused = [this](OutputSection *s) { 1154 if (s == relocSec) 1155 return false; // This section is populated later. 1156 // MergeChunks have zero size at this point, as their size is finalized 1157 // later. Only remove sections that have no Chunks at all. 1158 return s->chunks.empty(); 1159 }; 1160 llvm::erase_if(ctx.outputSections, isUnused); 1161 } 1162 1163 // The Windows loader doesn't seem to like empty sections, 1164 // so we remove them if any. 1165 void Writer::removeEmptySections() { 1166 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; }; 1167 llvm::erase_if(ctx.outputSections, isEmpty); 1168 } 1169 1170 void Writer::assignOutputSectionIndices() { 1171 // Assign final output section indices, and assign each chunk to its output 1172 // section. 1173 uint32_t idx = 1; 1174 for (OutputSection *os : ctx.outputSections) { 1175 os->sectionIndex = idx; 1176 for (Chunk *c : os->chunks) 1177 c->setOutputSectionIdx(idx); 1178 ++idx; 1179 } 1180 1181 // Merge chunks are containers of chunks, so assign those an output section 1182 // too. 1183 for (MergeChunk *mc : ctx.mergeChunkInstances) 1184 if (mc) 1185 for (SectionChunk *sc : mc->sections) 1186 if (sc && sc->live) 1187 sc->setOutputSectionIdx(mc->getOutputSectionIdx()); 1188 } 1189 1190 size_t Writer::addEntryToStringTable(StringRef str) { 1191 assert(str.size() > COFF::NameSize); 1192 size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field 1193 strtab.insert(strtab.end(), str.begin(), str.end()); 1194 strtab.push_back('\0'); 1195 return offsetOfEntry; 1196 } 1197 1198 std::optional<coff_symbol16> Writer::createSymbol(Defined *def) { 1199 coff_symbol16 sym; 1200 switch (def->kind()) { 1201 case Symbol::DefinedAbsoluteKind: { 1202 auto *da = dyn_cast<DefinedAbsolute>(def); 1203 // Note: COFF symbol can only store 32-bit values, so 64-bit absolute 1204 // values will be truncated. 1205 sym.Value = da->getVA(); 1206 sym.SectionNumber = IMAGE_SYM_ABSOLUTE; 1207 break; 1208 } 1209 default: { 1210 // Don't write symbols that won't be written to the output to the symbol 1211 // table. 1212 // We also try to write DefinedSynthetic as a normal symbol. Some of these 1213 // symbols do point to an actual chunk, like __safe_se_handler_table. Others 1214 // like __ImageBase are outside of sections and thus cannot be represented. 1215 Chunk *c = def->getChunk(); 1216 if (!c) 1217 return std::nullopt; 1218 OutputSection *os = ctx.getOutputSection(c); 1219 if (!os) 1220 return std::nullopt; 1221 1222 sym.Value = def->getRVA() - os->getRVA(); 1223 sym.SectionNumber = os->sectionIndex; 1224 break; 1225 } 1226 } 1227 1228 // Symbols that are runtime pseudo relocations don't point to the actual 1229 // symbol data itself (as they are imported), but points to the IAT entry 1230 // instead. Avoid emitting them to the symbol table, as they can confuse 1231 // debuggers. 1232 if (def->isRuntimePseudoReloc) 1233 return std::nullopt; 1234 1235 StringRef name = def->getName(); 1236 if (name.size() > COFF::NameSize) { 1237 sym.Name.Offset.Zeroes = 0; 1238 sym.Name.Offset.Offset = addEntryToStringTable(name); 1239 } else { 1240 memset(sym.Name.ShortName, 0, COFF::NameSize); 1241 memcpy(sym.Name.ShortName, name.data(), name.size()); 1242 } 1243 1244 if (auto *d = dyn_cast<DefinedCOFF>(def)) { 1245 COFFSymbolRef ref = d->getCOFFSymbol(); 1246 sym.Type = ref.getType(); 1247 sym.StorageClass = ref.getStorageClass(); 1248 } else if (def->kind() == Symbol::DefinedImportThunkKind) { 1249 sym.Type = (IMAGE_SYM_DTYPE_FUNCTION << SCT_COMPLEX_TYPE_SHIFT) | 1250 IMAGE_SYM_TYPE_NULL; 1251 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL; 1252 } else { 1253 sym.Type = IMAGE_SYM_TYPE_NULL; 1254 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL; 1255 } 1256 sym.NumberOfAuxSymbols = 0; 1257 return sym; 1258 } 1259 1260 void Writer::createSymbolAndStringTable() { 1261 // PE/COFF images are limited to 8 byte section names. Longer names can be 1262 // supported by writing a non-standard string table, but this string table is 1263 // not mapped at runtime and the long names will therefore be inaccessible. 1264 // link.exe always truncates section names to 8 bytes, whereas binutils always 1265 // preserves long section names via the string table. LLD adopts a hybrid 1266 // solution where discardable sections have long names preserved and 1267 // non-discardable sections have their names truncated, to ensure that any 1268 // section which is mapped at runtime also has its name mapped at runtime. 1269 for (OutputSection *sec : ctx.outputSections) { 1270 if (sec->name.size() <= COFF::NameSize) 1271 continue; 1272 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0) 1273 continue; 1274 if (ctx.config.warnLongSectionNames) { 1275 warn("section name " + sec->name + 1276 " is longer than 8 characters and will use a non-standard string " 1277 "table"); 1278 } 1279 sec->setStringTableOff(addEntryToStringTable(sec->name)); 1280 } 1281 1282 if (ctx.config.debugDwarf || ctx.config.debugSymtab) { 1283 for (ObjFile *file : ctx.objFileInstances) { 1284 for (Symbol *b : file->getSymbols()) { 1285 auto *d = dyn_cast_or_null<Defined>(b); 1286 if (!d || d->writtenToSymtab) 1287 continue; 1288 d->writtenToSymtab = true; 1289 if (auto *dc = dyn_cast_or_null<DefinedCOFF>(d)) { 1290 COFFSymbolRef symRef = dc->getCOFFSymbol(); 1291 if (symRef.isSectionDefinition() || 1292 symRef.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL) 1293 continue; 1294 } 1295 1296 if (std::optional<coff_symbol16> sym = createSymbol(d)) 1297 outputSymtab.push_back(*sym); 1298 1299 if (auto *dthunk = dyn_cast<DefinedImportThunk>(d)) { 1300 if (!dthunk->wrappedSym->writtenToSymtab) { 1301 dthunk->wrappedSym->writtenToSymtab = true; 1302 if (std::optional<coff_symbol16> sym = 1303 createSymbol(dthunk->wrappedSym)) 1304 outputSymtab.push_back(*sym); 1305 } 1306 } 1307 } 1308 } 1309 } 1310 1311 if (outputSymtab.empty() && strtab.empty()) 1312 return; 1313 1314 // We position the symbol table to be adjacent to the end of the last section. 1315 uint64_t fileOff = fileSize; 1316 pointerToSymbolTable = fileOff; 1317 fileOff += outputSymtab.size() * sizeof(coff_symbol16); 1318 fileOff += 4 + strtab.size(); 1319 fileSize = alignTo(fileOff, ctx.config.fileAlign); 1320 } 1321 1322 void Writer::mergeSections() { 1323 if (!pdataSec->chunks.empty()) { 1324 firstPdata = pdataSec->chunks.front(); 1325 lastPdata = pdataSec->chunks.back(); 1326 } 1327 1328 for (auto &p : ctx.config.merge) { 1329 StringRef toName = p.second; 1330 if (p.first == toName) 1331 continue; 1332 StringSet<> names; 1333 while (true) { 1334 if (!names.insert(toName).second) 1335 fatal("/merge: cycle found for section '" + p.first + "'"); 1336 auto i = ctx.config.merge.find(toName); 1337 if (i == ctx.config.merge.end()) 1338 break; 1339 toName = i->second; 1340 } 1341 OutputSection *from = findSection(p.first); 1342 OutputSection *to = findSection(toName); 1343 if (!from) 1344 continue; 1345 if (!to) { 1346 from->name = toName; 1347 continue; 1348 } 1349 to->merge(from); 1350 } 1351 } 1352 1353 // Visits all sections to assign incremental, non-overlapping RVAs and 1354 // file offsets. 1355 void Writer::assignAddresses() { 1356 Configuration *config = &ctx.config; 1357 1358 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) + 1359 sizeof(data_directory) * numberOfDataDirectory + 1360 sizeof(coff_section) * ctx.outputSections.size(); 1361 sizeOfHeaders += 1362 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header); 1363 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign); 1364 fileSize = sizeOfHeaders; 1365 1366 // The first page is kept unmapped. 1367 uint64_t rva = alignTo(sizeOfHeaders, config->align); 1368 1369 for (OutputSection *sec : ctx.outputSections) { 1370 if (sec == relocSec) 1371 addBaserels(); 1372 uint64_t rawSize = 0, virtualSize = 0; 1373 sec->header.VirtualAddress = rva; 1374 1375 // If /FUNCTIONPADMIN is used, functions are padded in order to create a 1376 // hotpatchable image. 1377 const bool isCodeSection = 1378 (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) && 1379 (sec->header.Characteristics & IMAGE_SCN_MEM_READ) && 1380 (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE); 1381 uint32_t padding = isCodeSection ? config->functionPadMin : 0; 1382 1383 for (Chunk *c : sec->chunks) { 1384 if (padding && c->isHotPatchable()) 1385 virtualSize += padding; 1386 virtualSize = alignTo(virtualSize, c->getAlignment()); 1387 c->setRVA(rva + virtualSize); 1388 virtualSize += c->getSize(); 1389 if (c->hasData) 1390 rawSize = alignTo(virtualSize, config->fileAlign); 1391 } 1392 if (virtualSize > UINT32_MAX) 1393 error("section larger than 4 GiB: " + sec->name); 1394 sec->header.VirtualSize = virtualSize; 1395 sec->header.SizeOfRawData = rawSize; 1396 if (rawSize != 0) 1397 sec->header.PointerToRawData = fileSize; 1398 rva += alignTo(virtualSize, config->align); 1399 fileSize += alignTo(rawSize, config->fileAlign); 1400 } 1401 sizeOfImage = alignTo(rva, config->align); 1402 1403 // Assign addresses to sections in MergeChunks. 1404 for (MergeChunk *mc : ctx.mergeChunkInstances) 1405 if (mc) 1406 mc->assignSubsectionRVAs(); 1407 } 1408 1409 template <typename PEHeaderTy> void Writer::writeHeader() { 1410 // Write DOS header. For backwards compatibility, the first part of a PE/COFF 1411 // executable consists of an MS-DOS MZ executable. If the executable is run 1412 // under DOS, that program gets run (usually to just print an error message). 1413 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses 1414 // the PE header instead. 1415 Configuration *config = &ctx.config; 1416 uint8_t *buf = buffer->getBufferStart(); 1417 auto *dos = reinterpret_cast<dos_header *>(buf); 1418 buf += sizeof(dos_header); 1419 dos->Magic[0] = 'M'; 1420 dos->Magic[1] = 'Z'; 1421 dos->UsedBytesInTheLastPage = dosStubSize % 512; 1422 dos->FileSizeInPages = divideCeil(dosStubSize, 512); 1423 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16; 1424 1425 dos->AddressOfRelocationTable = sizeof(dos_header); 1426 dos->AddressOfNewExeHeader = dosStubSize; 1427 1428 // Write DOS program. 1429 memcpy(buf, dosProgram, sizeof(dosProgram)); 1430 buf += sizeof(dosProgram); 1431 1432 // Write PE magic 1433 memcpy(buf, PEMagic, sizeof(PEMagic)); 1434 buf += sizeof(PEMagic); 1435 1436 // Write COFF header 1437 auto *coff = reinterpret_cast<coff_file_header *>(buf); 1438 buf += sizeof(*coff); 1439 switch (config->machine) { 1440 case ARM64EC: 1441 coff->Machine = AMD64; 1442 break; 1443 case ARM64X: 1444 coff->Machine = ARM64; 1445 break; 1446 default: 1447 coff->Machine = config->machine; 1448 } 1449 coff->NumberOfSections = ctx.outputSections.size(); 1450 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE; 1451 if (config->largeAddressAware) 1452 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE; 1453 if (!config->is64()) 1454 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE; 1455 if (config->dll) 1456 coff->Characteristics |= IMAGE_FILE_DLL; 1457 if (config->driverUponly) 1458 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY; 1459 if (!config->relocatable) 1460 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED; 1461 if (config->swaprunCD) 1462 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP; 1463 if (config->swaprunNet) 1464 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP; 1465 coff->SizeOfOptionalHeader = 1466 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory; 1467 1468 // Write PE header 1469 auto *pe = reinterpret_cast<PEHeaderTy *>(buf); 1470 buf += sizeof(*pe); 1471 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32; 1472 1473 // If {Major,Minor}LinkerVersion is left at 0.0, then for some 1474 // reason signing the resulting PE file with Authenticode produces a 1475 // signature that fails to validate on Windows 7 (but is OK on 10). 1476 // Set it to 14.0, which is what VS2015 outputs, and which avoids 1477 // that problem. 1478 pe->MajorLinkerVersion = 14; 1479 pe->MinorLinkerVersion = 0; 1480 1481 pe->ImageBase = config->imageBase; 1482 pe->SectionAlignment = config->align; 1483 pe->FileAlignment = config->fileAlign; 1484 pe->MajorImageVersion = config->majorImageVersion; 1485 pe->MinorImageVersion = config->minorImageVersion; 1486 pe->MajorOperatingSystemVersion = config->majorOSVersion; 1487 pe->MinorOperatingSystemVersion = config->minorOSVersion; 1488 pe->MajorSubsystemVersion = config->majorSubsystemVersion; 1489 pe->MinorSubsystemVersion = config->minorSubsystemVersion; 1490 pe->Subsystem = config->subsystem; 1491 pe->SizeOfImage = sizeOfImage; 1492 pe->SizeOfHeaders = sizeOfHeaders; 1493 if (!config->noEntry) { 1494 Defined *entry = cast<Defined>(config->entry); 1495 pe->AddressOfEntryPoint = entry->getRVA(); 1496 // Pointer to thumb code must have the LSB set, so adjust it. 1497 if (config->machine == ARMNT) 1498 pe->AddressOfEntryPoint |= 1; 1499 } 1500 pe->SizeOfStackReserve = config->stackReserve; 1501 pe->SizeOfStackCommit = config->stackCommit; 1502 pe->SizeOfHeapReserve = config->heapReserve; 1503 pe->SizeOfHeapCommit = config->heapCommit; 1504 if (config->appContainer) 1505 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER; 1506 if (config->driverWdm) 1507 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER; 1508 if (config->dynamicBase) 1509 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE; 1510 if (config->highEntropyVA) 1511 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA; 1512 if (!config->allowBind) 1513 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND; 1514 if (config->nxCompat) 1515 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT; 1516 if (!config->allowIsolation) 1517 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION; 1518 if (config->guardCF != GuardCFLevel::Off) 1519 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF; 1520 if (config->integrityCheck) 1521 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY; 1522 if (setNoSEHCharacteristic || config->noSEH) 1523 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH; 1524 if (config->terminalServerAware) 1525 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE; 1526 pe->NumberOfRvaAndSize = numberOfDataDirectory; 1527 if (textSec->getVirtualSize()) { 1528 pe->BaseOfCode = textSec->getRVA(); 1529 pe->SizeOfCode = textSec->getRawSize(); 1530 } 1531 pe->SizeOfInitializedData = getSizeOfInitializedData(); 1532 1533 // Write data directory 1534 auto *dir = reinterpret_cast<data_directory *>(buf); 1535 buf += sizeof(*dir) * numberOfDataDirectory; 1536 if (edataStart) { 1537 dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA(); 1538 dir[EXPORT_TABLE].Size = 1539 edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA(); 1540 } 1541 if (importTableStart) { 1542 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA(); 1543 dir[IMPORT_TABLE].Size = importTableSize; 1544 } 1545 if (iatStart) { 1546 dir[IAT].RelativeVirtualAddress = iatStart->getRVA(); 1547 dir[IAT].Size = iatSize; 1548 } 1549 if (rsrcSec->getVirtualSize()) { 1550 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA(); 1551 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize(); 1552 } 1553 if (firstPdata) { 1554 dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA(); 1555 dir[EXCEPTION_TABLE].Size = 1556 lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA(); 1557 } 1558 if (relocSec->getVirtualSize()) { 1559 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA(); 1560 dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize(); 1561 } 1562 if (Symbol *sym = ctx.symtab.findUnderscore("_tls_used")) { 1563 if (Defined *b = dyn_cast<Defined>(sym)) { 1564 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA(); 1565 dir[TLS_TABLE].Size = config->is64() 1566 ? sizeof(object::coff_tls_directory64) 1567 : sizeof(object::coff_tls_directory32); 1568 } 1569 } 1570 if (debugDirectory) { 1571 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA(); 1572 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize(); 1573 } 1574 if (Symbol *sym = ctx.symtab.findUnderscore("_load_config_used")) { 1575 if (auto *b = dyn_cast<DefinedRegular>(sym)) { 1576 SectionChunk *sc = b->getChunk(); 1577 assert(b->getRVA() >= sc->getRVA()); 1578 uint64_t offsetInChunk = b->getRVA() - sc->getRVA(); 1579 if (!sc->hasData || offsetInChunk + 4 > sc->getSize()) 1580 fatal("_load_config_used is malformed"); 1581 1582 ArrayRef<uint8_t> secContents = sc->getContents(); 1583 uint32_t loadConfigSize = 1584 *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]); 1585 if (offsetInChunk + loadConfigSize > sc->getSize()) 1586 fatal("_load_config_used is too large"); 1587 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA(); 1588 dir[LOAD_CONFIG_TABLE].Size = loadConfigSize; 1589 } 1590 } 1591 if (!delayIdata.empty()) { 1592 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress = 1593 delayIdata.getDirRVA(); 1594 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize(); 1595 } 1596 1597 // Write section table 1598 for (OutputSection *sec : ctx.outputSections) { 1599 sec->writeHeaderTo(buf, config->debug); 1600 buf += sizeof(coff_section); 1601 } 1602 sectionTable = ArrayRef<uint8_t>( 1603 buf - ctx.outputSections.size() * sizeof(coff_section), buf); 1604 1605 if (outputSymtab.empty() && strtab.empty()) 1606 return; 1607 1608 coff->PointerToSymbolTable = pointerToSymbolTable; 1609 uint32_t numberOfSymbols = outputSymtab.size(); 1610 coff->NumberOfSymbols = numberOfSymbols; 1611 auto *symbolTable = reinterpret_cast<coff_symbol16 *>( 1612 buffer->getBufferStart() + coff->PointerToSymbolTable); 1613 for (size_t i = 0; i != numberOfSymbols; ++i) 1614 symbolTable[i] = outputSymtab[i]; 1615 // Create the string table, it follows immediately after the symbol table. 1616 // The first 4 bytes is length including itself. 1617 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]); 1618 write32le(buf, strtab.size() + 4); 1619 if (!strtab.empty()) 1620 memcpy(buf + 4, strtab.data(), strtab.size()); 1621 } 1622 1623 void Writer::openFile(StringRef path) { 1624 buffer = CHECK( 1625 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable), 1626 "failed to open " + path); 1627 } 1628 1629 void Writer::createSEHTable() { 1630 SymbolRVASet handlers; 1631 for (ObjFile *file : ctx.objFileInstances) { 1632 if (!file->hasSafeSEH()) 1633 error("/safeseh: " + file->getName() + " is not compatible with SEH"); 1634 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers); 1635 } 1636 1637 // Set the "no SEH" characteristic if there really were no handlers, or if 1638 // there is no load config object to point to the table of handlers. 1639 setNoSEHCharacteristic = 1640 handlers.empty() || !ctx.symtab.findUnderscore("_load_config_used"); 1641 1642 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table", 1643 "__safe_se_handler_count"); 1644 } 1645 1646 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set 1647 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the 1648 // symbol's offset into that Chunk. 1649 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) { 1650 Chunk *c = s->getChunk(); 1651 if (auto *sc = dyn_cast<SectionChunk>(c)) 1652 c = sc->repl; // Look through ICF replacement. 1653 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0); 1654 rvaSet.insert({c, off}); 1655 } 1656 1657 // Given a symbol, add it to the GFIDs table if it is a live, defined, function 1658 // symbol in an executable section. 1659 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms, 1660 Symbol *s) { 1661 if (!s) 1662 return; 1663 1664 switch (s->kind()) { 1665 case Symbol::DefinedLocalImportKind: 1666 case Symbol::DefinedImportDataKind: 1667 // Defines an __imp_ pointer, so it is data, so it is ignored. 1668 break; 1669 case Symbol::DefinedCommonKind: 1670 // Common is always data, so it is ignored. 1671 break; 1672 case Symbol::DefinedAbsoluteKind: 1673 case Symbol::DefinedSyntheticKind: 1674 // Absolute is never code, synthetic generally isn't and usually isn't 1675 // determinable. 1676 break; 1677 case Symbol::LazyArchiveKind: 1678 case Symbol::LazyObjectKind: 1679 case Symbol::LazyDLLSymbolKind: 1680 case Symbol::UndefinedKind: 1681 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy 1682 // symbols shouldn't have relocations. 1683 break; 1684 1685 case Symbol::DefinedImportThunkKind: 1686 // Thunks are always code, include them. 1687 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s)); 1688 break; 1689 1690 case Symbol::DefinedRegularKind: { 1691 // This is a regular, defined, symbol from a COFF file. Mark the symbol as 1692 // address taken if the symbol type is function and it's in an executable 1693 // section. 1694 auto *d = cast<DefinedRegular>(s); 1695 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) { 1696 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk()); 1697 if (sc && sc->live && 1698 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) 1699 addSymbolToRVASet(addressTakenSyms, d); 1700 } 1701 break; 1702 } 1703 } 1704 } 1705 1706 // Visit all relocations from all section contributions of this object file and 1707 // mark the relocation target as address-taken. 1708 void Writer::markSymbolsWithRelocations(ObjFile *file, 1709 SymbolRVASet &usedSymbols) { 1710 for (Chunk *c : file->getChunks()) { 1711 // We only care about live section chunks. Common chunks and other chunks 1712 // don't generally contain relocations. 1713 SectionChunk *sc = dyn_cast<SectionChunk>(c); 1714 if (!sc || !sc->live) 1715 continue; 1716 1717 for (const coff_relocation &reloc : sc->getRelocs()) { 1718 if (ctx.config.machine == I386 && 1719 reloc.Type == COFF::IMAGE_REL_I386_REL32) 1720 // Ignore relative relocations on x86. On x86_64 they can't be ignored 1721 // since they're also used to compute absolute addresses. 1722 continue; 1723 1724 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex); 1725 maybeAddAddressTakenFunction(usedSymbols, ref); 1726 } 1727 } 1728 } 1729 1730 // Create the guard function id table. This is a table of RVAs of all 1731 // address-taken functions. It is sorted and uniqued, just like the safe SEH 1732 // table. 1733 void Writer::createGuardCFTables() { 1734 Configuration *config = &ctx.config; 1735 1736 SymbolRVASet addressTakenSyms; 1737 SymbolRVASet giatsRVASet; 1738 std::vector<Symbol *> giatsSymbols; 1739 SymbolRVASet longJmpTargets; 1740 SymbolRVASet ehContTargets; 1741 for (ObjFile *file : ctx.objFileInstances) { 1742 // If the object was compiled with /guard:cf, the address taken symbols 1743 // are in .gfids$y sections, and the longjmp targets are in .gljmp$y 1744 // sections. If the object was not compiled with /guard:cf, we assume there 1745 // were no setjmp targets, and that all code symbols with relocations are 1746 // possibly address-taken. 1747 if (file->hasGuardCF()) { 1748 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms); 1749 markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet); 1750 getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols); 1751 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets); 1752 } else { 1753 markSymbolsWithRelocations(file, addressTakenSyms); 1754 } 1755 // If the object was compiled with /guard:ehcont, the ehcont targets are in 1756 // .gehcont$y sections. 1757 if (file->hasGuardEHCont()) 1758 markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets); 1759 } 1760 1761 // Mark the image entry as address-taken. 1762 if (config->entry) 1763 maybeAddAddressTakenFunction(addressTakenSyms, config->entry); 1764 1765 // Mark exported symbols in executable sections as address-taken. 1766 for (Export &e : config->exports) 1767 maybeAddAddressTakenFunction(addressTakenSyms, e.sym); 1768 1769 // For each entry in the .giats table, check if it has a corresponding load 1770 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if 1771 // so, add the load thunk to the address taken (.gfids) table. 1772 for (Symbol *s : giatsSymbols) { 1773 if (auto *di = dyn_cast<DefinedImportData>(s)) { 1774 if (di->loadThunkSym) 1775 addSymbolToRVASet(addressTakenSyms, di->loadThunkSym); 1776 } 1777 } 1778 1779 // Ensure sections referenced in the gfid table are 16-byte aligned. 1780 for (const ChunkAndOffset &c : addressTakenSyms) 1781 if (c.inputChunk->getAlignment() < 16) 1782 c.inputChunk->setAlignment(16); 1783 1784 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table", 1785 "__guard_fids_count"); 1786 1787 // Add the Guard Address Taken IAT Entry Table (.giats). 1788 maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table", 1789 "__guard_iat_count"); 1790 1791 // Add the longjmp target table unless the user told us not to. 1792 if (config->guardCF & GuardCFLevel::LongJmp) 1793 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table", 1794 "__guard_longjmp_count"); 1795 1796 // Add the ehcont target table unless the user told us not to. 1797 if (config->guardCF & GuardCFLevel::EHCont) 1798 maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table", 1799 "__guard_eh_cont_count"); 1800 1801 // Set __guard_flags, which will be used in the load config to indicate that 1802 // /guard:cf was enabled. 1803 uint32_t guardFlags = uint32_t(GuardFlags::CF_INSTRUMENTED) | 1804 uint32_t(GuardFlags::CF_FUNCTION_TABLE_PRESENT); 1805 if (config->guardCF & GuardCFLevel::LongJmp) 1806 guardFlags |= uint32_t(GuardFlags::CF_LONGJUMP_TABLE_PRESENT); 1807 if (config->guardCF & GuardCFLevel::EHCont) 1808 guardFlags |= uint32_t(GuardFlags::EH_CONTINUATION_TABLE_PRESENT); 1809 Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags"); 1810 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags); 1811 } 1812 1813 // Take a list of input sections containing symbol table indices and add those 1814 // symbols to a vector. The challenge is that symbol RVAs are not known and 1815 // depend on the table size, so we can't directly build a set of integers. 1816 void Writer::getSymbolsFromSections(ObjFile *file, 1817 ArrayRef<SectionChunk *> symIdxChunks, 1818 std::vector<Symbol *> &symbols) { 1819 for (SectionChunk *c : symIdxChunks) { 1820 // Skip sections discarded by linker GC. This comes up when a .gfids section 1821 // is associated with something like a vtable and the vtable is discarded. 1822 // In this case, the associated gfids section is discarded, and we don't 1823 // mark the virtual member functions as address-taken by the vtable. 1824 if (!c->live) 1825 continue; 1826 1827 // Validate that the contents look like symbol table indices. 1828 ArrayRef<uint8_t> data = c->getContents(); 1829 if (data.size() % 4 != 0) { 1830 warn("ignoring " + c->getSectionName() + 1831 " symbol table index section in object " + toString(file)); 1832 continue; 1833 } 1834 1835 // Read each symbol table index and check if that symbol was included in the 1836 // final link. If so, add it to the vector of symbols. 1837 ArrayRef<ulittle32_t> symIndices( 1838 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4); 1839 ArrayRef<Symbol *> objSymbols = file->getSymbols(); 1840 for (uint32_t symIndex : symIndices) { 1841 if (symIndex >= objSymbols.size()) { 1842 warn("ignoring invalid symbol table index in section " + 1843 c->getSectionName() + " in object " + toString(file)); 1844 continue; 1845 } 1846 if (Symbol *s = objSymbols[symIndex]) { 1847 if (s->isLive()) 1848 symbols.push_back(cast<Symbol>(s)); 1849 } 1850 } 1851 } 1852 } 1853 1854 // Take a list of input sections containing symbol table indices and add those 1855 // symbols to an RVA table. 1856 void Writer::markSymbolsForRVATable(ObjFile *file, 1857 ArrayRef<SectionChunk *> symIdxChunks, 1858 SymbolRVASet &tableSymbols) { 1859 std::vector<Symbol *> syms; 1860 getSymbolsFromSections(file, symIdxChunks, syms); 1861 1862 for (Symbol *s : syms) 1863 addSymbolToRVASet(tableSymbols, cast<Defined>(s)); 1864 } 1865 1866 // Replace the absolute table symbol with a synthetic symbol pointing to 1867 // tableChunk so that we can emit base relocations for it and resolve section 1868 // relative relocations. 1869 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, 1870 StringRef countSym, bool hasFlag) { 1871 if (tableSymbols.empty()) 1872 return; 1873 1874 NonSectionChunk *tableChunk; 1875 if (hasFlag) 1876 tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols)); 1877 else 1878 tableChunk = make<RVATableChunk>(std::move(tableSymbols)); 1879 rdataSec->addChunk(tableChunk); 1880 1881 Symbol *t = ctx.symtab.findUnderscore(tableSym); 1882 Symbol *c = ctx.symtab.findUnderscore(countSym); 1883 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk); 1884 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4)); 1885 } 1886 1887 // MinGW specific. Gather all relocations that are imported from a DLL even 1888 // though the code didn't expect it to, produce the table that the runtime 1889 // uses for fixing them up, and provide the synthetic symbols that the 1890 // runtime uses for finding the table. 1891 void Writer::createRuntimePseudoRelocs() { 1892 std::vector<RuntimePseudoReloc> rels; 1893 1894 for (Chunk *c : ctx.symtab.getChunks()) { 1895 auto *sc = dyn_cast<SectionChunk>(c); 1896 if (!sc || !sc->live) 1897 continue; 1898 sc->getRuntimePseudoRelocs(rels); 1899 } 1900 1901 if (!ctx.config.pseudoRelocs) { 1902 // Not writing any pseudo relocs; if some were needed, error out and 1903 // indicate what required them. 1904 for (const RuntimePseudoReloc &rpr : rels) 1905 error("automatic dllimport of " + rpr.sym->getName() + " in " + 1906 toString(rpr.target->file) + " requires pseudo relocations"); 1907 return; 1908 } 1909 1910 if (!rels.empty()) 1911 log("Writing " + Twine(rels.size()) + " runtime pseudo relocations"); 1912 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels); 1913 rdataSec->addChunk(table); 1914 EmptyChunk *endOfList = make<EmptyChunk>(); 1915 rdataSec->addChunk(endOfList); 1916 1917 Symbol *headSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__"); 1918 Symbol *endSym = 1919 ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__"); 1920 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table); 1921 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList); 1922 } 1923 1924 // MinGW specific. 1925 // The MinGW .ctors and .dtors lists have sentinels at each end; 1926 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end. 1927 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__ 1928 // and __DTOR_LIST__ respectively. 1929 void Writer::insertCtorDtorSymbols() { 1930 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(ctx, -1); 1931 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(ctx, 0); 1932 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(ctx, -1); 1933 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(ctx, 0); 1934 ctorsSec->insertChunkAtStart(ctorListHead); 1935 ctorsSec->addChunk(ctorListEnd); 1936 dtorsSec->insertChunkAtStart(dtorListHead); 1937 dtorsSec->addChunk(dtorListEnd); 1938 1939 Symbol *ctorListSym = ctx.symtab.findUnderscore("__CTOR_LIST__"); 1940 Symbol *dtorListSym = ctx.symtab.findUnderscore("__DTOR_LIST__"); 1941 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(), 1942 ctorListHead); 1943 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(), 1944 dtorListHead); 1945 } 1946 1947 // Handles /section options to allow users to overwrite 1948 // section attributes. 1949 void Writer::setSectionPermissions() { 1950 for (auto &p : ctx.config.section) { 1951 StringRef name = p.first; 1952 uint32_t perm = p.second; 1953 for (OutputSection *sec : ctx.outputSections) 1954 if (sec->name == name) 1955 sec->setPermissions(perm); 1956 } 1957 } 1958 1959 // Write section contents to a mmap'ed file. 1960 void Writer::writeSections() { 1961 uint8_t *buf = buffer->getBufferStart(); 1962 for (OutputSection *sec : ctx.outputSections) { 1963 uint8_t *secBuf = buf + sec->getFileOff(); 1964 // Fill gaps between functions in .text with INT3 instructions 1965 // instead of leaving as NUL bytes (which can be interpreted as 1966 // ADD instructions). 1967 if ((sec->header.Characteristics & IMAGE_SCN_CNT_CODE) && 1968 (ctx.config.machine == AMD64 || ctx.config.machine == I386)) 1969 memset(secBuf, 0xCC, sec->getRawSize()); 1970 parallelForEach(sec->chunks, [&](Chunk *c) { 1971 c->writeTo(secBuf + c->getRVA() - sec->getRVA()); 1972 }); 1973 } 1974 } 1975 1976 void Writer::writeBuildId() { 1977 // There are two important parts to the build ID. 1978 // 1) If building with debug info, the COFF debug directory contains a 1979 // timestamp as well as a Guid and Age of the PDB. 1980 // 2) In all cases, the PE COFF file header also contains a timestamp. 1981 // For reproducibility, instead of a timestamp we want to use a hash of the 1982 // PE contents. 1983 Configuration *config = &ctx.config; 1984 1985 if (config->debug) { 1986 assert(buildId && "BuildId is not set!"); 1987 // BuildId->BuildId was filled in when the PDB was written. 1988 } 1989 1990 // At this point the only fields in the COFF file which remain unset are the 1991 // "timestamp" in the COFF file header, and the ones in the coff debug 1992 // directory. Now we can hash the file and write that hash to the various 1993 // timestamp fields in the file. 1994 StringRef outputFileData( 1995 reinterpret_cast<const char *>(buffer->getBufferStart()), 1996 buffer->getBufferSize()); 1997 1998 uint32_t timestamp = config->timestamp; 1999 uint64_t hash = 0; 2000 bool generateSyntheticBuildId = 2001 config->mingw && config->debug && config->pdbPath.empty(); 2002 2003 if (config->repro || generateSyntheticBuildId) 2004 hash = xxh3_64bits(outputFileData); 2005 2006 if (config->repro) 2007 timestamp = static_cast<uint32_t>(hash); 2008 2009 if (generateSyntheticBuildId) { 2010 // For MinGW builds without a PDB file, we still generate a build id 2011 // to allow associating a crash dump to the executable. 2012 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70; 2013 buildId->buildId->PDB70.Age = 1; 2014 memcpy(buildId->buildId->PDB70.Signature, &hash, 8); 2015 // xxhash only gives us 8 bytes, so put some fixed data in the other half. 2016 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8); 2017 } 2018 2019 if (debugDirectory) 2020 debugDirectory->setTimeDateStamp(timestamp); 2021 2022 uint8_t *buf = buffer->getBufferStart(); 2023 buf += dosStubSize + sizeof(PEMagic); 2024 object::coff_file_header *coffHeader = 2025 reinterpret_cast<coff_file_header *>(buf); 2026 coffHeader->TimeDateStamp = timestamp; 2027 } 2028 2029 // Sort .pdata section contents according to PE/COFF spec 5.5. 2030 void Writer::sortExceptionTable() { 2031 if (!firstPdata) 2032 return; 2033 // We assume .pdata contains function table entries only. 2034 auto bufAddr = [&](Chunk *c) { 2035 OutputSection *os = ctx.getOutputSection(c); 2036 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() - 2037 os->getRVA(); 2038 }; 2039 uint8_t *begin = bufAddr(firstPdata); 2040 uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize(); 2041 if (ctx.config.machine == AMD64) { 2042 struct Entry { ulittle32_t begin, end, unwind; }; 2043 if ((end - begin) % sizeof(Entry) != 0) { 2044 fatal("unexpected .pdata size: " + Twine(end - begin) + 2045 " is not a multiple of " + Twine(sizeof(Entry))); 2046 } 2047 parallelSort( 2048 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end), 2049 [](const Entry &a, const Entry &b) { return a.begin < b.begin; }); 2050 return; 2051 } 2052 if (ctx.config.machine == ARMNT || ctx.config.machine == ARM64) { 2053 struct Entry { ulittle32_t begin, unwind; }; 2054 if ((end - begin) % sizeof(Entry) != 0) { 2055 fatal("unexpected .pdata size: " + Twine(end - begin) + 2056 " is not a multiple of " + Twine(sizeof(Entry))); 2057 } 2058 parallelSort( 2059 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end), 2060 [](const Entry &a, const Entry &b) { return a.begin < b.begin; }); 2061 return; 2062 } 2063 lld::errs() << "warning: don't know how to handle .pdata.\n"; 2064 } 2065 2066 // The CRT section contains, among other things, the array of function 2067 // pointers that initialize every global variable that is not trivially 2068 // constructed. The CRT calls them one after the other prior to invoking 2069 // main(). 2070 // 2071 // As per C++ spec, 3.6.2/2.3, 2072 // "Variables with ordered initialization defined within a single 2073 // translation unit shall be initialized in the order of their definitions 2074 // in the translation unit" 2075 // 2076 // It is therefore critical to sort the chunks containing the function 2077 // pointers in the order that they are listed in the object file (top to 2078 // bottom), otherwise global objects might not be initialized in the 2079 // correct order. 2080 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) { 2081 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) { 2082 auto sa = dyn_cast<SectionChunk>(a); 2083 auto sb = dyn_cast<SectionChunk>(b); 2084 assert(sa && sb && "Non-section chunks in CRT section!"); 2085 2086 StringRef sAObj = sa->file->mb.getBufferIdentifier(); 2087 StringRef sBObj = sb->file->mb.getBufferIdentifier(); 2088 2089 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber(); 2090 }; 2091 llvm::stable_sort(chunks, sectionChunkOrder); 2092 2093 if (ctx.config.verbose) { 2094 for (auto &c : chunks) { 2095 auto sc = dyn_cast<SectionChunk>(c); 2096 log(" " + sc->file->mb.getBufferIdentifier().str() + 2097 ", SectionID: " + Twine(sc->getSectionNumber())); 2098 } 2099 } 2100 } 2101 2102 OutputSection *Writer::findSection(StringRef name) { 2103 for (OutputSection *sec : ctx.outputSections) 2104 if (sec->name == name) 2105 return sec; 2106 return nullptr; 2107 } 2108 2109 uint32_t Writer::getSizeOfInitializedData() { 2110 uint32_t res = 0; 2111 for (OutputSection *s : ctx.outputSections) 2112 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA) 2113 res += s->getRawSize(); 2114 return res; 2115 } 2116 2117 // Add base relocations to .reloc section. 2118 void Writer::addBaserels() { 2119 if (!ctx.config.relocatable) 2120 return; 2121 relocSec->chunks.clear(); 2122 std::vector<Baserel> v; 2123 for (OutputSection *sec : ctx.outputSections) { 2124 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) 2125 continue; 2126 // Collect all locations for base relocations. 2127 for (Chunk *c : sec->chunks) 2128 c->getBaserels(&v); 2129 // Add the addresses to .reloc section. 2130 if (!v.empty()) 2131 addBaserelBlocks(v); 2132 v.clear(); 2133 } 2134 } 2135 2136 // Add addresses to .reloc section. Note that addresses are grouped by page. 2137 void Writer::addBaserelBlocks(std::vector<Baserel> &v) { 2138 const uint32_t mask = ~uint32_t(pageSize - 1); 2139 uint32_t page = v[0].rva & mask; 2140 size_t i = 0, j = 1; 2141 for (size_t e = v.size(); j < e; ++j) { 2142 uint32_t p = v[j].rva & mask; 2143 if (p == page) 2144 continue; 2145 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j)); 2146 i = j; 2147 page = p; 2148 } 2149 if (i == j) 2150 return; 2151 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j)); 2152 } 2153 2154 PartialSection *Writer::createPartialSection(StringRef name, 2155 uint32_t outChars) { 2156 PartialSection *&pSec = partialSections[{name, outChars}]; 2157 if (pSec) 2158 return pSec; 2159 pSec = make<PartialSection>(name, outChars); 2160 return pSec; 2161 } 2162 2163 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) { 2164 auto it = partialSections.find({name, outChars}); 2165 if (it != partialSections.end()) 2166 return it->second; 2167 return nullptr; 2168 } 2169 2170 void Writer::fixTlsAlignment() { 2171 Defined *tlsSym = 2172 dyn_cast_or_null<Defined>(ctx.symtab.findUnderscore("_tls_used")); 2173 if (!tlsSym) 2174 return; 2175 2176 OutputSection *sec = ctx.getOutputSection(tlsSym->getChunk()); 2177 assert(sec && tlsSym->getRVA() >= sec->getRVA() && 2178 "no output section for _tls_used"); 2179 2180 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff(); 2181 uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA(); 2182 uint64_t directorySize = ctx.config.is64() 2183 ? sizeof(object::coff_tls_directory64) 2184 : sizeof(object::coff_tls_directory32); 2185 2186 if (tlsOffset + directorySize > sec->getRawSize()) 2187 fatal("_tls_used sym is malformed"); 2188 2189 if (ctx.config.is64()) { 2190 object::coff_tls_directory64 *tlsDir = 2191 reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]); 2192 tlsDir->setAlignment(tlsAlignment); 2193 } else { 2194 object::coff_tls_directory32 *tlsDir = 2195 reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]); 2196 tlsDir->setAlignment(tlsAlignment); 2197 } 2198 } 2199 2200 void Writer::checkLoadConfig() { 2201 Symbol *sym = ctx.symtab.findUnderscore("_load_config_used"); 2202 auto *b = cast_if_present<DefinedRegular>(sym); 2203 if (!b) { 2204 if (ctx.config.guardCF != GuardCFLevel::Off) 2205 warn("Control Flow Guard is enabled but '_load_config_used' is missing"); 2206 return; 2207 } 2208 2209 OutputSection *sec = ctx.getOutputSection(b->getChunk()); 2210 uint8_t *buf = buffer->getBufferStart(); 2211 uint8_t *secBuf = buf + sec->getFileOff(); 2212 uint8_t *symBuf = secBuf + (b->getRVA() - sec->getRVA()); 2213 uint32_t expectedAlign = ctx.config.is64() ? 8 : 4; 2214 if (b->getChunk()->getAlignment() < expectedAlign) 2215 warn("'_load_config_used' is misaligned (expected alignment to be " + 2216 Twine(expectedAlign) + " bytes, got " + 2217 Twine(b->getChunk()->getAlignment()) + " instead)"); 2218 else if (!isAligned(Align(expectedAlign), b->getRVA())) 2219 warn("'_load_config_used' is misaligned (RVA is 0x" + 2220 Twine::utohexstr(b->getRVA()) + " not aligned to " + 2221 Twine(expectedAlign) + " bytes)"); 2222 2223 if (ctx.config.is64()) 2224 checkLoadConfigGuardData( 2225 reinterpret_cast<const coff_load_configuration64 *>(symBuf)); 2226 else 2227 checkLoadConfigGuardData( 2228 reinterpret_cast<const coff_load_configuration32 *>(symBuf)); 2229 } 2230 2231 template <typename T> 2232 void Writer::checkLoadConfigGuardData(const T *loadConfig) { 2233 size_t loadConfigSize = loadConfig->Size; 2234 2235 #define RETURN_IF_NOT_CONTAINS(field) \ 2236 if (loadConfigSize < offsetof(T, field) + sizeof(T::field)) { \ 2237 warn("'_load_config_used' structure too small to include " #field); \ 2238 return; \ 2239 } 2240 2241 #define IF_CONTAINS(field) \ 2242 if (loadConfigSize >= offsetof(T, field) + sizeof(T::field)) 2243 2244 #define CHECK_VA(field, sym) \ 2245 if (auto *s = dyn_cast<DefinedSynthetic>(ctx.symtab.findUnderscore(sym))) \ 2246 if (loadConfig->field != ctx.config.imageBase + s->getRVA()) \ 2247 warn(#field " not set correctly in '_load_config_used'"); 2248 2249 #define CHECK_ABSOLUTE(field, sym) \ 2250 if (auto *s = dyn_cast<DefinedAbsolute>(ctx.symtab.findUnderscore(sym))) \ 2251 if (loadConfig->field != s->getVA()) \ 2252 warn(#field " not set correctly in '_load_config_used'"); 2253 2254 if (ctx.config.guardCF == GuardCFLevel::Off) 2255 return; 2256 RETURN_IF_NOT_CONTAINS(GuardFlags) 2257 CHECK_VA(GuardCFFunctionTable, "__guard_fids_table") 2258 CHECK_ABSOLUTE(GuardCFFunctionCount, "__guard_fids_count") 2259 CHECK_ABSOLUTE(GuardFlags, "__guard_flags") 2260 IF_CONTAINS(GuardAddressTakenIatEntryCount) { 2261 CHECK_VA(GuardAddressTakenIatEntryTable, "__guard_iat_table") 2262 CHECK_ABSOLUTE(GuardAddressTakenIatEntryCount, "__guard_iat_count") 2263 } 2264 2265 if (!(ctx.config.guardCF & GuardCFLevel::LongJmp)) 2266 return; 2267 RETURN_IF_NOT_CONTAINS(GuardLongJumpTargetCount) 2268 CHECK_VA(GuardLongJumpTargetTable, "__guard_longjmp_table") 2269 CHECK_ABSOLUTE(GuardLongJumpTargetCount, "__guard_longjmp_count") 2270 2271 if (!(ctx.config.guardCF & GuardCFLevel::EHCont)) 2272 return; 2273 RETURN_IF_NOT_CONTAINS(GuardEHContinuationCount) 2274 CHECK_VA(GuardEHContinuationTable, "__guard_eh_cont_table") 2275 CHECK_ABSOLUTE(GuardEHContinuationCount, "__guard_eh_cont_count") 2276 2277 #undef RETURN_IF_NOT_CONTAINS 2278 #undef IF_CONTAINS 2279 #undef CHECK_VA 2280 #undef CHECK_ABSOLUTE 2281 } 2282