xref: /freebsd/contrib/llvm-project/lld/COFF/Writer.cpp (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "COFFLinkerContext.h"
11 #include "CallGraphSort.h"
12 #include "Config.h"
13 #include "DLL.h"
14 #include "InputFiles.h"
15 #include "LLDMapFile.h"
16 #include "MapFile.h"
17 #include "PDB.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "lld/Common/Timer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/Support/BinaryStreamReader.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/FileOutputBuffer.h"
31 #include "llvm/Support/Parallel.h"
32 #include "llvm/Support/Path.h"
33 #include "llvm/Support/RandomNumberGenerator.h"
34 #include "llvm/Support/xxhash.h"
35 #include <algorithm>
36 #include <cstdio>
37 #include <map>
38 #include <memory>
39 #include <utility>
40 
41 using namespace llvm;
42 using namespace llvm::COFF;
43 using namespace llvm::object;
44 using namespace llvm::support;
45 using namespace llvm::support::endian;
46 using namespace lld;
47 using namespace lld::coff;
48 
49 /* To re-generate DOSProgram:
50 $ cat > /tmp/DOSProgram.asm
51 org 0
52         ; Copy cs to ds.
53         push cs
54         pop ds
55         ; Point ds:dx at the $-terminated string.
56         mov dx, str
57         ; Int 21/AH=09h: Write string to standard output.
58         mov ah, 0x9
59         int 0x21
60         ; Int 21/AH=4Ch: Exit with return code (in AL).
61         mov ax, 0x4C01
62         int 0x21
63 str:
64         db 'This program cannot be run in DOS mode.$'
65 align 8, db 0
66 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
67 $ xxd -i /tmp/DOSProgram.bin
68 */
69 static unsigned char dosProgram[] = {
70   0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
71   0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
72   0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
73   0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
74   0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
75 };
76 static_assert(sizeof(dosProgram) % 8 == 0,
77               "DOSProgram size must be multiple of 8");
78 
79 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
80 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
81 
82 static const int numberOfDataDirectory = 16;
83 
84 namespace {
85 
86 class DebugDirectoryChunk : public NonSectionChunk {
87 public:
88   DebugDirectoryChunk(const COFFLinkerContext &c,
89                       const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
90                       bool writeRepro)
91       : records(r), writeRepro(writeRepro), ctx(c) {}
92 
93   size_t getSize() const override {
94     return (records.size() + int(writeRepro)) * sizeof(debug_directory);
95   }
96 
97   void writeTo(uint8_t *b) const override {
98     auto *d = reinterpret_cast<debug_directory *>(b);
99 
100     for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
101       Chunk *c = record.second;
102       const OutputSection *os = ctx.getOutputSection(c);
103       uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
104       fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
105       ++d;
106     }
107 
108     if (writeRepro) {
109       // FIXME: The COFF spec allows either a 0-sized entry to just say
110       // "the timestamp field is really a hash", or a 4-byte size field
111       // followed by that many bytes containing a longer hash (with the
112       // lowest 4 bytes usually being the timestamp in little-endian order).
113       // Consider storing the full 8 bytes computed by xxh3_64bits here.
114       fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
115     }
116   }
117 
118   void setTimeDateStamp(uint32_t timeDateStamp) {
119     for (support::ulittle32_t *tds : timeDateStamps)
120       *tds = timeDateStamp;
121   }
122 
123 private:
124   void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
125                  uint64_t rva, uint64_t offs) const {
126     d->Characteristics = 0;
127     d->TimeDateStamp = 0;
128     d->MajorVersion = 0;
129     d->MinorVersion = 0;
130     d->Type = debugType;
131     d->SizeOfData = size;
132     d->AddressOfRawData = rva;
133     d->PointerToRawData = offs;
134 
135     timeDateStamps.push_back(&d->TimeDateStamp);
136   }
137 
138   mutable std::vector<support::ulittle32_t *> timeDateStamps;
139   const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
140   bool writeRepro;
141   const COFFLinkerContext &ctx;
142 };
143 
144 class CVDebugRecordChunk : public NonSectionChunk {
145 public:
146   CVDebugRecordChunk(const COFFLinkerContext &c) : ctx(c) {}
147 
148   size_t getSize() const override {
149     return sizeof(codeview::DebugInfo) + ctx.config.pdbAltPath.size() + 1;
150   }
151 
152   void writeTo(uint8_t *b) const override {
153     // Save off the DebugInfo entry to backfill the file signature (build id)
154     // in Writer::writeBuildId
155     buildId = reinterpret_cast<codeview::DebugInfo *>(b);
156 
157     // variable sized field (PDB Path)
158     char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
159     if (!ctx.config.pdbAltPath.empty())
160       memcpy(p, ctx.config.pdbAltPath.data(), ctx.config.pdbAltPath.size());
161     p[ctx.config.pdbAltPath.size()] = '\0';
162   }
163 
164   mutable codeview::DebugInfo *buildId = nullptr;
165 
166 private:
167   const COFFLinkerContext &ctx;
168 };
169 
170 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
171 public:
172   ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
173 
174   size_t getSize() const override { return 4; }
175 
176   void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
177 
178   uint32_t characteristics = 0;
179 };
180 
181 // PartialSection represents a group of chunks that contribute to an
182 // OutputSection. Collating a collection of PartialSections of same name and
183 // characteristics constitutes the OutputSection.
184 class PartialSectionKey {
185 public:
186   StringRef name;
187   unsigned characteristics;
188 
189   bool operator<(const PartialSectionKey &other) const {
190     int c = name.compare(other.name);
191     if (c > 0)
192       return false;
193     if (c == 0)
194       return characteristics < other.characteristics;
195     return true;
196   }
197 };
198 
199 // The writer writes a SymbolTable result to a file.
200 class Writer {
201 public:
202   Writer(COFFLinkerContext &c)
203       : buffer(errorHandler().outputBuffer), delayIdata(c), edata(c), ctx(c) {}
204   void run();
205 
206 private:
207   void createSections();
208   void createMiscChunks();
209   void createImportTables();
210   void appendImportThunks();
211   void locateImportTables();
212   void createExportTable();
213   void mergeSections();
214   void removeUnusedSections();
215   void assignAddresses();
216   bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin);
217   std::pair<Defined *, bool> getThunk(DenseMap<uint64_t, Defined *> &lastThunks,
218                                       Defined *target, uint64_t p,
219                                       uint16_t type, int margin);
220   bool createThunks(OutputSection *os, int margin);
221   bool verifyRanges(const std::vector<Chunk *> chunks);
222   void finalizeAddresses();
223   void removeEmptySections();
224   void assignOutputSectionIndices();
225   void createSymbolAndStringTable();
226   void openFile(StringRef outputPath);
227   template <typename PEHeaderTy> void writeHeader();
228   void createSEHTable();
229   void createRuntimePseudoRelocs();
230   void insertCtorDtorSymbols();
231   void markSymbolsWithRelocations(ObjFile *file, SymbolRVASet &usedSymbols);
232   void createGuardCFTables();
233   void markSymbolsForRVATable(ObjFile *file,
234                               ArrayRef<SectionChunk *> symIdxChunks,
235                               SymbolRVASet &tableSymbols);
236   void getSymbolsFromSections(ObjFile *file,
237                               ArrayRef<SectionChunk *> symIdxChunks,
238                               std::vector<Symbol *> &symbols);
239   void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
240                         StringRef countSym, bool hasFlag=false);
241   void setSectionPermissions();
242   void writeSections();
243   void writeBuildId();
244   void writePEChecksum();
245   void sortSections();
246   void sortExceptionTable();
247   void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
248   void addSyntheticIdata();
249   void sortBySectionOrder(std::vector<Chunk *> &chunks);
250   void fixPartialSectionChars(StringRef name, uint32_t chars);
251   bool fixGnuImportChunks();
252   void fixTlsAlignment();
253   PartialSection *createPartialSection(StringRef name, uint32_t outChars);
254   PartialSection *findPartialSection(StringRef name, uint32_t outChars);
255 
256   std::optional<coff_symbol16> createSymbol(Defined *d);
257   size_t addEntryToStringTable(StringRef str);
258 
259   OutputSection *findSection(StringRef name);
260   void addBaserels();
261   void addBaserelBlocks(std::vector<Baserel> &v);
262 
263   uint32_t getSizeOfInitializedData();
264 
265   void checkLoadConfig();
266   template <typename T> void checkLoadConfigGuardData(const T *loadConfig);
267 
268   std::unique_ptr<FileOutputBuffer> &buffer;
269   std::map<PartialSectionKey, PartialSection *> partialSections;
270   std::vector<char> strtab;
271   std::vector<llvm::object::coff_symbol16> outputSymtab;
272   IdataContents idata;
273   Chunk *importTableStart = nullptr;
274   uint64_t importTableSize = 0;
275   Chunk *edataStart = nullptr;
276   Chunk *edataEnd = nullptr;
277   Chunk *iatStart = nullptr;
278   uint64_t iatSize = 0;
279   DelayLoadContents delayIdata;
280   EdataContents edata;
281   bool setNoSEHCharacteristic = false;
282   uint32_t tlsAlignment = 0;
283 
284   DebugDirectoryChunk *debugDirectory = nullptr;
285   std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
286   CVDebugRecordChunk *buildId = nullptr;
287   ArrayRef<uint8_t> sectionTable;
288 
289   uint64_t fileSize;
290   uint32_t pointerToSymbolTable = 0;
291   uint64_t sizeOfImage;
292   uint64_t sizeOfHeaders;
293 
294   OutputSection *textSec;
295   OutputSection *rdataSec;
296   OutputSection *buildidSec;
297   OutputSection *dataSec;
298   OutputSection *pdataSec;
299   OutputSection *idataSec;
300   OutputSection *edataSec;
301   OutputSection *didatSec;
302   OutputSection *rsrcSec;
303   OutputSection *relocSec;
304   OutputSection *ctorsSec;
305   OutputSection *dtorsSec;
306 
307   // The first and last .pdata sections in the output file.
308   //
309   // We need to keep track of the location of .pdata in whichever section it
310   // gets merged into so that we can sort its contents and emit a correct data
311   // directory entry for the exception table. This is also the case for some
312   // other sections (such as .edata) but because the contents of those sections
313   // are entirely linker-generated we can keep track of their locations using
314   // the chunks that the linker creates. All .pdata chunks come from input
315   // files, so we need to keep track of them separately.
316   Chunk *firstPdata = nullptr;
317   Chunk *lastPdata;
318 
319   COFFLinkerContext &ctx;
320 };
321 } // anonymous namespace
322 
323 void lld::coff::writeResult(COFFLinkerContext &ctx) { Writer(ctx).run(); }
324 
325 void OutputSection::addChunk(Chunk *c) {
326   chunks.push_back(c);
327 }
328 
329 void OutputSection::insertChunkAtStart(Chunk *c) {
330   chunks.insert(chunks.begin(), c);
331 }
332 
333 void OutputSection::setPermissions(uint32_t c) {
334   header.Characteristics &= ~permMask;
335   header.Characteristics |= c;
336 }
337 
338 void OutputSection::merge(OutputSection *other) {
339   chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
340   other->chunks.clear();
341   contribSections.insert(contribSections.end(), other->contribSections.begin(),
342                          other->contribSections.end());
343   other->contribSections.clear();
344 }
345 
346 // Write the section header to a given buffer.
347 void OutputSection::writeHeaderTo(uint8_t *buf, bool isDebug) {
348   auto *hdr = reinterpret_cast<coff_section *>(buf);
349   *hdr = header;
350   if (stringTableOff) {
351     // If name is too long, write offset into the string table as a name.
352     encodeSectionName(hdr->Name, stringTableOff);
353   } else {
354     assert(!isDebug || name.size() <= COFF::NameSize ||
355            (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
356     strncpy(hdr->Name, name.data(),
357             std::min(name.size(), (size_t)COFF::NameSize));
358   }
359 }
360 
361 void OutputSection::addContributingPartialSection(PartialSection *sec) {
362   contribSections.push_back(sec);
363 }
364 
365 // Check whether the target address S is in range from a relocation
366 // of type relType at address P.
367 bool Writer::isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
368   if (ctx.config.machine == ARMNT) {
369     int64_t diff = AbsoluteDifference(s, p + 4) + margin;
370     switch (relType) {
371     case IMAGE_REL_ARM_BRANCH20T:
372       return isInt<21>(diff);
373     case IMAGE_REL_ARM_BRANCH24T:
374     case IMAGE_REL_ARM_BLX23T:
375       return isInt<25>(diff);
376     default:
377       return true;
378     }
379   } else if (ctx.config.machine == ARM64) {
380     int64_t diff = AbsoluteDifference(s, p) + margin;
381     switch (relType) {
382     case IMAGE_REL_ARM64_BRANCH26:
383       return isInt<28>(diff);
384     case IMAGE_REL_ARM64_BRANCH19:
385       return isInt<21>(diff);
386     case IMAGE_REL_ARM64_BRANCH14:
387       return isInt<16>(diff);
388     default:
389       return true;
390     }
391   } else {
392     llvm_unreachable("Unexpected architecture");
393   }
394 }
395 
396 // Return the last thunk for the given target if it is in range,
397 // or create a new one.
398 std::pair<Defined *, bool>
399 Writer::getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target,
400                  uint64_t p, uint16_t type, int margin) {
401   Defined *&lastThunk = lastThunks[target->getRVA()];
402   if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
403     return {lastThunk, false};
404   Chunk *c;
405   switch (ctx.config.machine) {
406   case ARMNT:
407     c = make<RangeExtensionThunkARM>(ctx, target);
408     break;
409   case ARM64:
410     c = make<RangeExtensionThunkARM64>(ctx, target);
411     break;
412   default:
413     llvm_unreachable("Unexpected architecture");
414   }
415   Defined *d = make<DefinedSynthetic>("range_extension_thunk", c);
416   lastThunk = d;
417   return {d, true};
418 }
419 
420 // This checks all relocations, and for any relocation which isn't in range
421 // it adds a thunk after the section chunk that contains the relocation.
422 // If the latest thunk for the specific target is in range, that is used
423 // instead of creating a new thunk. All range checks are done with the
424 // specified margin, to make sure that relocations that originally are in
425 // range, but only barely, also get thunks - in case other added thunks makes
426 // the target go out of range.
427 //
428 // After adding thunks, we verify that all relocations are in range (with
429 // no extra margin requirements). If this failed, we restart (throwing away
430 // the previously created thunks) and retry with a wider margin.
431 bool Writer::createThunks(OutputSection *os, int margin) {
432   bool addressesChanged = false;
433   DenseMap<uint64_t, Defined *> lastThunks;
434   DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
435   size_t thunksSize = 0;
436   // Recheck Chunks.size() each iteration, since we can insert more
437   // elements into it.
438   for (size_t i = 0; i != os->chunks.size(); ++i) {
439     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
440     if (!sc)
441       continue;
442     size_t thunkInsertionSpot = i + 1;
443 
444     // Try to get a good enough estimate of where new thunks will be placed.
445     // Offset this by the size of the new thunks added so far, to make the
446     // estimate slightly better.
447     size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
448     ObjFile *file = sc->file;
449     std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
450     ArrayRef<coff_relocation> originalRelocs =
451         file->getCOFFObj()->getRelocations(sc->header);
452     for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
453       const coff_relocation &rel = originalRelocs[j];
454       Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
455 
456       // The estimate of the source address P should be pretty accurate,
457       // but we don't know whether the target Symbol address should be
458       // offset by thunksSize or not (or by some of thunksSize but not all of
459       // it), giving us some uncertainty once we have added one thunk.
460       uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
461 
462       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
463       if (!sym)
464         continue;
465 
466       uint64_t s = sym->getRVA();
467 
468       if (isInRange(rel.Type, s, p, margin))
469         continue;
470 
471       // If the target isn't in range, hook it up to an existing or new thunk.
472       auto [thunk, wasNew] = getThunk(lastThunks, sym, p, rel.Type, margin);
473       if (wasNew) {
474         Chunk *thunkChunk = thunk->getChunk();
475         thunkChunk->setRVA(
476             thunkInsertionRVA); // Estimate of where it will be located.
477         os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
478         thunkInsertionSpot++;
479         thunksSize += thunkChunk->getSize();
480         thunkInsertionRVA += thunkChunk->getSize();
481         addressesChanged = true;
482       }
483 
484       // To redirect the relocation, add a symbol to the parent object file's
485       // symbol table, and replace the relocation symbol table index with the
486       // new index.
487       auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
488       uint32_t &thunkSymbolIndex = insertion.first->second;
489       if (insertion.second)
490         thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
491       relocReplacements.emplace_back(j, thunkSymbolIndex);
492     }
493 
494     // Get a writable copy of this section's relocations so they can be
495     // modified. If the relocations point into the object file, allocate new
496     // memory. Otherwise, this must be previously allocated memory that can be
497     // modified in place.
498     ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
499     MutableArrayRef<coff_relocation> newRelocs;
500     if (originalRelocs.data() == curRelocs.data()) {
501       newRelocs = MutableArrayRef(
502           bAlloc().Allocate<coff_relocation>(originalRelocs.size()),
503           originalRelocs.size());
504     } else {
505       newRelocs = MutableArrayRef(
506           const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
507     }
508 
509     // Copy each relocation, but replace the symbol table indices which need
510     // thunks.
511     auto nextReplacement = relocReplacements.begin();
512     auto endReplacement = relocReplacements.end();
513     for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
514       newRelocs[i] = originalRelocs[i];
515       if (nextReplacement != endReplacement && nextReplacement->first == i) {
516         newRelocs[i].SymbolTableIndex = nextReplacement->second;
517         ++nextReplacement;
518       }
519     }
520 
521     sc->setRelocs(newRelocs);
522   }
523   return addressesChanged;
524 }
525 
526 // Verify that all relocations are in range, with no extra margin requirements.
527 bool Writer::verifyRanges(const std::vector<Chunk *> chunks) {
528   for (Chunk *c : chunks) {
529     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
530     if (!sc)
531       continue;
532 
533     ArrayRef<coff_relocation> relocs = sc->getRelocs();
534     for (const coff_relocation &rel : relocs) {
535       Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
536 
537       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
538       if (!sym)
539         continue;
540 
541       uint64_t p = sc->getRVA() + rel.VirtualAddress;
542       uint64_t s = sym->getRVA();
543 
544       if (!isInRange(rel.Type, s, p, 0))
545         return false;
546     }
547   }
548   return true;
549 }
550 
551 // Assign addresses and add thunks if necessary.
552 void Writer::finalizeAddresses() {
553   assignAddresses();
554   if (ctx.config.machine != ARMNT && ctx.config.machine != ARM64)
555     return;
556 
557   size_t origNumChunks = 0;
558   for (OutputSection *sec : ctx.outputSections) {
559     sec->origChunks = sec->chunks;
560     origNumChunks += sec->chunks.size();
561   }
562 
563   int pass = 0;
564   int margin = 1024 * 100;
565   while (true) {
566     // First check whether we need thunks at all, or if the previous pass of
567     // adding them turned out ok.
568     bool rangesOk = true;
569     size_t numChunks = 0;
570     for (OutputSection *sec : ctx.outputSections) {
571       if (!verifyRanges(sec->chunks)) {
572         rangesOk = false;
573         break;
574       }
575       numChunks += sec->chunks.size();
576     }
577     if (rangesOk) {
578       if (pass > 0)
579         log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
580             "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
581       return;
582     }
583 
584     if (pass >= 10)
585       fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
586 
587     if (pass > 0) {
588       // If the previous pass didn't work out, reset everything back to the
589       // original conditions before retrying with a wider margin. This should
590       // ideally never happen under real circumstances.
591       for (OutputSection *sec : ctx.outputSections)
592         sec->chunks = sec->origChunks;
593       margin *= 2;
594     }
595 
596     // Try adding thunks everywhere where it is needed, with a margin
597     // to avoid things going out of range due to the added thunks.
598     bool addressesChanged = false;
599     for (OutputSection *sec : ctx.outputSections)
600       addressesChanged |= createThunks(sec, margin);
601     // If the verification above thought we needed thunks, we should have
602     // added some.
603     assert(addressesChanged);
604     (void)addressesChanged;
605 
606     // Recalculate the layout for the whole image (and verify the ranges at
607     // the start of the next round).
608     assignAddresses();
609 
610     pass++;
611   }
612 }
613 
614 void Writer::writePEChecksum() {
615   if (!ctx.config.writeCheckSum) {
616     return;
617   }
618 
619   // https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#checksum
620   uint32_t *buf = (uint32_t *)buffer->getBufferStart();
621   uint32_t size = (uint32_t)(buffer->getBufferSize());
622 
623   coff_file_header *coffHeader =
624       (coff_file_header *)((uint8_t *)buf + dosStubSize + sizeof(PEMagic));
625   pe32_header *peHeader =
626       (pe32_header *)((uint8_t *)coffHeader + sizeof(coff_file_header));
627 
628   uint64_t sum = 0;
629   uint32_t count = size;
630   ulittle16_t *addr = (ulittle16_t *)buf;
631 
632   // The PE checksum algorithm, implemented as suggested in RFC1071
633   while (count > 1) {
634     sum += *addr++;
635     count -= 2;
636   }
637 
638   // Add left-over byte, if any
639   if (count > 0)
640     sum += *(unsigned char *)addr;
641 
642   // Fold 32-bit sum to 16 bits
643   while (sum >> 16) {
644     sum = (sum & 0xffff) + (sum >> 16);
645   }
646 
647   sum += size;
648   peHeader->CheckSum = sum;
649 }
650 
651 // The main function of the writer.
652 void Writer::run() {
653   ScopedTimer t1(ctx.codeLayoutTimer);
654 
655   createImportTables();
656   createSections();
657   appendImportThunks();
658   // Import thunks must be added before the Control Flow Guard tables are added.
659   createMiscChunks();
660   createExportTable();
661   mergeSections();
662   removeUnusedSections();
663   finalizeAddresses();
664   removeEmptySections();
665   assignOutputSectionIndices();
666   setSectionPermissions();
667   createSymbolAndStringTable();
668 
669   if (fileSize > UINT32_MAX)
670     fatal("image size (" + Twine(fileSize) + ") " +
671         "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
672 
673   openFile(ctx.config.outputFile);
674   if (ctx.config.is64()) {
675     writeHeader<pe32plus_header>();
676   } else {
677     writeHeader<pe32_header>();
678   }
679   writeSections();
680   checkLoadConfig();
681   sortExceptionTable();
682 
683   // Fix up the alignment in the TLS Directory's characteristic field,
684   // if a specific alignment value is needed
685   if (tlsAlignment)
686     fixTlsAlignment();
687 
688   t1.stop();
689 
690   if (!ctx.config.pdbPath.empty() && ctx.config.debug) {
691     assert(buildId);
692     createPDB(ctx, sectionTable, buildId->buildId);
693   }
694   writeBuildId();
695 
696   writeLLDMapFile(ctx);
697   writeMapFile(ctx);
698 
699   writePEChecksum();
700 
701   if (errorCount())
702     return;
703 
704   ScopedTimer t2(ctx.outputCommitTimer);
705   if (auto e = buffer->commit())
706     fatal("failed to write output '" + buffer->getPath() +
707           "': " + toString(std::move(e)));
708 }
709 
710 static StringRef getOutputSectionName(StringRef name) {
711   StringRef s = name.split('$').first;
712 
713   // Treat a later period as a separator for MinGW, for sections like
714   // ".ctors.01234".
715   return s.substr(0, s.find('.', 1));
716 }
717 
718 // For /order.
719 void Writer::sortBySectionOrder(std::vector<Chunk *> &chunks) {
720   auto getPriority = [&ctx = ctx](const Chunk *c) {
721     if (auto *sec = dyn_cast<SectionChunk>(c))
722       if (sec->sym)
723         return ctx.config.order.lookup(sec->sym->getName());
724     return 0;
725   };
726 
727   llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
728     return getPriority(a) < getPriority(b);
729   });
730 }
731 
732 // Change the characteristics of existing PartialSections that belong to the
733 // section Name to Chars.
734 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
735   for (auto it : partialSections) {
736     PartialSection *pSec = it.second;
737     StringRef curName = pSec->name;
738     if (!curName.consume_front(name) ||
739         (!curName.empty() && !curName.starts_with("$")))
740       continue;
741     if (pSec->characteristics == chars)
742       continue;
743     PartialSection *destSec = createPartialSection(pSec->name, chars);
744     destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
745                            pSec->chunks.end());
746     pSec->chunks.clear();
747   }
748 }
749 
750 // Sort concrete section chunks from GNU import libraries.
751 //
752 // GNU binutils doesn't use short import files, but instead produces import
753 // libraries that consist of object files, with section chunks for the .idata$*
754 // sections. These are linked just as regular static libraries. Each import
755 // library consists of one header object, one object file for every imported
756 // symbol, and one trailer object. In order for the .idata tables/lists to
757 // be formed correctly, the section chunks within each .idata$* section need
758 // to be grouped by library, and sorted alphabetically within each library
759 // (which makes sure the header comes first and the trailer last).
760 bool Writer::fixGnuImportChunks() {
761   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
762 
763   // Make sure all .idata$* section chunks are mapped as RDATA in order to
764   // be sorted into the same sections as our own synthesized .idata chunks.
765   fixPartialSectionChars(".idata", rdata);
766 
767   bool hasIdata = false;
768   // Sort all .idata$* chunks, grouping chunks from the same library,
769   // with alphabetical ordering of the object files within a library.
770   for (auto it : partialSections) {
771     PartialSection *pSec = it.second;
772     if (!pSec->name.starts_with(".idata"))
773       continue;
774 
775     if (!pSec->chunks.empty())
776       hasIdata = true;
777     llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
778       SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
779       SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
780       if (!sc1 || !sc2) {
781         // if SC1, order them ascending. If SC2 or both null,
782         // S is not less than T.
783         return sc1 != nullptr;
784       }
785       // Make a string with "libraryname/objectfile" for sorting, achieving
786       // both grouping by library and sorting of objects within a library,
787       // at once.
788       std::string key1 =
789           (sc1->file->parentName + "/" + sc1->file->getName()).str();
790       std::string key2 =
791           (sc2->file->parentName + "/" + sc2->file->getName()).str();
792       return key1 < key2;
793     });
794   }
795   return hasIdata;
796 }
797 
798 // Add generated idata chunks, for imported symbols and DLLs, and a
799 // terminator in .idata$2.
800 void Writer::addSyntheticIdata() {
801   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
802   idata.create(ctx);
803 
804   // Add the .idata content in the right section groups, to allow
805   // chunks from other linked in object files to be grouped together.
806   // See Microsoft PE/COFF spec 5.4 for details.
807   auto add = [&](StringRef n, std::vector<Chunk *> &v) {
808     PartialSection *pSec = createPartialSection(n, rdata);
809     pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
810   };
811 
812   // The loader assumes a specific order of data.
813   // Add each type in the correct order.
814   add(".idata$2", idata.dirs);
815   add(".idata$4", idata.lookups);
816   add(".idata$5", idata.addresses);
817   if (!idata.hints.empty())
818     add(".idata$6", idata.hints);
819   add(".idata$7", idata.dllNames);
820 }
821 
822 // Locate the first Chunk and size of the import directory list and the
823 // IAT.
824 void Writer::locateImportTables() {
825   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
826 
827   if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
828     if (!importDirs->chunks.empty())
829       importTableStart = importDirs->chunks.front();
830     for (Chunk *c : importDirs->chunks)
831       importTableSize += c->getSize();
832   }
833 
834   if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
835     if (!importAddresses->chunks.empty())
836       iatStart = importAddresses->chunks.front();
837     for (Chunk *c : importAddresses->chunks)
838       iatSize += c->getSize();
839   }
840 }
841 
842 // Return whether a SectionChunk's suffix (the dollar and any trailing
843 // suffix) should be removed and sorted into the main suffixless
844 // PartialSection.
845 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name,
846                                      bool isMinGW) {
847   // On MinGW, comdat groups are formed by putting the comdat group name
848   // after the '$' in the section name. For .eh_frame$<symbol>, that must
849   // still be sorted before the .eh_frame trailer from crtend.o, thus just
850   // strip the section name trailer. For other sections, such as
851   // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
852   // ".tls$"), they must be strictly sorted after .tls. And for the
853   // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
854   // suffix for sorting. Thus, to play it safe, only strip the suffix for
855   // the standard sections.
856   if (!isMinGW)
857     return false;
858   if (!sc || !sc->isCOMDAT())
859     return false;
860   return name.starts_with(".text$") || name.starts_with(".data$") ||
861          name.starts_with(".rdata$") || name.starts_with(".pdata$") ||
862          name.starts_with(".xdata$") || name.starts_with(".eh_frame$");
863 }
864 
865 void Writer::sortSections() {
866   if (!ctx.config.callGraphProfile.empty()) {
867     DenseMap<const SectionChunk *, int> order =
868         computeCallGraphProfileOrder(ctx);
869     for (auto it : order) {
870       if (DefinedRegular *sym = it.first->sym)
871         ctx.config.order[sym->getName()] = it.second;
872     }
873   }
874   if (!ctx.config.order.empty())
875     for (auto it : partialSections)
876       sortBySectionOrder(it.second->chunks);
877 }
878 
879 // Create output section objects and add them to OutputSections.
880 void Writer::createSections() {
881   // First, create the builtin sections.
882   const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
883   const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
884   const uint32_t code = IMAGE_SCN_CNT_CODE;
885   const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
886   const uint32_t r = IMAGE_SCN_MEM_READ;
887   const uint32_t w = IMAGE_SCN_MEM_WRITE;
888   const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
889 
890   SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
891   auto createSection = [&](StringRef name, uint32_t outChars) {
892     OutputSection *&sec = sections[{name, outChars}];
893     if (!sec) {
894       sec = make<OutputSection>(name, outChars);
895       ctx.outputSections.push_back(sec);
896     }
897     return sec;
898   };
899 
900   // Try to match the section order used by link.exe.
901   textSec = createSection(".text", code | r | x);
902   createSection(".bss", bss | r | w);
903   rdataSec = createSection(".rdata", data | r);
904   buildidSec = createSection(".buildid", data | r);
905   dataSec = createSection(".data", data | r | w);
906   pdataSec = createSection(".pdata", data | r);
907   idataSec = createSection(".idata", data | r);
908   edataSec = createSection(".edata", data | r);
909   didatSec = createSection(".didat", data | r);
910   rsrcSec = createSection(".rsrc", data | r);
911   relocSec = createSection(".reloc", data | discardable | r);
912   ctorsSec = createSection(".ctors", data | r | w);
913   dtorsSec = createSection(".dtors", data | r | w);
914 
915   // Then bin chunks by name and output characteristics.
916   for (Chunk *c : ctx.symtab.getChunks()) {
917     auto *sc = dyn_cast<SectionChunk>(c);
918     if (sc && !sc->live) {
919       if (ctx.config.verbose)
920         sc->printDiscardedMessage();
921       continue;
922     }
923     StringRef name = c->getSectionName();
924     if (shouldStripSectionSuffix(sc, name, ctx.config.mingw))
925       name = name.split('$').first;
926 
927     if (name.starts_with(".tls"))
928       tlsAlignment = std::max(tlsAlignment, c->getAlignment());
929 
930     PartialSection *pSec = createPartialSection(name,
931                                                 c->getOutputCharacteristics());
932     pSec->chunks.push_back(c);
933   }
934 
935   fixPartialSectionChars(".rsrc", data | r);
936   fixPartialSectionChars(".edata", data | r);
937   // Even in non MinGW cases, we might need to link against GNU import
938   // libraries.
939   bool hasIdata = fixGnuImportChunks();
940   if (!idata.empty())
941     hasIdata = true;
942 
943   if (hasIdata)
944     addSyntheticIdata();
945 
946   sortSections();
947 
948   if (hasIdata)
949     locateImportTables();
950 
951   // Then create an OutputSection for each section.
952   // '$' and all following characters in input section names are
953   // discarded when determining output section. So, .text$foo
954   // contributes to .text, for example. See PE/COFF spec 3.2.
955   for (auto it : partialSections) {
956     PartialSection *pSec = it.second;
957     StringRef name = getOutputSectionName(pSec->name);
958     uint32_t outChars = pSec->characteristics;
959 
960     if (name == ".CRT") {
961       // In link.exe, there is a special case for the I386 target where .CRT
962       // sections are treated as if they have output characteristics DATA | R if
963       // their characteristics are DATA | R | W. This implements the same
964       // special case for all architectures.
965       outChars = data | r;
966 
967       log("Processing section " + pSec->name + " -> " + name);
968 
969       sortCRTSectionChunks(pSec->chunks);
970     }
971 
972     OutputSection *sec = createSection(name, outChars);
973     for (Chunk *c : pSec->chunks)
974       sec->addChunk(c);
975 
976     sec->addContributingPartialSection(pSec);
977   }
978 
979   // Finally, move some output sections to the end.
980   auto sectionOrder = [&](const OutputSection *s) {
981     // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
982     // because the loader cannot handle holes. Stripping can remove other
983     // discardable ones than .reloc, which is first of them (created early).
984     if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) {
985       // Move discardable sections named .debug_ to the end, after other
986       // discardable sections. Stripping only removes the sections named
987       // .debug_* - thus try to avoid leaving holes after stripping.
988       if (s->name.starts_with(".debug_"))
989         return 3;
990       return 2;
991     }
992     // .rsrc should come at the end of the non-discardable sections because its
993     // size may change by the Win32 UpdateResources() function, causing
994     // subsequent sections to move (see https://crbug.com/827082).
995     if (s == rsrcSec)
996       return 1;
997     return 0;
998   };
999   llvm::stable_sort(ctx.outputSections,
1000                     [&](const OutputSection *s, const OutputSection *t) {
1001                       return sectionOrder(s) < sectionOrder(t);
1002                     });
1003 }
1004 
1005 void Writer::createMiscChunks() {
1006   Configuration *config = &ctx.config;
1007 
1008   for (MergeChunk *p : ctx.mergeChunkInstances) {
1009     if (p) {
1010       p->finalizeContents();
1011       rdataSec->addChunk(p);
1012     }
1013   }
1014 
1015   // Create thunks for locally-dllimported symbols.
1016   if (!ctx.symtab.localImportChunks.empty()) {
1017     for (Chunk *c : ctx.symtab.localImportChunks)
1018       rdataSec->addChunk(c);
1019   }
1020 
1021   // Create Debug Information Chunks
1022   OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
1023   if (config->debug || config->repro || config->cetCompat) {
1024     debugDirectory =
1025         make<DebugDirectoryChunk>(ctx, debugRecords, config->repro);
1026     debugDirectory->setAlignment(4);
1027     debugInfoSec->addChunk(debugDirectory);
1028   }
1029 
1030   if (config->debug) {
1031     // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified.  We
1032     // output a PDB no matter what, and this chunk provides the only means of
1033     // allowing a debugger to match a PDB and an executable.  So we need it even
1034     // if we're ultimately not going to write CodeView data to the PDB.
1035     buildId = make<CVDebugRecordChunk>(ctx);
1036     debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId);
1037   }
1038 
1039   if (config->cetCompat) {
1040     debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
1041                               make<ExtendedDllCharacteristicsChunk>(
1042                                   IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT));
1043   }
1044 
1045   // Align and add each chunk referenced by the debug data directory.
1046   for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
1047     r.second->setAlignment(4);
1048     debugInfoSec->addChunk(r.second);
1049   }
1050 
1051   // Create SEH table. x86-only.
1052   if (config->safeSEH)
1053     createSEHTable();
1054 
1055   // Create /guard:cf tables if requested.
1056   if (config->guardCF != GuardCFLevel::Off)
1057     createGuardCFTables();
1058 
1059   if (config->autoImport)
1060     createRuntimePseudoRelocs();
1061 
1062   if (config->mingw)
1063     insertCtorDtorSymbols();
1064 }
1065 
1066 // Create .idata section for the DLL-imported symbol table.
1067 // The format of this section is inherently Windows-specific.
1068 // IdataContents class abstracted away the details for us,
1069 // so we just let it create chunks and add them to the section.
1070 void Writer::createImportTables() {
1071   // Initialize DLLOrder so that import entries are ordered in
1072   // the same order as in the command line. (That affects DLL
1073   // initialization order, and this ordering is MSVC-compatible.)
1074   for (ImportFile *file : ctx.importFileInstances) {
1075     if (!file->live)
1076       continue;
1077 
1078     std::string dll = StringRef(file->dllName).lower();
1079     if (ctx.config.dllOrder.count(dll) == 0)
1080       ctx.config.dllOrder[dll] = ctx.config.dllOrder.size();
1081 
1082     if (file->impSym && !isa<DefinedImportData>(file->impSym))
1083       fatal(toString(ctx, *file->impSym) + " was replaced");
1084     DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1085     if (ctx.config.delayLoads.count(StringRef(file->dllName).lower())) {
1086       if (!file->thunkSym)
1087         fatal("cannot delay-load " + toString(file) +
1088               " due to import of data: " + toString(ctx, *impSym));
1089       delayIdata.add(impSym);
1090     } else {
1091       idata.add(impSym);
1092     }
1093   }
1094 }
1095 
1096 void Writer::appendImportThunks() {
1097   if (ctx.importFileInstances.empty())
1098     return;
1099 
1100   for (ImportFile *file : ctx.importFileInstances) {
1101     if (!file->live)
1102       continue;
1103 
1104     if (!file->thunkSym)
1105       continue;
1106 
1107     if (!isa<DefinedImportThunk>(file->thunkSym))
1108       fatal(toString(ctx, *file->thunkSym) + " was replaced");
1109     DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1110     if (file->thunkLive)
1111       textSec->addChunk(thunk->getChunk());
1112   }
1113 
1114   if (!delayIdata.empty()) {
1115     Defined *helper = cast<Defined>(ctx.config.delayLoadHelper);
1116     delayIdata.create(helper);
1117     for (Chunk *c : delayIdata.getChunks())
1118       didatSec->addChunk(c);
1119     for (Chunk *c : delayIdata.getDataChunks())
1120       dataSec->addChunk(c);
1121     for (Chunk *c : delayIdata.getCodeChunks())
1122       textSec->addChunk(c);
1123     for (Chunk *c : delayIdata.getCodePData())
1124       pdataSec->addChunk(c);
1125     for (Chunk *c : delayIdata.getCodeUnwindInfo())
1126       rdataSec->addChunk(c);
1127   }
1128 }
1129 
1130 void Writer::createExportTable() {
1131   if (!edataSec->chunks.empty()) {
1132     // Allow using a custom built export table from input object files, instead
1133     // of having the linker synthesize the tables.
1134     if (ctx.config.hadExplicitExports)
1135       warn("literal .edata sections override exports");
1136   } else if (!ctx.config.exports.empty()) {
1137     for (Chunk *c : edata.chunks)
1138       edataSec->addChunk(c);
1139   }
1140   if (!edataSec->chunks.empty()) {
1141     edataStart = edataSec->chunks.front();
1142     edataEnd = edataSec->chunks.back();
1143   }
1144   // Warn on exported deleting destructor.
1145   for (auto e : ctx.config.exports)
1146     if (e.sym && e.sym->getName().starts_with("??_G"))
1147       warn("export of deleting dtor: " + toString(ctx, *e.sym));
1148 }
1149 
1150 void Writer::removeUnusedSections() {
1151   // Remove sections that we can be sure won't get content, to avoid
1152   // allocating space for their section headers.
1153   auto isUnused = [this](OutputSection *s) {
1154     if (s == relocSec)
1155       return false; // This section is populated later.
1156     // MergeChunks have zero size at this point, as their size is finalized
1157     // later. Only remove sections that have no Chunks at all.
1158     return s->chunks.empty();
1159   };
1160   llvm::erase_if(ctx.outputSections, isUnused);
1161 }
1162 
1163 // The Windows loader doesn't seem to like empty sections,
1164 // so we remove them if any.
1165 void Writer::removeEmptySections() {
1166   auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1167   llvm::erase_if(ctx.outputSections, isEmpty);
1168 }
1169 
1170 void Writer::assignOutputSectionIndices() {
1171   // Assign final output section indices, and assign each chunk to its output
1172   // section.
1173   uint32_t idx = 1;
1174   for (OutputSection *os : ctx.outputSections) {
1175     os->sectionIndex = idx;
1176     for (Chunk *c : os->chunks)
1177       c->setOutputSectionIdx(idx);
1178     ++idx;
1179   }
1180 
1181   // Merge chunks are containers of chunks, so assign those an output section
1182   // too.
1183   for (MergeChunk *mc : ctx.mergeChunkInstances)
1184     if (mc)
1185       for (SectionChunk *sc : mc->sections)
1186         if (sc && sc->live)
1187           sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1188 }
1189 
1190 size_t Writer::addEntryToStringTable(StringRef str) {
1191   assert(str.size() > COFF::NameSize);
1192   size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1193   strtab.insert(strtab.end(), str.begin(), str.end());
1194   strtab.push_back('\0');
1195   return offsetOfEntry;
1196 }
1197 
1198 std::optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1199   coff_symbol16 sym;
1200   switch (def->kind()) {
1201   case Symbol::DefinedAbsoluteKind: {
1202     auto *da = dyn_cast<DefinedAbsolute>(def);
1203     // Note: COFF symbol can only store 32-bit values, so 64-bit absolute
1204     // values will be truncated.
1205     sym.Value = da->getVA();
1206     sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1207     break;
1208   }
1209   default: {
1210     // Don't write symbols that won't be written to the output to the symbol
1211     // table.
1212     // We also try to write DefinedSynthetic as a normal symbol. Some of these
1213     // symbols do point to an actual chunk, like __safe_se_handler_table. Others
1214     // like __ImageBase are outside of sections and thus cannot be represented.
1215     Chunk *c = def->getChunk();
1216     if (!c)
1217       return std::nullopt;
1218     OutputSection *os = ctx.getOutputSection(c);
1219     if (!os)
1220       return std::nullopt;
1221 
1222     sym.Value = def->getRVA() - os->getRVA();
1223     sym.SectionNumber = os->sectionIndex;
1224     break;
1225   }
1226   }
1227 
1228   // Symbols that are runtime pseudo relocations don't point to the actual
1229   // symbol data itself (as they are imported), but points to the IAT entry
1230   // instead. Avoid emitting them to the symbol table, as they can confuse
1231   // debuggers.
1232   if (def->isRuntimePseudoReloc)
1233     return std::nullopt;
1234 
1235   StringRef name = def->getName();
1236   if (name.size() > COFF::NameSize) {
1237     sym.Name.Offset.Zeroes = 0;
1238     sym.Name.Offset.Offset = addEntryToStringTable(name);
1239   } else {
1240     memset(sym.Name.ShortName, 0, COFF::NameSize);
1241     memcpy(sym.Name.ShortName, name.data(), name.size());
1242   }
1243 
1244   if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1245     COFFSymbolRef ref = d->getCOFFSymbol();
1246     sym.Type = ref.getType();
1247     sym.StorageClass = ref.getStorageClass();
1248   } else if (def->kind() == Symbol::DefinedImportThunkKind) {
1249     sym.Type = (IMAGE_SYM_DTYPE_FUNCTION << SCT_COMPLEX_TYPE_SHIFT) |
1250                IMAGE_SYM_TYPE_NULL;
1251     sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1252   } else {
1253     sym.Type = IMAGE_SYM_TYPE_NULL;
1254     sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1255   }
1256   sym.NumberOfAuxSymbols = 0;
1257   return sym;
1258 }
1259 
1260 void Writer::createSymbolAndStringTable() {
1261   // PE/COFF images are limited to 8 byte section names. Longer names can be
1262   // supported by writing a non-standard string table, but this string table is
1263   // not mapped at runtime and the long names will therefore be inaccessible.
1264   // link.exe always truncates section names to 8 bytes, whereas binutils always
1265   // preserves long section names via the string table. LLD adopts a hybrid
1266   // solution where discardable sections have long names preserved and
1267   // non-discardable sections have their names truncated, to ensure that any
1268   // section which is mapped at runtime also has its name mapped at runtime.
1269   for (OutputSection *sec : ctx.outputSections) {
1270     if (sec->name.size() <= COFF::NameSize)
1271       continue;
1272     if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1273       continue;
1274     if (ctx.config.warnLongSectionNames) {
1275       warn("section name " + sec->name +
1276            " is longer than 8 characters and will use a non-standard string "
1277            "table");
1278     }
1279     sec->setStringTableOff(addEntryToStringTable(sec->name));
1280   }
1281 
1282   if (ctx.config.debugDwarf || ctx.config.debugSymtab) {
1283     for (ObjFile *file : ctx.objFileInstances) {
1284       for (Symbol *b : file->getSymbols()) {
1285         auto *d = dyn_cast_or_null<Defined>(b);
1286         if (!d || d->writtenToSymtab)
1287           continue;
1288         d->writtenToSymtab = true;
1289         if (auto *dc = dyn_cast_or_null<DefinedCOFF>(d)) {
1290           COFFSymbolRef symRef = dc->getCOFFSymbol();
1291           if (symRef.isSectionDefinition() ||
1292               symRef.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL)
1293             continue;
1294         }
1295 
1296         if (std::optional<coff_symbol16> sym = createSymbol(d))
1297           outputSymtab.push_back(*sym);
1298 
1299         if (auto *dthunk = dyn_cast<DefinedImportThunk>(d)) {
1300           if (!dthunk->wrappedSym->writtenToSymtab) {
1301             dthunk->wrappedSym->writtenToSymtab = true;
1302             if (std::optional<coff_symbol16> sym =
1303                     createSymbol(dthunk->wrappedSym))
1304               outputSymtab.push_back(*sym);
1305           }
1306         }
1307       }
1308     }
1309   }
1310 
1311   if (outputSymtab.empty() && strtab.empty())
1312     return;
1313 
1314   // We position the symbol table to be adjacent to the end of the last section.
1315   uint64_t fileOff = fileSize;
1316   pointerToSymbolTable = fileOff;
1317   fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1318   fileOff += 4 + strtab.size();
1319   fileSize = alignTo(fileOff, ctx.config.fileAlign);
1320 }
1321 
1322 void Writer::mergeSections() {
1323   if (!pdataSec->chunks.empty()) {
1324     firstPdata = pdataSec->chunks.front();
1325     lastPdata = pdataSec->chunks.back();
1326   }
1327 
1328   for (auto &p : ctx.config.merge) {
1329     StringRef toName = p.second;
1330     if (p.first == toName)
1331       continue;
1332     StringSet<> names;
1333     while (true) {
1334       if (!names.insert(toName).second)
1335         fatal("/merge: cycle found for section '" + p.first + "'");
1336       auto i = ctx.config.merge.find(toName);
1337       if (i == ctx.config.merge.end())
1338         break;
1339       toName = i->second;
1340     }
1341     OutputSection *from = findSection(p.first);
1342     OutputSection *to = findSection(toName);
1343     if (!from)
1344       continue;
1345     if (!to) {
1346       from->name = toName;
1347       continue;
1348     }
1349     to->merge(from);
1350   }
1351 }
1352 
1353 // Visits all sections to assign incremental, non-overlapping RVAs and
1354 // file offsets.
1355 void Writer::assignAddresses() {
1356   Configuration *config = &ctx.config;
1357 
1358   sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1359                   sizeof(data_directory) * numberOfDataDirectory +
1360                   sizeof(coff_section) * ctx.outputSections.size();
1361   sizeOfHeaders +=
1362       config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1363   sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1364   fileSize = sizeOfHeaders;
1365 
1366   // The first page is kept unmapped.
1367   uint64_t rva = alignTo(sizeOfHeaders, config->align);
1368 
1369   for (OutputSection *sec : ctx.outputSections) {
1370     if (sec == relocSec)
1371       addBaserels();
1372     uint64_t rawSize = 0, virtualSize = 0;
1373     sec->header.VirtualAddress = rva;
1374 
1375     // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1376     // hotpatchable image.
1377     const bool isCodeSection =
1378         (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
1379         (sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
1380         (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
1381     uint32_t padding = isCodeSection ? config->functionPadMin : 0;
1382 
1383     for (Chunk *c : sec->chunks) {
1384       if (padding && c->isHotPatchable())
1385         virtualSize += padding;
1386       virtualSize = alignTo(virtualSize, c->getAlignment());
1387       c->setRVA(rva + virtualSize);
1388       virtualSize += c->getSize();
1389       if (c->hasData)
1390         rawSize = alignTo(virtualSize, config->fileAlign);
1391     }
1392     if (virtualSize > UINT32_MAX)
1393       error("section larger than 4 GiB: " + sec->name);
1394     sec->header.VirtualSize = virtualSize;
1395     sec->header.SizeOfRawData = rawSize;
1396     if (rawSize != 0)
1397       sec->header.PointerToRawData = fileSize;
1398     rva += alignTo(virtualSize, config->align);
1399     fileSize += alignTo(rawSize, config->fileAlign);
1400   }
1401   sizeOfImage = alignTo(rva, config->align);
1402 
1403   // Assign addresses to sections in MergeChunks.
1404   for (MergeChunk *mc : ctx.mergeChunkInstances)
1405     if (mc)
1406       mc->assignSubsectionRVAs();
1407 }
1408 
1409 template <typename PEHeaderTy> void Writer::writeHeader() {
1410   // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1411   // executable consists of an MS-DOS MZ executable. If the executable is run
1412   // under DOS, that program gets run (usually to just print an error message).
1413   // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1414   // the PE header instead.
1415   Configuration *config = &ctx.config;
1416   uint8_t *buf = buffer->getBufferStart();
1417   auto *dos = reinterpret_cast<dos_header *>(buf);
1418   buf += sizeof(dos_header);
1419   dos->Magic[0] = 'M';
1420   dos->Magic[1] = 'Z';
1421   dos->UsedBytesInTheLastPage = dosStubSize % 512;
1422   dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1423   dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1424 
1425   dos->AddressOfRelocationTable = sizeof(dos_header);
1426   dos->AddressOfNewExeHeader = dosStubSize;
1427 
1428   // Write DOS program.
1429   memcpy(buf, dosProgram, sizeof(dosProgram));
1430   buf += sizeof(dosProgram);
1431 
1432   // Write PE magic
1433   memcpy(buf, PEMagic, sizeof(PEMagic));
1434   buf += sizeof(PEMagic);
1435 
1436   // Write COFF header
1437   auto *coff = reinterpret_cast<coff_file_header *>(buf);
1438   buf += sizeof(*coff);
1439   switch (config->machine) {
1440   case ARM64EC:
1441     coff->Machine = AMD64;
1442     break;
1443   case ARM64X:
1444     coff->Machine = ARM64;
1445     break;
1446   default:
1447     coff->Machine = config->machine;
1448   }
1449   coff->NumberOfSections = ctx.outputSections.size();
1450   coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1451   if (config->largeAddressAware)
1452     coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1453   if (!config->is64())
1454     coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1455   if (config->dll)
1456     coff->Characteristics |= IMAGE_FILE_DLL;
1457   if (config->driverUponly)
1458     coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1459   if (!config->relocatable)
1460     coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1461   if (config->swaprunCD)
1462     coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1463   if (config->swaprunNet)
1464     coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1465   coff->SizeOfOptionalHeader =
1466       sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1467 
1468   // Write PE header
1469   auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1470   buf += sizeof(*pe);
1471   pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1472 
1473   // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1474   // reason signing the resulting PE file with Authenticode produces a
1475   // signature that fails to validate on Windows 7 (but is OK on 10).
1476   // Set it to 14.0, which is what VS2015 outputs, and which avoids
1477   // that problem.
1478   pe->MajorLinkerVersion = 14;
1479   pe->MinorLinkerVersion = 0;
1480 
1481   pe->ImageBase = config->imageBase;
1482   pe->SectionAlignment = config->align;
1483   pe->FileAlignment = config->fileAlign;
1484   pe->MajorImageVersion = config->majorImageVersion;
1485   pe->MinorImageVersion = config->minorImageVersion;
1486   pe->MajorOperatingSystemVersion = config->majorOSVersion;
1487   pe->MinorOperatingSystemVersion = config->minorOSVersion;
1488   pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1489   pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1490   pe->Subsystem = config->subsystem;
1491   pe->SizeOfImage = sizeOfImage;
1492   pe->SizeOfHeaders = sizeOfHeaders;
1493   if (!config->noEntry) {
1494     Defined *entry = cast<Defined>(config->entry);
1495     pe->AddressOfEntryPoint = entry->getRVA();
1496     // Pointer to thumb code must have the LSB set, so adjust it.
1497     if (config->machine == ARMNT)
1498       pe->AddressOfEntryPoint |= 1;
1499   }
1500   pe->SizeOfStackReserve = config->stackReserve;
1501   pe->SizeOfStackCommit = config->stackCommit;
1502   pe->SizeOfHeapReserve = config->heapReserve;
1503   pe->SizeOfHeapCommit = config->heapCommit;
1504   if (config->appContainer)
1505     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1506   if (config->driverWdm)
1507     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1508   if (config->dynamicBase)
1509     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1510   if (config->highEntropyVA)
1511     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1512   if (!config->allowBind)
1513     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1514   if (config->nxCompat)
1515     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1516   if (!config->allowIsolation)
1517     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1518   if (config->guardCF != GuardCFLevel::Off)
1519     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1520   if (config->integrityCheck)
1521     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1522   if (setNoSEHCharacteristic || config->noSEH)
1523     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1524   if (config->terminalServerAware)
1525     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1526   pe->NumberOfRvaAndSize = numberOfDataDirectory;
1527   if (textSec->getVirtualSize()) {
1528     pe->BaseOfCode = textSec->getRVA();
1529     pe->SizeOfCode = textSec->getRawSize();
1530   }
1531   pe->SizeOfInitializedData = getSizeOfInitializedData();
1532 
1533   // Write data directory
1534   auto *dir = reinterpret_cast<data_directory *>(buf);
1535   buf += sizeof(*dir) * numberOfDataDirectory;
1536   if (edataStart) {
1537     dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1538     dir[EXPORT_TABLE].Size =
1539         edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1540   }
1541   if (importTableStart) {
1542     dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1543     dir[IMPORT_TABLE].Size = importTableSize;
1544   }
1545   if (iatStart) {
1546     dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1547     dir[IAT].Size = iatSize;
1548   }
1549   if (rsrcSec->getVirtualSize()) {
1550     dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1551     dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1552   }
1553   if (firstPdata) {
1554     dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
1555     dir[EXCEPTION_TABLE].Size =
1556         lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
1557   }
1558   if (relocSec->getVirtualSize()) {
1559     dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1560     dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1561   }
1562   if (Symbol *sym = ctx.symtab.findUnderscore("_tls_used")) {
1563     if (Defined *b = dyn_cast<Defined>(sym)) {
1564       dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1565       dir[TLS_TABLE].Size = config->is64()
1566                                 ? sizeof(object::coff_tls_directory64)
1567                                 : sizeof(object::coff_tls_directory32);
1568     }
1569   }
1570   if (debugDirectory) {
1571     dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1572     dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1573   }
1574   if (Symbol *sym = ctx.symtab.findUnderscore("_load_config_used")) {
1575     if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1576       SectionChunk *sc = b->getChunk();
1577       assert(b->getRVA() >= sc->getRVA());
1578       uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1579       if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1580         fatal("_load_config_used is malformed");
1581 
1582       ArrayRef<uint8_t> secContents = sc->getContents();
1583       uint32_t loadConfigSize =
1584           *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1585       if (offsetInChunk + loadConfigSize > sc->getSize())
1586         fatal("_load_config_used is too large");
1587       dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1588       dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1589     }
1590   }
1591   if (!delayIdata.empty()) {
1592     dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1593         delayIdata.getDirRVA();
1594     dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1595   }
1596 
1597   // Write section table
1598   for (OutputSection *sec : ctx.outputSections) {
1599     sec->writeHeaderTo(buf, config->debug);
1600     buf += sizeof(coff_section);
1601   }
1602   sectionTable = ArrayRef<uint8_t>(
1603       buf - ctx.outputSections.size() * sizeof(coff_section), buf);
1604 
1605   if (outputSymtab.empty() && strtab.empty())
1606     return;
1607 
1608   coff->PointerToSymbolTable = pointerToSymbolTable;
1609   uint32_t numberOfSymbols = outputSymtab.size();
1610   coff->NumberOfSymbols = numberOfSymbols;
1611   auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1612       buffer->getBufferStart() + coff->PointerToSymbolTable);
1613   for (size_t i = 0; i != numberOfSymbols; ++i)
1614     symbolTable[i] = outputSymtab[i];
1615   // Create the string table, it follows immediately after the symbol table.
1616   // The first 4 bytes is length including itself.
1617   buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1618   write32le(buf, strtab.size() + 4);
1619   if (!strtab.empty())
1620     memcpy(buf + 4, strtab.data(), strtab.size());
1621 }
1622 
1623 void Writer::openFile(StringRef path) {
1624   buffer = CHECK(
1625       FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1626       "failed to open " + path);
1627 }
1628 
1629 void Writer::createSEHTable() {
1630   SymbolRVASet handlers;
1631   for (ObjFile *file : ctx.objFileInstances) {
1632     if (!file->hasSafeSEH())
1633       error("/safeseh: " + file->getName() + " is not compatible with SEH");
1634     markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1635   }
1636 
1637   // Set the "no SEH" characteristic if there really were no handlers, or if
1638   // there is no load config object to point to the table of handlers.
1639   setNoSEHCharacteristic =
1640       handlers.empty() || !ctx.symtab.findUnderscore("_load_config_used");
1641 
1642   maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1643                    "__safe_se_handler_count");
1644 }
1645 
1646 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1647 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1648 // symbol's offset into that Chunk.
1649 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1650   Chunk *c = s->getChunk();
1651   if (auto *sc = dyn_cast<SectionChunk>(c))
1652     c = sc->repl; // Look through ICF replacement.
1653   uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1654   rvaSet.insert({c, off});
1655 }
1656 
1657 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1658 // symbol in an executable section.
1659 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1660                                          Symbol *s) {
1661   if (!s)
1662     return;
1663 
1664   switch (s->kind()) {
1665   case Symbol::DefinedLocalImportKind:
1666   case Symbol::DefinedImportDataKind:
1667     // Defines an __imp_ pointer, so it is data, so it is ignored.
1668     break;
1669   case Symbol::DefinedCommonKind:
1670     // Common is always data, so it is ignored.
1671     break;
1672   case Symbol::DefinedAbsoluteKind:
1673   case Symbol::DefinedSyntheticKind:
1674     // Absolute is never code, synthetic generally isn't and usually isn't
1675     // determinable.
1676     break;
1677   case Symbol::LazyArchiveKind:
1678   case Symbol::LazyObjectKind:
1679   case Symbol::LazyDLLSymbolKind:
1680   case Symbol::UndefinedKind:
1681     // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1682     // symbols shouldn't have relocations.
1683     break;
1684 
1685   case Symbol::DefinedImportThunkKind:
1686     // Thunks are always code, include them.
1687     addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1688     break;
1689 
1690   case Symbol::DefinedRegularKind: {
1691     // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1692     // address taken if the symbol type is function and it's in an executable
1693     // section.
1694     auto *d = cast<DefinedRegular>(s);
1695     if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1696       SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1697       if (sc && sc->live &&
1698           sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1699         addSymbolToRVASet(addressTakenSyms, d);
1700     }
1701     break;
1702   }
1703   }
1704 }
1705 
1706 // Visit all relocations from all section contributions of this object file and
1707 // mark the relocation target as address-taken.
1708 void Writer::markSymbolsWithRelocations(ObjFile *file,
1709                                         SymbolRVASet &usedSymbols) {
1710   for (Chunk *c : file->getChunks()) {
1711     // We only care about live section chunks. Common chunks and other chunks
1712     // don't generally contain relocations.
1713     SectionChunk *sc = dyn_cast<SectionChunk>(c);
1714     if (!sc || !sc->live)
1715       continue;
1716 
1717     for (const coff_relocation &reloc : sc->getRelocs()) {
1718       if (ctx.config.machine == I386 &&
1719           reloc.Type == COFF::IMAGE_REL_I386_REL32)
1720         // Ignore relative relocations on x86. On x86_64 they can't be ignored
1721         // since they're also used to compute absolute addresses.
1722         continue;
1723 
1724       Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1725       maybeAddAddressTakenFunction(usedSymbols, ref);
1726     }
1727   }
1728 }
1729 
1730 // Create the guard function id table. This is a table of RVAs of all
1731 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1732 // table.
1733 void Writer::createGuardCFTables() {
1734   Configuration *config = &ctx.config;
1735 
1736   SymbolRVASet addressTakenSyms;
1737   SymbolRVASet giatsRVASet;
1738   std::vector<Symbol *> giatsSymbols;
1739   SymbolRVASet longJmpTargets;
1740   SymbolRVASet ehContTargets;
1741   for (ObjFile *file : ctx.objFileInstances) {
1742     // If the object was compiled with /guard:cf, the address taken symbols
1743     // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
1744     // sections. If the object was not compiled with /guard:cf, we assume there
1745     // were no setjmp targets, and that all code symbols with relocations are
1746     // possibly address-taken.
1747     if (file->hasGuardCF()) {
1748       markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1749       markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
1750       getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
1751       markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1752     } else {
1753       markSymbolsWithRelocations(file, addressTakenSyms);
1754     }
1755     // If the object was compiled with /guard:ehcont, the ehcont targets are in
1756     // .gehcont$y sections.
1757     if (file->hasGuardEHCont())
1758       markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets);
1759   }
1760 
1761   // Mark the image entry as address-taken.
1762   if (config->entry)
1763     maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1764 
1765   // Mark exported symbols in executable sections as address-taken.
1766   for (Export &e : config->exports)
1767     maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1768 
1769   // For each entry in the .giats table, check if it has a corresponding load
1770   // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1771   // so, add the load thunk to the address taken (.gfids) table.
1772   for (Symbol *s : giatsSymbols) {
1773     if (auto *di = dyn_cast<DefinedImportData>(s)) {
1774       if (di->loadThunkSym)
1775         addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
1776     }
1777   }
1778 
1779   // Ensure sections referenced in the gfid table are 16-byte aligned.
1780   for (const ChunkAndOffset &c : addressTakenSyms)
1781     if (c.inputChunk->getAlignment() < 16)
1782       c.inputChunk->setAlignment(16);
1783 
1784   maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1785                    "__guard_fids_count");
1786 
1787   // Add the Guard Address Taken IAT Entry Table (.giats).
1788   maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
1789                    "__guard_iat_count");
1790 
1791   // Add the longjmp target table unless the user told us not to.
1792   if (config->guardCF & GuardCFLevel::LongJmp)
1793     maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1794                      "__guard_longjmp_count");
1795 
1796   // Add the ehcont target table unless the user told us not to.
1797   if (config->guardCF & GuardCFLevel::EHCont)
1798     maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table",
1799                      "__guard_eh_cont_count");
1800 
1801   // Set __guard_flags, which will be used in the load config to indicate that
1802   // /guard:cf was enabled.
1803   uint32_t guardFlags = uint32_t(GuardFlags::CF_INSTRUMENTED) |
1804                         uint32_t(GuardFlags::CF_FUNCTION_TABLE_PRESENT);
1805   if (config->guardCF & GuardCFLevel::LongJmp)
1806     guardFlags |= uint32_t(GuardFlags::CF_LONGJUMP_TABLE_PRESENT);
1807   if (config->guardCF & GuardCFLevel::EHCont)
1808     guardFlags |= uint32_t(GuardFlags::EH_CONTINUATION_TABLE_PRESENT);
1809   Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags");
1810   cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1811 }
1812 
1813 // Take a list of input sections containing symbol table indices and add those
1814 // symbols to a vector. The challenge is that symbol RVAs are not known and
1815 // depend on the table size, so we can't directly build a set of integers.
1816 void Writer::getSymbolsFromSections(ObjFile *file,
1817                                     ArrayRef<SectionChunk *> symIdxChunks,
1818                                     std::vector<Symbol *> &symbols) {
1819   for (SectionChunk *c : symIdxChunks) {
1820     // Skip sections discarded by linker GC. This comes up when a .gfids section
1821     // is associated with something like a vtable and the vtable is discarded.
1822     // In this case, the associated gfids section is discarded, and we don't
1823     // mark the virtual member functions as address-taken by the vtable.
1824     if (!c->live)
1825       continue;
1826 
1827     // Validate that the contents look like symbol table indices.
1828     ArrayRef<uint8_t> data = c->getContents();
1829     if (data.size() % 4 != 0) {
1830       warn("ignoring " + c->getSectionName() +
1831            " symbol table index section in object " + toString(file));
1832       continue;
1833     }
1834 
1835     // Read each symbol table index and check if that symbol was included in the
1836     // final link. If so, add it to the vector of symbols.
1837     ArrayRef<ulittle32_t> symIndices(
1838         reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1839     ArrayRef<Symbol *> objSymbols = file->getSymbols();
1840     for (uint32_t symIndex : symIndices) {
1841       if (symIndex >= objSymbols.size()) {
1842         warn("ignoring invalid symbol table index in section " +
1843              c->getSectionName() + " in object " + toString(file));
1844         continue;
1845       }
1846       if (Symbol *s = objSymbols[symIndex]) {
1847         if (s->isLive())
1848           symbols.push_back(cast<Symbol>(s));
1849       }
1850     }
1851   }
1852 }
1853 
1854 // Take a list of input sections containing symbol table indices and add those
1855 // symbols to an RVA table.
1856 void Writer::markSymbolsForRVATable(ObjFile *file,
1857                                     ArrayRef<SectionChunk *> symIdxChunks,
1858                                     SymbolRVASet &tableSymbols) {
1859   std::vector<Symbol *> syms;
1860   getSymbolsFromSections(file, symIdxChunks, syms);
1861 
1862   for (Symbol *s : syms)
1863     addSymbolToRVASet(tableSymbols, cast<Defined>(s));
1864 }
1865 
1866 // Replace the absolute table symbol with a synthetic symbol pointing to
1867 // tableChunk so that we can emit base relocations for it and resolve section
1868 // relative relocations.
1869 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
1870                               StringRef countSym, bool hasFlag) {
1871   if (tableSymbols.empty())
1872     return;
1873 
1874   NonSectionChunk *tableChunk;
1875   if (hasFlag)
1876     tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols));
1877   else
1878     tableChunk = make<RVATableChunk>(std::move(tableSymbols));
1879   rdataSec->addChunk(tableChunk);
1880 
1881   Symbol *t = ctx.symtab.findUnderscore(tableSym);
1882   Symbol *c = ctx.symtab.findUnderscore(countSym);
1883   replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
1884   cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4));
1885 }
1886 
1887 // MinGW specific. Gather all relocations that are imported from a DLL even
1888 // though the code didn't expect it to, produce the table that the runtime
1889 // uses for fixing them up, and provide the synthetic symbols that the
1890 // runtime uses for finding the table.
1891 void Writer::createRuntimePseudoRelocs() {
1892   std::vector<RuntimePseudoReloc> rels;
1893 
1894   for (Chunk *c : ctx.symtab.getChunks()) {
1895     auto *sc = dyn_cast<SectionChunk>(c);
1896     if (!sc || !sc->live)
1897       continue;
1898     sc->getRuntimePseudoRelocs(rels);
1899   }
1900 
1901   if (!ctx.config.pseudoRelocs) {
1902     // Not writing any pseudo relocs; if some were needed, error out and
1903     // indicate what required them.
1904     for (const RuntimePseudoReloc &rpr : rels)
1905       error("automatic dllimport of " + rpr.sym->getName() + " in " +
1906             toString(rpr.target->file) + " requires pseudo relocations");
1907     return;
1908   }
1909 
1910   if (!rels.empty())
1911     log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
1912   PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
1913   rdataSec->addChunk(table);
1914   EmptyChunk *endOfList = make<EmptyChunk>();
1915   rdataSec->addChunk(endOfList);
1916 
1917   Symbol *headSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1918   Symbol *endSym =
1919       ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1920   replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
1921   replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
1922 }
1923 
1924 // MinGW specific.
1925 // The MinGW .ctors and .dtors lists have sentinels at each end;
1926 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1927 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1928 // and __DTOR_LIST__ respectively.
1929 void Writer::insertCtorDtorSymbols() {
1930   AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(ctx, -1);
1931   AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(ctx, 0);
1932   AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(ctx, -1);
1933   AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(ctx, 0);
1934   ctorsSec->insertChunkAtStart(ctorListHead);
1935   ctorsSec->addChunk(ctorListEnd);
1936   dtorsSec->insertChunkAtStart(dtorListHead);
1937   dtorsSec->addChunk(dtorListEnd);
1938 
1939   Symbol *ctorListSym = ctx.symtab.findUnderscore("__CTOR_LIST__");
1940   Symbol *dtorListSym = ctx.symtab.findUnderscore("__DTOR_LIST__");
1941   replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
1942                                   ctorListHead);
1943   replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
1944                                   dtorListHead);
1945 }
1946 
1947 // Handles /section options to allow users to overwrite
1948 // section attributes.
1949 void Writer::setSectionPermissions() {
1950   for (auto &p : ctx.config.section) {
1951     StringRef name = p.first;
1952     uint32_t perm = p.second;
1953     for (OutputSection *sec : ctx.outputSections)
1954       if (sec->name == name)
1955         sec->setPermissions(perm);
1956   }
1957 }
1958 
1959 // Write section contents to a mmap'ed file.
1960 void Writer::writeSections() {
1961   uint8_t *buf = buffer->getBufferStart();
1962   for (OutputSection *sec : ctx.outputSections) {
1963     uint8_t *secBuf = buf + sec->getFileOff();
1964     // Fill gaps between functions in .text with INT3 instructions
1965     // instead of leaving as NUL bytes (which can be interpreted as
1966     // ADD instructions).
1967     if ((sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
1968         (ctx.config.machine == AMD64 || ctx.config.machine == I386))
1969       memset(secBuf, 0xCC, sec->getRawSize());
1970     parallelForEach(sec->chunks, [&](Chunk *c) {
1971       c->writeTo(secBuf + c->getRVA() - sec->getRVA());
1972     });
1973   }
1974 }
1975 
1976 void Writer::writeBuildId() {
1977   // There are two important parts to the build ID.
1978   // 1) If building with debug info, the COFF debug directory contains a
1979   //    timestamp as well as a Guid and Age of the PDB.
1980   // 2) In all cases, the PE COFF file header also contains a timestamp.
1981   // For reproducibility, instead of a timestamp we want to use a hash of the
1982   // PE contents.
1983   Configuration *config = &ctx.config;
1984 
1985   if (config->debug) {
1986     assert(buildId && "BuildId is not set!");
1987     // BuildId->BuildId was filled in when the PDB was written.
1988   }
1989 
1990   // At this point the only fields in the COFF file which remain unset are the
1991   // "timestamp" in the COFF file header, and the ones in the coff debug
1992   // directory.  Now we can hash the file and write that hash to the various
1993   // timestamp fields in the file.
1994   StringRef outputFileData(
1995       reinterpret_cast<const char *>(buffer->getBufferStart()),
1996       buffer->getBufferSize());
1997 
1998   uint32_t timestamp = config->timestamp;
1999   uint64_t hash = 0;
2000   bool generateSyntheticBuildId =
2001       config->mingw && config->debug && config->pdbPath.empty();
2002 
2003   if (config->repro || generateSyntheticBuildId)
2004     hash = xxh3_64bits(outputFileData);
2005 
2006   if (config->repro)
2007     timestamp = static_cast<uint32_t>(hash);
2008 
2009   if (generateSyntheticBuildId) {
2010     // For MinGW builds without a PDB file, we still generate a build id
2011     // to allow associating a crash dump to the executable.
2012     buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
2013     buildId->buildId->PDB70.Age = 1;
2014     memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
2015     // xxhash only gives us 8 bytes, so put some fixed data in the other half.
2016     memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
2017   }
2018 
2019   if (debugDirectory)
2020     debugDirectory->setTimeDateStamp(timestamp);
2021 
2022   uint8_t *buf = buffer->getBufferStart();
2023   buf += dosStubSize + sizeof(PEMagic);
2024   object::coff_file_header *coffHeader =
2025       reinterpret_cast<coff_file_header *>(buf);
2026   coffHeader->TimeDateStamp = timestamp;
2027 }
2028 
2029 // Sort .pdata section contents according to PE/COFF spec 5.5.
2030 void Writer::sortExceptionTable() {
2031   if (!firstPdata)
2032     return;
2033   // We assume .pdata contains function table entries only.
2034   auto bufAddr = [&](Chunk *c) {
2035     OutputSection *os = ctx.getOutputSection(c);
2036     return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
2037            os->getRVA();
2038   };
2039   uint8_t *begin = bufAddr(firstPdata);
2040   uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
2041   if (ctx.config.machine == AMD64) {
2042     struct Entry { ulittle32_t begin, end, unwind; };
2043     if ((end - begin) % sizeof(Entry) != 0) {
2044       fatal("unexpected .pdata size: " + Twine(end - begin) +
2045             " is not a multiple of " + Twine(sizeof(Entry)));
2046     }
2047     parallelSort(
2048         MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
2049         [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
2050     return;
2051   }
2052   if (ctx.config.machine == ARMNT || ctx.config.machine == ARM64) {
2053     struct Entry { ulittle32_t begin, unwind; };
2054     if ((end - begin) % sizeof(Entry) != 0) {
2055       fatal("unexpected .pdata size: " + Twine(end - begin) +
2056             " is not a multiple of " + Twine(sizeof(Entry)));
2057     }
2058     parallelSort(
2059         MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
2060         [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
2061     return;
2062   }
2063   lld::errs() << "warning: don't know how to handle .pdata.\n";
2064 }
2065 
2066 // The CRT section contains, among other things, the array of function
2067 // pointers that initialize every global variable that is not trivially
2068 // constructed. The CRT calls them one after the other prior to invoking
2069 // main().
2070 //
2071 // As per C++ spec, 3.6.2/2.3,
2072 // "Variables with ordered initialization defined within a single
2073 // translation unit shall be initialized in the order of their definitions
2074 // in the translation unit"
2075 //
2076 // It is therefore critical to sort the chunks containing the function
2077 // pointers in the order that they are listed in the object file (top to
2078 // bottom), otherwise global objects might not be initialized in the
2079 // correct order.
2080 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
2081   auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
2082     auto sa = dyn_cast<SectionChunk>(a);
2083     auto sb = dyn_cast<SectionChunk>(b);
2084     assert(sa && sb && "Non-section chunks in CRT section!");
2085 
2086     StringRef sAObj = sa->file->mb.getBufferIdentifier();
2087     StringRef sBObj = sb->file->mb.getBufferIdentifier();
2088 
2089     return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
2090   };
2091   llvm::stable_sort(chunks, sectionChunkOrder);
2092 
2093   if (ctx.config.verbose) {
2094     for (auto &c : chunks) {
2095       auto sc = dyn_cast<SectionChunk>(c);
2096       log("  " + sc->file->mb.getBufferIdentifier().str() +
2097           ", SectionID: " + Twine(sc->getSectionNumber()));
2098     }
2099   }
2100 }
2101 
2102 OutputSection *Writer::findSection(StringRef name) {
2103   for (OutputSection *sec : ctx.outputSections)
2104     if (sec->name == name)
2105       return sec;
2106   return nullptr;
2107 }
2108 
2109 uint32_t Writer::getSizeOfInitializedData() {
2110   uint32_t res = 0;
2111   for (OutputSection *s : ctx.outputSections)
2112     if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
2113       res += s->getRawSize();
2114   return res;
2115 }
2116 
2117 // Add base relocations to .reloc section.
2118 void Writer::addBaserels() {
2119   if (!ctx.config.relocatable)
2120     return;
2121   relocSec->chunks.clear();
2122   std::vector<Baserel> v;
2123   for (OutputSection *sec : ctx.outputSections) {
2124     if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2125       continue;
2126     // Collect all locations for base relocations.
2127     for (Chunk *c : sec->chunks)
2128       c->getBaserels(&v);
2129     // Add the addresses to .reloc section.
2130     if (!v.empty())
2131       addBaserelBlocks(v);
2132     v.clear();
2133   }
2134 }
2135 
2136 // Add addresses to .reloc section. Note that addresses are grouped by page.
2137 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2138   const uint32_t mask = ~uint32_t(pageSize - 1);
2139   uint32_t page = v[0].rva & mask;
2140   size_t i = 0, j = 1;
2141   for (size_t e = v.size(); j < e; ++j) {
2142     uint32_t p = v[j].rva & mask;
2143     if (p == page)
2144       continue;
2145     relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2146     i = j;
2147     page = p;
2148   }
2149   if (i == j)
2150     return;
2151   relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2152 }
2153 
2154 PartialSection *Writer::createPartialSection(StringRef name,
2155                                              uint32_t outChars) {
2156   PartialSection *&pSec = partialSections[{name, outChars}];
2157   if (pSec)
2158     return pSec;
2159   pSec = make<PartialSection>(name, outChars);
2160   return pSec;
2161 }
2162 
2163 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2164   auto it = partialSections.find({name, outChars});
2165   if (it != partialSections.end())
2166     return it->second;
2167   return nullptr;
2168 }
2169 
2170 void Writer::fixTlsAlignment() {
2171   Defined *tlsSym =
2172       dyn_cast_or_null<Defined>(ctx.symtab.findUnderscore("_tls_used"));
2173   if (!tlsSym)
2174     return;
2175 
2176   OutputSection *sec = ctx.getOutputSection(tlsSym->getChunk());
2177   assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2178          "no output section for _tls_used");
2179 
2180   uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2181   uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2182   uint64_t directorySize = ctx.config.is64()
2183                                ? sizeof(object::coff_tls_directory64)
2184                                : sizeof(object::coff_tls_directory32);
2185 
2186   if (tlsOffset + directorySize > sec->getRawSize())
2187     fatal("_tls_used sym is malformed");
2188 
2189   if (ctx.config.is64()) {
2190     object::coff_tls_directory64 *tlsDir =
2191         reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2192     tlsDir->setAlignment(tlsAlignment);
2193   } else {
2194     object::coff_tls_directory32 *tlsDir =
2195         reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2196     tlsDir->setAlignment(tlsAlignment);
2197   }
2198 }
2199 
2200 void Writer::checkLoadConfig() {
2201   Symbol *sym = ctx.symtab.findUnderscore("_load_config_used");
2202   auto *b = cast_if_present<DefinedRegular>(sym);
2203   if (!b) {
2204     if (ctx.config.guardCF != GuardCFLevel::Off)
2205       warn("Control Flow Guard is enabled but '_load_config_used' is missing");
2206     return;
2207   }
2208 
2209   OutputSection *sec = ctx.getOutputSection(b->getChunk());
2210   uint8_t *buf = buffer->getBufferStart();
2211   uint8_t *secBuf = buf + sec->getFileOff();
2212   uint8_t *symBuf = secBuf + (b->getRVA() - sec->getRVA());
2213   uint32_t expectedAlign = ctx.config.is64() ? 8 : 4;
2214   if (b->getChunk()->getAlignment() < expectedAlign)
2215     warn("'_load_config_used' is misaligned (expected alignment to be " +
2216          Twine(expectedAlign) + " bytes, got " +
2217          Twine(b->getChunk()->getAlignment()) + " instead)");
2218   else if (!isAligned(Align(expectedAlign), b->getRVA()))
2219     warn("'_load_config_used' is misaligned (RVA is 0x" +
2220          Twine::utohexstr(b->getRVA()) + " not aligned to " +
2221          Twine(expectedAlign) + " bytes)");
2222 
2223   if (ctx.config.is64())
2224     checkLoadConfigGuardData(
2225         reinterpret_cast<const coff_load_configuration64 *>(symBuf));
2226   else
2227     checkLoadConfigGuardData(
2228         reinterpret_cast<const coff_load_configuration32 *>(symBuf));
2229 }
2230 
2231 template <typename T>
2232 void Writer::checkLoadConfigGuardData(const T *loadConfig) {
2233   size_t loadConfigSize = loadConfig->Size;
2234 
2235 #define RETURN_IF_NOT_CONTAINS(field)                                          \
2236   if (loadConfigSize < offsetof(T, field) + sizeof(T::field)) {                \
2237     warn("'_load_config_used' structure too small to include " #field);        \
2238     return;                                                                    \
2239   }
2240 
2241 #define IF_CONTAINS(field)                                                     \
2242   if (loadConfigSize >= offsetof(T, field) + sizeof(T::field))
2243 
2244 #define CHECK_VA(field, sym)                                                   \
2245   if (auto *s = dyn_cast<DefinedSynthetic>(ctx.symtab.findUnderscore(sym)))    \
2246     if (loadConfig->field != ctx.config.imageBase + s->getRVA())               \
2247       warn(#field " not set correctly in '_load_config_used'");
2248 
2249 #define CHECK_ABSOLUTE(field, sym)                                             \
2250   if (auto *s = dyn_cast<DefinedAbsolute>(ctx.symtab.findUnderscore(sym)))     \
2251     if (loadConfig->field != s->getVA())                                       \
2252       warn(#field " not set correctly in '_load_config_used'");
2253 
2254   if (ctx.config.guardCF == GuardCFLevel::Off)
2255     return;
2256   RETURN_IF_NOT_CONTAINS(GuardFlags)
2257   CHECK_VA(GuardCFFunctionTable, "__guard_fids_table")
2258   CHECK_ABSOLUTE(GuardCFFunctionCount, "__guard_fids_count")
2259   CHECK_ABSOLUTE(GuardFlags, "__guard_flags")
2260   IF_CONTAINS(GuardAddressTakenIatEntryCount) {
2261     CHECK_VA(GuardAddressTakenIatEntryTable, "__guard_iat_table")
2262     CHECK_ABSOLUTE(GuardAddressTakenIatEntryCount, "__guard_iat_count")
2263   }
2264 
2265   if (!(ctx.config.guardCF & GuardCFLevel::LongJmp))
2266     return;
2267   RETURN_IF_NOT_CONTAINS(GuardLongJumpTargetCount)
2268   CHECK_VA(GuardLongJumpTargetTable, "__guard_longjmp_table")
2269   CHECK_ABSOLUTE(GuardLongJumpTargetCount, "__guard_longjmp_count")
2270 
2271   if (!(ctx.config.guardCF & GuardCFLevel::EHCont))
2272     return;
2273   RETURN_IF_NOT_CONTAINS(GuardEHContinuationCount)
2274   CHECK_VA(GuardEHContinuationTable, "__guard_eh_cont_table")
2275   CHECK_ABSOLUTE(GuardEHContinuationCount, "__guard_eh_cont_count")
2276 
2277 #undef RETURN_IF_NOT_CONTAINS
2278 #undef IF_CONTAINS
2279 #undef CHECK_VA
2280 #undef CHECK_ABSOLUTE
2281 }
2282