xref: /freebsd/contrib/llvm-project/lld/COFF/Writer.cpp (revision 0b37c1590418417c894529d371800dfac71ef887)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "Config.h"
11 #include "DLL.h"
12 #include "InputFiles.h"
13 #include "MapFile.h"
14 #include "PDB.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "lld/Common/Threads.h"
20 #include "lld/Common/Timer.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/Support/BinaryStreamReader.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/Endian.h"
28 #include "llvm/Support/FileOutputBuffer.h"
29 #include "llvm/Support/Parallel.h"
30 #include "llvm/Support/Path.h"
31 #include "llvm/Support/RandomNumberGenerator.h"
32 #include "llvm/Support/xxhash.h"
33 #include <algorithm>
34 #include <cstdio>
35 #include <map>
36 #include <memory>
37 #include <utility>
38 
39 using namespace llvm;
40 using namespace llvm::COFF;
41 using namespace llvm::object;
42 using namespace llvm::support;
43 using namespace llvm::support::endian;
44 
45 namespace lld {
46 namespace coff {
47 
48 /* To re-generate DOSProgram:
49 $ cat > /tmp/DOSProgram.asm
50 org 0
51         ; Copy cs to ds.
52         push cs
53         pop ds
54         ; Point ds:dx at the $-terminated string.
55         mov dx, str
56         ; Int 21/AH=09h: Write string to standard output.
57         mov ah, 0x9
58         int 0x21
59         ; Int 21/AH=4Ch: Exit with return code (in AL).
60         mov ax, 0x4C01
61         int 0x21
62 str:
63         db 'This program cannot be run in DOS mode.$'
64 align 8, db 0
65 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
66 $ xxd -i /tmp/DOSProgram.bin
67 */
68 static unsigned char dosProgram[] = {
69   0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
70   0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
71   0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
72   0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
73   0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
74 };
75 static_assert(sizeof(dosProgram) % 8 == 0,
76               "DOSProgram size must be multiple of 8");
77 
78 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
79 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
80 
81 static const int numberOfDataDirectory = 16;
82 
83 // Global vector of all output sections. After output sections are finalized,
84 // this can be indexed by Chunk::getOutputSection.
85 static std::vector<OutputSection *> outputSections;
86 
87 OutputSection *Chunk::getOutputSection() const {
88   return osidx == 0 ? nullptr : outputSections[osidx - 1];
89 }
90 
91 namespace {
92 
93 class DebugDirectoryChunk : public NonSectionChunk {
94 public:
95   DebugDirectoryChunk(const std::vector<Chunk *> &r, bool writeRepro)
96       : records(r), writeRepro(writeRepro) {}
97 
98   size_t getSize() const override {
99     return (records.size() + int(writeRepro)) * sizeof(debug_directory);
100   }
101 
102   void writeTo(uint8_t *b) const override {
103     auto *d = reinterpret_cast<debug_directory *>(b);
104 
105     for (const Chunk *record : records) {
106       OutputSection *os = record->getOutputSection();
107       uint64_t offs = os->getFileOff() + (record->getRVA() - os->getRVA());
108       fillEntry(d, COFF::IMAGE_DEBUG_TYPE_CODEVIEW, record->getSize(),
109                 record->getRVA(), offs);
110       ++d;
111     }
112 
113     if (writeRepro) {
114       // FIXME: The COFF spec allows either a 0-sized entry to just say
115       // "the timestamp field is really a hash", or a 4-byte size field
116       // followed by that many bytes containing a longer hash (with the
117       // lowest 4 bytes usually being the timestamp in little-endian order).
118       // Consider storing the full 8 bytes computed by xxHash64 here.
119       fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
120     }
121   }
122 
123   void setTimeDateStamp(uint32_t timeDateStamp) {
124     for (support::ulittle32_t *tds : timeDateStamps)
125       *tds = timeDateStamp;
126   }
127 
128 private:
129   void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
130                  uint64_t rva, uint64_t offs) const {
131     d->Characteristics = 0;
132     d->TimeDateStamp = 0;
133     d->MajorVersion = 0;
134     d->MinorVersion = 0;
135     d->Type = debugType;
136     d->SizeOfData = size;
137     d->AddressOfRawData = rva;
138     d->PointerToRawData = offs;
139 
140     timeDateStamps.push_back(&d->TimeDateStamp);
141   }
142 
143   mutable std::vector<support::ulittle32_t *> timeDateStamps;
144   const std::vector<Chunk *> &records;
145   bool writeRepro;
146 };
147 
148 class CVDebugRecordChunk : public NonSectionChunk {
149 public:
150   size_t getSize() const override {
151     return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1;
152   }
153 
154   void writeTo(uint8_t *b) const override {
155     // Save off the DebugInfo entry to backfill the file signature (build id)
156     // in Writer::writeBuildId
157     buildId = reinterpret_cast<codeview::DebugInfo *>(b);
158 
159     // variable sized field (PDB Path)
160     char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
161     if (!config->pdbAltPath.empty())
162       memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size());
163     p[config->pdbAltPath.size()] = '\0';
164   }
165 
166   mutable codeview::DebugInfo *buildId = nullptr;
167 };
168 
169 // PartialSection represents a group of chunks that contribute to an
170 // OutputSection. Collating a collection of PartialSections of same name and
171 // characteristics constitutes the OutputSection.
172 class PartialSectionKey {
173 public:
174   StringRef name;
175   unsigned characteristics;
176 
177   bool operator<(const PartialSectionKey &other) const {
178     int c = name.compare(other.name);
179     if (c == 1)
180       return false;
181     if (c == 0)
182       return characteristics < other.characteristics;
183     return true;
184   }
185 };
186 
187 // The writer writes a SymbolTable result to a file.
188 class Writer {
189 public:
190   Writer() : buffer(errorHandler().outputBuffer) {}
191   void run();
192 
193 private:
194   void createSections();
195   void createMiscChunks();
196   void createImportTables();
197   void appendImportThunks();
198   void locateImportTables();
199   void createExportTable();
200   void mergeSections();
201   void removeUnusedSections();
202   void assignAddresses();
203   void finalizeAddresses();
204   void removeEmptySections();
205   void assignOutputSectionIndices();
206   void createSymbolAndStringTable();
207   void openFile(StringRef outputPath);
208   template <typename PEHeaderTy> void writeHeader();
209   void createSEHTable();
210   void createRuntimePseudoRelocs();
211   void insertCtorDtorSymbols();
212   void createGuardCFTables();
213   void markSymbolsForRVATable(ObjFile *file,
214                               ArrayRef<SectionChunk *> symIdxChunks,
215                               SymbolRVASet &tableSymbols);
216   void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
217                         StringRef countSym);
218   void setSectionPermissions();
219   void writeSections();
220   void writeBuildId();
221   void sortExceptionTable();
222   void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
223   void addSyntheticIdata();
224   void fixPartialSectionChars(StringRef name, uint32_t chars);
225   bool fixGnuImportChunks();
226   PartialSection *createPartialSection(StringRef name, uint32_t outChars);
227   PartialSection *findPartialSection(StringRef name, uint32_t outChars);
228 
229   llvm::Optional<coff_symbol16> createSymbol(Defined *d);
230   size_t addEntryToStringTable(StringRef str);
231 
232   OutputSection *findSection(StringRef name);
233   void addBaserels();
234   void addBaserelBlocks(std::vector<Baserel> &v);
235 
236   uint32_t getSizeOfInitializedData();
237 
238   std::unique_ptr<FileOutputBuffer> &buffer;
239   std::map<PartialSectionKey, PartialSection *> partialSections;
240   std::vector<char> strtab;
241   std::vector<llvm::object::coff_symbol16> outputSymtab;
242   IdataContents idata;
243   Chunk *importTableStart = nullptr;
244   uint64_t importTableSize = 0;
245   Chunk *edataStart = nullptr;
246   Chunk *edataEnd = nullptr;
247   Chunk *iatStart = nullptr;
248   uint64_t iatSize = 0;
249   DelayLoadContents delayIdata;
250   EdataContents edata;
251   bool setNoSEHCharacteristic = false;
252 
253   DebugDirectoryChunk *debugDirectory = nullptr;
254   std::vector<Chunk *> debugRecords;
255   CVDebugRecordChunk *buildId = nullptr;
256   ArrayRef<uint8_t> sectionTable;
257 
258   uint64_t fileSize;
259   uint32_t pointerToSymbolTable = 0;
260   uint64_t sizeOfImage;
261   uint64_t sizeOfHeaders;
262 
263   OutputSection *textSec;
264   OutputSection *rdataSec;
265   OutputSection *buildidSec;
266   OutputSection *dataSec;
267   OutputSection *pdataSec;
268   OutputSection *idataSec;
269   OutputSection *edataSec;
270   OutputSection *didatSec;
271   OutputSection *rsrcSec;
272   OutputSection *relocSec;
273   OutputSection *ctorsSec;
274   OutputSection *dtorsSec;
275 
276   // The first and last .pdata sections in the output file.
277   //
278   // We need to keep track of the location of .pdata in whichever section it
279   // gets merged into so that we can sort its contents and emit a correct data
280   // directory entry for the exception table. This is also the case for some
281   // other sections (such as .edata) but because the contents of those sections
282   // are entirely linker-generated we can keep track of their locations using
283   // the chunks that the linker creates. All .pdata chunks come from input
284   // files, so we need to keep track of them separately.
285   Chunk *firstPdata = nullptr;
286   Chunk *lastPdata;
287 };
288 } // anonymous namespace
289 
290 static Timer codeLayoutTimer("Code Layout", Timer::root());
291 static Timer diskCommitTimer("Commit Output File", Timer::root());
292 
293 void writeResult() { Writer().run(); }
294 
295 void OutputSection::addChunk(Chunk *c) {
296   chunks.push_back(c);
297 }
298 
299 void OutputSection::insertChunkAtStart(Chunk *c) {
300   chunks.insert(chunks.begin(), c);
301 }
302 
303 void OutputSection::setPermissions(uint32_t c) {
304   header.Characteristics &= ~permMask;
305   header.Characteristics |= c;
306 }
307 
308 void OutputSection::merge(OutputSection *other) {
309   chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
310   other->chunks.clear();
311   contribSections.insert(contribSections.end(), other->contribSections.begin(),
312                          other->contribSections.end());
313   other->contribSections.clear();
314 }
315 
316 // Write the section header to a given buffer.
317 void OutputSection::writeHeaderTo(uint8_t *buf) {
318   auto *hdr = reinterpret_cast<coff_section *>(buf);
319   *hdr = header;
320   if (stringTableOff) {
321     // If name is too long, write offset into the string table as a name.
322     sprintf(hdr->Name, "/%d", stringTableOff);
323   } else {
324     assert(!config->debug || name.size() <= COFF::NameSize ||
325            (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
326     strncpy(hdr->Name, name.data(),
327             std::min(name.size(), (size_t)COFF::NameSize));
328   }
329 }
330 
331 void OutputSection::addContributingPartialSection(PartialSection *sec) {
332   contribSections.push_back(sec);
333 }
334 
335 // Check whether the target address S is in range from a relocation
336 // of type relType at address P.
337 static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
338   if (config->machine == ARMNT) {
339     int64_t diff = AbsoluteDifference(s, p + 4) + margin;
340     switch (relType) {
341     case IMAGE_REL_ARM_BRANCH20T:
342       return isInt<21>(diff);
343     case IMAGE_REL_ARM_BRANCH24T:
344     case IMAGE_REL_ARM_BLX23T:
345       return isInt<25>(diff);
346     default:
347       return true;
348     }
349   } else if (config->machine == ARM64) {
350     int64_t diff = AbsoluteDifference(s, p) + margin;
351     switch (relType) {
352     case IMAGE_REL_ARM64_BRANCH26:
353       return isInt<28>(diff);
354     case IMAGE_REL_ARM64_BRANCH19:
355       return isInt<21>(diff);
356     case IMAGE_REL_ARM64_BRANCH14:
357       return isInt<16>(diff);
358     default:
359       return true;
360     }
361   } else {
362     llvm_unreachable("Unexpected architecture");
363   }
364 }
365 
366 // Return the last thunk for the given target if it is in range,
367 // or create a new one.
368 static std::pair<Defined *, bool>
369 getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p,
370          uint16_t type, int margin) {
371   Defined *&lastThunk = lastThunks[target->getRVA()];
372   if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
373     return {lastThunk, false};
374   Chunk *c;
375   switch (config->machine) {
376   case ARMNT:
377     c = make<RangeExtensionThunkARM>(target);
378     break;
379   case ARM64:
380     c = make<RangeExtensionThunkARM64>(target);
381     break;
382   default:
383     llvm_unreachable("Unexpected architecture");
384   }
385   Defined *d = make<DefinedSynthetic>("", c);
386   lastThunk = d;
387   return {d, true};
388 }
389 
390 // This checks all relocations, and for any relocation which isn't in range
391 // it adds a thunk after the section chunk that contains the relocation.
392 // If the latest thunk for the specific target is in range, that is used
393 // instead of creating a new thunk. All range checks are done with the
394 // specified margin, to make sure that relocations that originally are in
395 // range, but only barely, also get thunks - in case other added thunks makes
396 // the target go out of range.
397 //
398 // After adding thunks, we verify that all relocations are in range (with
399 // no extra margin requirements). If this failed, we restart (throwing away
400 // the previously created thunks) and retry with a wider margin.
401 static bool createThunks(OutputSection *os, int margin) {
402   bool addressesChanged = false;
403   DenseMap<uint64_t, Defined *> lastThunks;
404   DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
405   size_t thunksSize = 0;
406   // Recheck Chunks.size() each iteration, since we can insert more
407   // elements into it.
408   for (size_t i = 0; i != os->chunks.size(); ++i) {
409     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
410     if (!sc)
411       continue;
412     size_t thunkInsertionSpot = i + 1;
413 
414     // Try to get a good enough estimate of where new thunks will be placed.
415     // Offset this by the size of the new thunks added so far, to make the
416     // estimate slightly better.
417     size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
418     ObjFile *file = sc->file;
419     std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
420     ArrayRef<coff_relocation> originalRelocs =
421         file->getCOFFObj()->getRelocations(sc->header);
422     for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
423       const coff_relocation &rel = originalRelocs[j];
424       Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
425 
426       // The estimate of the source address P should be pretty accurate,
427       // but we don't know whether the target Symbol address should be
428       // offset by thunksSize or not (or by some of thunksSize but not all of
429       // it), giving us some uncertainty once we have added one thunk.
430       uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
431 
432       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
433       if (!sym)
434         continue;
435 
436       uint64_t s = sym->getRVA();
437 
438       if (isInRange(rel.Type, s, p, margin))
439         continue;
440 
441       // If the target isn't in range, hook it up to an existing or new
442       // thunk.
443       Defined *thunk;
444       bool wasNew;
445       std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin);
446       if (wasNew) {
447         Chunk *thunkChunk = thunk->getChunk();
448         thunkChunk->setRVA(
449             thunkInsertionRVA); // Estimate of where it will be located.
450         os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
451         thunkInsertionSpot++;
452         thunksSize += thunkChunk->getSize();
453         thunkInsertionRVA += thunkChunk->getSize();
454         addressesChanged = true;
455       }
456 
457       // To redirect the relocation, add a symbol to the parent object file's
458       // symbol table, and replace the relocation symbol table index with the
459       // new index.
460       auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
461       uint32_t &thunkSymbolIndex = insertion.first->second;
462       if (insertion.second)
463         thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
464       relocReplacements.push_back({j, thunkSymbolIndex});
465     }
466 
467     // Get a writable copy of this section's relocations so they can be
468     // modified. If the relocations point into the object file, allocate new
469     // memory. Otherwise, this must be previously allocated memory that can be
470     // modified in place.
471     ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
472     MutableArrayRef<coff_relocation> newRelocs;
473     if (originalRelocs.data() == curRelocs.data()) {
474       newRelocs = makeMutableArrayRef(
475           bAlloc.Allocate<coff_relocation>(originalRelocs.size()),
476           originalRelocs.size());
477     } else {
478       newRelocs = makeMutableArrayRef(
479           const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
480     }
481 
482     // Copy each relocation, but replace the symbol table indices which need
483     // thunks.
484     auto nextReplacement = relocReplacements.begin();
485     auto endReplacement = relocReplacements.end();
486     for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
487       newRelocs[i] = originalRelocs[i];
488       if (nextReplacement != endReplacement && nextReplacement->first == i) {
489         newRelocs[i].SymbolTableIndex = nextReplacement->second;
490         ++nextReplacement;
491       }
492     }
493 
494     sc->setRelocs(newRelocs);
495   }
496   return addressesChanged;
497 }
498 
499 // Verify that all relocations are in range, with no extra margin requirements.
500 static bool verifyRanges(const std::vector<Chunk *> chunks) {
501   for (Chunk *c : chunks) {
502     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
503     if (!sc)
504       continue;
505 
506     ArrayRef<coff_relocation> relocs = sc->getRelocs();
507     for (size_t j = 0, e = relocs.size(); j < e; ++j) {
508       const coff_relocation &rel = relocs[j];
509       Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
510 
511       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
512       if (!sym)
513         continue;
514 
515       uint64_t p = sc->getRVA() + rel.VirtualAddress;
516       uint64_t s = sym->getRVA();
517 
518       if (!isInRange(rel.Type, s, p, 0))
519         return false;
520     }
521   }
522   return true;
523 }
524 
525 // Assign addresses and add thunks if necessary.
526 void Writer::finalizeAddresses() {
527   assignAddresses();
528   if (config->machine != ARMNT && config->machine != ARM64)
529     return;
530 
531   size_t origNumChunks = 0;
532   for (OutputSection *sec : outputSections) {
533     sec->origChunks = sec->chunks;
534     origNumChunks += sec->chunks.size();
535   }
536 
537   int pass = 0;
538   int margin = 1024 * 100;
539   while (true) {
540     // First check whether we need thunks at all, or if the previous pass of
541     // adding them turned out ok.
542     bool rangesOk = true;
543     size_t numChunks = 0;
544     for (OutputSection *sec : outputSections) {
545       if (!verifyRanges(sec->chunks)) {
546         rangesOk = false;
547         break;
548       }
549       numChunks += sec->chunks.size();
550     }
551     if (rangesOk) {
552       if (pass > 0)
553         log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
554             "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
555       return;
556     }
557 
558     if (pass >= 10)
559       fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
560 
561     if (pass > 0) {
562       // If the previous pass didn't work out, reset everything back to the
563       // original conditions before retrying with a wider margin. This should
564       // ideally never happen under real circumstances.
565       for (OutputSection *sec : outputSections)
566         sec->chunks = sec->origChunks;
567       margin *= 2;
568     }
569 
570     // Try adding thunks everywhere where it is needed, with a margin
571     // to avoid things going out of range due to the added thunks.
572     bool addressesChanged = false;
573     for (OutputSection *sec : outputSections)
574       addressesChanged |= createThunks(sec, margin);
575     // If the verification above thought we needed thunks, we should have
576     // added some.
577     assert(addressesChanged);
578 
579     // Recalculate the layout for the whole image (and verify the ranges at
580     // the start of the next round).
581     assignAddresses();
582 
583     pass++;
584   }
585 }
586 
587 // The main function of the writer.
588 void Writer::run() {
589   ScopedTimer t1(codeLayoutTimer);
590 
591   createImportTables();
592   createSections();
593   createMiscChunks();
594   appendImportThunks();
595   createExportTable();
596   mergeSections();
597   removeUnusedSections();
598   finalizeAddresses();
599   removeEmptySections();
600   assignOutputSectionIndices();
601   setSectionPermissions();
602   createSymbolAndStringTable();
603 
604   if (fileSize > UINT32_MAX)
605     fatal("image size (" + Twine(fileSize) + ") " +
606         "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
607 
608   openFile(config->outputFile);
609   if (config->is64()) {
610     writeHeader<pe32plus_header>();
611   } else {
612     writeHeader<pe32_header>();
613   }
614   writeSections();
615   sortExceptionTable();
616 
617   t1.stop();
618 
619   if (!config->pdbPath.empty() && config->debug) {
620     assert(buildId);
621     createPDB(symtab, outputSections, sectionTable, buildId->buildId);
622   }
623   writeBuildId();
624 
625   writeMapFile(outputSections);
626 
627   if (errorCount())
628     return;
629 
630   ScopedTimer t2(diskCommitTimer);
631   if (auto e = buffer->commit())
632     fatal("failed to write the output file: " + toString(std::move(e)));
633 }
634 
635 static StringRef getOutputSectionName(StringRef name) {
636   StringRef s = name.split('$').first;
637 
638   // Treat a later period as a separator for MinGW, for sections like
639   // ".ctors.01234".
640   return s.substr(0, s.find('.', 1));
641 }
642 
643 // For /order.
644 static void sortBySectionOrder(std::vector<Chunk *> &chunks) {
645   auto getPriority = [](const Chunk *c) {
646     if (auto *sec = dyn_cast<SectionChunk>(c))
647       if (sec->sym)
648         return config->order.lookup(sec->sym->getName());
649     return 0;
650   };
651 
652   llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
653     return getPriority(a) < getPriority(b);
654   });
655 }
656 
657 // Change the characteristics of existing PartialSections that belong to the
658 // section Name to Chars.
659 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
660   for (auto it : partialSections) {
661     PartialSection *pSec = it.second;
662     StringRef curName = pSec->name;
663     if (!curName.consume_front(name) ||
664         (!curName.empty() && !curName.startswith("$")))
665       continue;
666     if (pSec->characteristics == chars)
667       continue;
668     PartialSection *destSec = createPartialSection(pSec->name, chars);
669     destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
670                            pSec->chunks.end());
671     pSec->chunks.clear();
672   }
673 }
674 
675 // Sort concrete section chunks from GNU import libraries.
676 //
677 // GNU binutils doesn't use short import files, but instead produces import
678 // libraries that consist of object files, with section chunks for the .idata$*
679 // sections. These are linked just as regular static libraries. Each import
680 // library consists of one header object, one object file for every imported
681 // symbol, and one trailer object. In order for the .idata tables/lists to
682 // be formed correctly, the section chunks within each .idata$* section need
683 // to be grouped by library, and sorted alphabetically within each library
684 // (which makes sure the header comes first and the trailer last).
685 bool Writer::fixGnuImportChunks() {
686   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
687 
688   // Make sure all .idata$* section chunks are mapped as RDATA in order to
689   // be sorted into the same sections as our own synthesized .idata chunks.
690   fixPartialSectionChars(".idata", rdata);
691 
692   bool hasIdata = false;
693   // Sort all .idata$* chunks, grouping chunks from the same library,
694   // with alphabetical ordering of the object fils within a library.
695   for (auto it : partialSections) {
696     PartialSection *pSec = it.second;
697     if (!pSec->name.startswith(".idata"))
698       continue;
699 
700     if (!pSec->chunks.empty())
701       hasIdata = true;
702     llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
703       SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
704       SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
705       if (!sc1 || !sc2) {
706         // if SC1, order them ascending. If SC2 or both null,
707         // S is not less than T.
708         return sc1 != nullptr;
709       }
710       // Make a string with "libraryname/objectfile" for sorting, achieving
711       // both grouping by library and sorting of objects within a library,
712       // at once.
713       std::string key1 =
714           (sc1->file->parentName + "/" + sc1->file->getName()).str();
715       std::string key2 =
716           (sc2->file->parentName + "/" + sc2->file->getName()).str();
717       return key1 < key2;
718     });
719   }
720   return hasIdata;
721 }
722 
723 // Add generated idata chunks, for imported symbols and DLLs, and a
724 // terminator in .idata$2.
725 void Writer::addSyntheticIdata() {
726   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
727   idata.create();
728 
729   // Add the .idata content in the right section groups, to allow
730   // chunks from other linked in object files to be grouped together.
731   // See Microsoft PE/COFF spec 5.4 for details.
732   auto add = [&](StringRef n, std::vector<Chunk *> &v) {
733     PartialSection *pSec = createPartialSection(n, rdata);
734     pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
735   };
736 
737   // The loader assumes a specific order of data.
738   // Add each type in the correct order.
739   add(".idata$2", idata.dirs);
740   add(".idata$4", idata.lookups);
741   add(".idata$5", idata.addresses);
742   if (!idata.hints.empty())
743     add(".idata$6", idata.hints);
744   add(".idata$7", idata.dllNames);
745 }
746 
747 // Locate the first Chunk and size of the import directory list and the
748 // IAT.
749 void Writer::locateImportTables() {
750   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
751 
752   if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
753     if (!importDirs->chunks.empty())
754       importTableStart = importDirs->chunks.front();
755     for (Chunk *c : importDirs->chunks)
756       importTableSize += c->getSize();
757   }
758 
759   if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
760     if (!importAddresses->chunks.empty())
761       iatStart = importAddresses->chunks.front();
762     for (Chunk *c : importAddresses->chunks)
763       iatSize += c->getSize();
764   }
765 }
766 
767 // Return whether a SectionChunk's suffix (the dollar and any trailing
768 // suffix) should be removed and sorted into the main suffixless
769 // PartialSection.
770 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) {
771   // On MinGW, comdat groups are formed by putting the comdat group name
772   // after the '$' in the section name. For .eh_frame$<symbol>, that must
773   // still be sorted before the .eh_frame trailer from crtend.o, thus just
774   // strip the section name trailer. For other sections, such as
775   // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
776   // ".tls$"), they must be strictly sorted after .tls. And for the
777   // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
778   // suffix for sorting. Thus, to play it safe, only strip the suffix for
779   // the standard sections.
780   if (!config->mingw)
781     return false;
782   if (!sc || !sc->isCOMDAT())
783     return false;
784   return name.startswith(".text$") || name.startswith(".data$") ||
785          name.startswith(".rdata$") || name.startswith(".pdata$") ||
786          name.startswith(".xdata$") || name.startswith(".eh_frame$");
787 }
788 
789 // Create output section objects and add them to OutputSections.
790 void Writer::createSections() {
791   // First, create the builtin sections.
792   const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
793   const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
794   const uint32_t code = IMAGE_SCN_CNT_CODE;
795   const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
796   const uint32_t r = IMAGE_SCN_MEM_READ;
797   const uint32_t w = IMAGE_SCN_MEM_WRITE;
798   const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
799 
800   SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
801   auto createSection = [&](StringRef name, uint32_t outChars) {
802     OutputSection *&sec = sections[{name, outChars}];
803     if (!sec) {
804       sec = make<OutputSection>(name, outChars);
805       outputSections.push_back(sec);
806     }
807     return sec;
808   };
809 
810   // Try to match the section order used by link.exe.
811   textSec = createSection(".text", code | r | x);
812   createSection(".bss", bss | r | w);
813   rdataSec = createSection(".rdata", data | r);
814   buildidSec = createSection(".buildid", data | r);
815   dataSec = createSection(".data", data | r | w);
816   pdataSec = createSection(".pdata", data | r);
817   idataSec = createSection(".idata", data | r);
818   edataSec = createSection(".edata", data | r);
819   didatSec = createSection(".didat", data | r);
820   rsrcSec = createSection(".rsrc", data | r);
821   relocSec = createSection(".reloc", data | discardable | r);
822   ctorsSec = createSection(".ctors", data | r | w);
823   dtorsSec = createSection(".dtors", data | r | w);
824 
825   // Then bin chunks by name and output characteristics.
826   for (Chunk *c : symtab->getChunks()) {
827     auto *sc = dyn_cast<SectionChunk>(c);
828     if (sc && !sc->live) {
829       if (config->verbose)
830         sc->printDiscardedMessage();
831       continue;
832     }
833     StringRef name = c->getSectionName();
834     if (shouldStripSectionSuffix(sc, name))
835       name = name.split('$').first;
836     PartialSection *pSec = createPartialSection(name,
837                                                 c->getOutputCharacteristics());
838     pSec->chunks.push_back(c);
839   }
840 
841   fixPartialSectionChars(".rsrc", data | r);
842   fixPartialSectionChars(".edata", data | r);
843   // Even in non MinGW cases, we might need to link against GNU import
844   // libraries.
845   bool hasIdata = fixGnuImportChunks();
846   if (!idata.empty())
847     hasIdata = true;
848 
849   if (hasIdata)
850     addSyntheticIdata();
851 
852   // Process an /order option.
853   if (!config->order.empty())
854     for (auto it : partialSections)
855       sortBySectionOrder(it.second->chunks);
856 
857   if (hasIdata)
858     locateImportTables();
859 
860   // Then create an OutputSection for each section.
861   // '$' and all following characters in input section names are
862   // discarded when determining output section. So, .text$foo
863   // contributes to .text, for example. See PE/COFF spec 3.2.
864   for (auto it : partialSections) {
865     PartialSection *pSec = it.second;
866     StringRef name = getOutputSectionName(pSec->name);
867     uint32_t outChars = pSec->characteristics;
868 
869     if (name == ".CRT") {
870       // In link.exe, there is a special case for the I386 target where .CRT
871       // sections are treated as if they have output characteristics DATA | R if
872       // their characteristics are DATA | R | W. This implements the same
873       // special case for all architectures.
874       outChars = data | r;
875 
876       log("Processing section " + pSec->name + " -> " + name);
877 
878       sortCRTSectionChunks(pSec->chunks);
879     }
880 
881     OutputSection *sec = createSection(name, outChars);
882     for (Chunk *c : pSec->chunks)
883       sec->addChunk(c);
884 
885     sec->addContributingPartialSection(pSec);
886   }
887 
888   // Finally, move some output sections to the end.
889   auto sectionOrder = [&](const OutputSection *s) {
890     // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
891     // because the loader cannot handle holes. Stripping can remove other
892     // discardable ones than .reloc, which is first of them (created early).
893     if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
894       return 2;
895     // .rsrc should come at the end of the non-discardable sections because its
896     // size may change by the Win32 UpdateResources() function, causing
897     // subsequent sections to move (see https://crbug.com/827082).
898     if (s == rsrcSec)
899       return 1;
900     return 0;
901   };
902   llvm::stable_sort(outputSections,
903                     [&](const OutputSection *s, const OutputSection *t) {
904                       return sectionOrder(s) < sectionOrder(t);
905                     });
906 }
907 
908 void Writer::createMiscChunks() {
909   for (MergeChunk *p : MergeChunk::instances) {
910     if (p) {
911       p->finalizeContents();
912       rdataSec->addChunk(p);
913     }
914   }
915 
916   // Create thunks for locally-dllimported symbols.
917   if (!symtab->localImportChunks.empty()) {
918     for (Chunk *c : symtab->localImportChunks)
919       rdataSec->addChunk(c);
920   }
921 
922   // Create Debug Information Chunks
923   OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
924   if (config->debug || config->repro) {
925     debugDirectory = make<DebugDirectoryChunk>(debugRecords, config->repro);
926     debugInfoSec->addChunk(debugDirectory);
927   }
928 
929   if (config->debug) {
930     // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified.  We
931     // output a PDB no matter what, and this chunk provides the only means of
932     // allowing a debugger to match a PDB and an executable.  So we need it even
933     // if we're ultimately not going to write CodeView data to the PDB.
934     buildId = make<CVDebugRecordChunk>();
935     debugRecords.push_back(buildId);
936 
937     for (Chunk *c : debugRecords)
938       debugInfoSec->addChunk(c);
939   }
940 
941   // Create SEH table. x86-only.
942   if (config->safeSEH)
943     createSEHTable();
944 
945   // Create /guard:cf tables if requested.
946   if (config->guardCF != GuardCFLevel::Off)
947     createGuardCFTables();
948 
949   if (config->mingw) {
950     createRuntimePseudoRelocs();
951 
952     insertCtorDtorSymbols();
953   }
954 }
955 
956 // Create .idata section for the DLL-imported symbol table.
957 // The format of this section is inherently Windows-specific.
958 // IdataContents class abstracted away the details for us,
959 // so we just let it create chunks and add them to the section.
960 void Writer::createImportTables() {
961   // Initialize DLLOrder so that import entries are ordered in
962   // the same order as in the command line. (That affects DLL
963   // initialization order, and this ordering is MSVC-compatible.)
964   for (ImportFile *file : ImportFile::instances) {
965     if (!file->live)
966       continue;
967 
968     std::string dll = StringRef(file->dllName).lower();
969     if (config->dllOrder.count(dll) == 0)
970       config->dllOrder[dll] = config->dllOrder.size();
971 
972     if (file->impSym && !isa<DefinedImportData>(file->impSym))
973       fatal(toString(*file->impSym) + " was replaced");
974     DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
975     if (config->delayLoads.count(StringRef(file->dllName).lower())) {
976       if (!file->thunkSym)
977         fatal("cannot delay-load " + toString(file) +
978               " due to import of data: " + toString(*impSym));
979       delayIdata.add(impSym);
980     } else {
981       idata.add(impSym);
982     }
983   }
984 }
985 
986 void Writer::appendImportThunks() {
987   if (ImportFile::instances.empty())
988     return;
989 
990   for (ImportFile *file : ImportFile::instances) {
991     if (!file->live)
992       continue;
993 
994     if (!file->thunkSym)
995       continue;
996 
997     if (!isa<DefinedImportThunk>(file->thunkSym))
998       fatal(toString(*file->thunkSym) + " was replaced");
999     DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1000     if (file->thunkLive)
1001       textSec->addChunk(thunk->getChunk());
1002   }
1003 
1004   if (!delayIdata.empty()) {
1005     Defined *helper = cast<Defined>(config->delayLoadHelper);
1006     delayIdata.create(helper);
1007     for (Chunk *c : delayIdata.getChunks())
1008       didatSec->addChunk(c);
1009     for (Chunk *c : delayIdata.getDataChunks())
1010       dataSec->addChunk(c);
1011     for (Chunk *c : delayIdata.getCodeChunks())
1012       textSec->addChunk(c);
1013   }
1014 }
1015 
1016 void Writer::createExportTable() {
1017   if (!edataSec->chunks.empty()) {
1018     // Allow using a custom built export table from input object files, instead
1019     // of having the linker synthesize the tables.
1020     if (config->hadExplicitExports)
1021       warn("literal .edata sections override exports");
1022   } else if (!config->exports.empty()) {
1023     for (Chunk *c : edata.chunks)
1024       edataSec->addChunk(c);
1025   }
1026   if (!edataSec->chunks.empty()) {
1027     edataStart = edataSec->chunks.front();
1028     edataEnd = edataSec->chunks.back();
1029   }
1030 }
1031 
1032 void Writer::removeUnusedSections() {
1033   // Remove sections that we can be sure won't get content, to avoid
1034   // allocating space for their section headers.
1035   auto isUnused = [this](OutputSection *s) {
1036     if (s == relocSec)
1037       return false; // This section is populated later.
1038     // MergeChunks have zero size at this point, as their size is finalized
1039     // later. Only remove sections that have no Chunks at all.
1040     return s->chunks.empty();
1041   };
1042   outputSections.erase(
1043       std::remove_if(outputSections.begin(), outputSections.end(), isUnused),
1044       outputSections.end());
1045 }
1046 
1047 // The Windows loader doesn't seem to like empty sections,
1048 // so we remove them if any.
1049 void Writer::removeEmptySections() {
1050   auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1051   outputSections.erase(
1052       std::remove_if(outputSections.begin(), outputSections.end(), isEmpty),
1053       outputSections.end());
1054 }
1055 
1056 void Writer::assignOutputSectionIndices() {
1057   // Assign final output section indices, and assign each chunk to its output
1058   // section.
1059   uint32_t idx = 1;
1060   for (OutputSection *os : outputSections) {
1061     os->sectionIndex = idx;
1062     for (Chunk *c : os->chunks)
1063       c->setOutputSectionIdx(idx);
1064     ++idx;
1065   }
1066 
1067   // Merge chunks are containers of chunks, so assign those an output section
1068   // too.
1069   for (MergeChunk *mc : MergeChunk::instances)
1070     if (mc)
1071       for (SectionChunk *sc : mc->sections)
1072         if (sc && sc->live)
1073           sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1074 }
1075 
1076 size_t Writer::addEntryToStringTable(StringRef str) {
1077   assert(str.size() > COFF::NameSize);
1078   size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1079   strtab.insert(strtab.end(), str.begin(), str.end());
1080   strtab.push_back('\0');
1081   return offsetOfEntry;
1082 }
1083 
1084 Optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1085   coff_symbol16 sym;
1086   switch (def->kind()) {
1087   case Symbol::DefinedAbsoluteKind:
1088     sym.Value = def->getRVA();
1089     sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1090     break;
1091   case Symbol::DefinedSyntheticKind:
1092     // Relative symbols are unrepresentable in a COFF symbol table.
1093     return None;
1094   default: {
1095     // Don't write symbols that won't be written to the output to the symbol
1096     // table.
1097     Chunk *c = def->getChunk();
1098     if (!c)
1099       return None;
1100     OutputSection *os = c->getOutputSection();
1101     if (!os)
1102       return None;
1103 
1104     sym.Value = def->getRVA() - os->getRVA();
1105     sym.SectionNumber = os->sectionIndex;
1106     break;
1107   }
1108   }
1109 
1110   // Symbols that are runtime pseudo relocations don't point to the actual
1111   // symbol data itself (as they are imported), but points to the IAT entry
1112   // instead. Avoid emitting them to the symbol table, as they can confuse
1113   // debuggers.
1114   if (def->isRuntimePseudoReloc)
1115     return None;
1116 
1117   StringRef name = def->getName();
1118   if (name.size() > COFF::NameSize) {
1119     sym.Name.Offset.Zeroes = 0;
1120     sym.Name.Offset.Offset = addEntryToStringTable(name);
1121   } else {
1122     memset(sym.Name.ShortName, 0, COFF::NameSize);
1123     memcpy(sym.Name.ShortName, name.data(), name.size());
1124   }
1125 
1126   if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1127     COFFSymbolRef ref = d->getCOFFSymbol();
1128     sym.Type = ref.getType();
1129     sym.StorageClass = ref.getStorageClass();
1130   } else {
1131     sym.Type = IMAGE_SYM_TYPE_NULL;
1132     sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1133   }
1134   sym.NumberOfAuxSymbols = 0;
1135   return sym;
1136 }
1137 
1138 void Writer::createSymbolAndStringTable() {
1139   // PE/COFF images are limited to 8 byte section names. Longer names can be
1140   // supported by writing a non-standard string table, but this string table is
1141   // not mapped at runtime and the long names will therefore be inaccessible.
1142   // link.exe always truncates section names to 8 bytes, whereas binutils always
1143   // preserves long section names via the string table. LLD adopts a hybrid
1144   // solution where discardable sections have long names preserved and
1145   // non-discardable sections have their names truncated, to ensure that any
1146   // section which is mapped at runtime also has its name mapped at runtime.
1147   for (OutputSection *sec : outputSections) {
1148     if (sec->name.size() <= COFF::NameSize)
1149       continue;
1150     if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1151       continue;
1152     if (config->warnLongSectionNames) {
1153       warn("section name " + sec->name +
1154            " is longer than 8 characters and will use a non-standard string "
1155            "table");
1156     }
1157     sec->setStringTableOff(addEntryToStringTable(sec->name));
1158   }
1159 
1160   if (config->debugDwarf || config->debugSymtab) {
1161     for (ObjFile *file : ObjFile::instances) {
1162       for (Symbol *b : file->getSymbols()) {
1163         auto *d = dyn_cast_or_null<Defined>(b);
1164         if (!d || d->writtenToSymtab)
1165           continue;
1166         d->writtenToSymtab = true;
1167 
1168         if (Optional<coff_symbol16> sym = createSymbol(d))
1169           outputSymtab.push_back(*sym);
1170       }
1171     }
1172   }
1173 
1174   if (outputSymtab.empty() && strtab.empty())
1175     return;
1176 
1177   // We position the symbol table to be adjacent to the end of the last section.
1178   uint64_t fileOff = fileSize;
1179   pointerToSymbolTable = fileOff;
1180   fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1181   fileOff += 4 + strtab.size();
1182   fileSize = alignTo(fileOff, config->fileAlign);
1183 }
1184 
1185 void Writer::mergeSections() {
1186   if (!pdataSec->chunks.empty()) {
1187     firstPdata = pdataSec->chunks.front();
1188     lastPdata = pdataSec->chunks.back();
1189   }
1190 
1191   for (auto &p : config->merge) {
1192     StringRef toName = p.second;
1193     if (p.first == toName)
1194       continue;
1195     StringSet<> names;
1196     while (1) {
1197       if (!names.insert(toName).second)
1198         fatal("/merge: cycle found for section '" + p.first + "'");
1199       auto i = config->merge.find(toName);
1200       if (i == config->merge.end())
1201         break;
1202       toName = i->second;
1203     }
1204     OutputSection *from = findSection(p.first);
1205     OutputSection *to = findSection(toName);
1206     if (!from)
1207       continue;
1208     if (!to) {
1209       from->name = toName;
1210       continue;
1211     }
1212     to->merge(from);
1213   }
1214 }
1215 
1216 // Visits all sections to assign incremental, non-overlapping RVAs and
1217 // file offsets.
1218 void Writer::assignAddresses() {
1219   sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1220                   sizeof(data_directory) * numberOfDataDirectory +
1221                   sizeof(coff_section) * outputSections.size();
1222   sizeOfHeaders +=
1223       config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1224   sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1225   fileSize = sizeOfHeaders;
1226 
1227   // The first page is kept unmapped.
1228   uint64_t rva = alignTo(sizeOfHeaders, config->align);
1229 
1230   for (OutputSection *sec : outputSections) {
1231     if (sec == relocSec)
1232       addBaserels();
1233     uint64_t rawSize = 0, virtualSize = 0;
1234     sec->header.VirtualAddress = rva;
1235 
1236     // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1237     // hotpatchable image.
1238     const bool isCodeSection =
1239         (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
1240         (sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
1241         (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
1242     uint32_t padding = isCodeSection ? config->functionPadMin : 0;
1243 
1244     for (Chunk *c : sec->chunks) {
1245       if (padding && c->isHotPatchable())
1246         virtualSize += padding;
1247       virtualSize = alignTo(virtualSize, c->getAlignment());
1248       c->setRVA(rva + virtualSize);
1249       virtualSize += c->getSize();
1250       if (c->hasData)
1251         rawSize = alignTo(virtualSize, config->fileAlign);
1252     }
1253     if (virtualSize > UINT32_MAX)
1254       error("section larger than 4 GiB: " + sec->name);
1255     sec->header.VirtualSize = virtualSize;
1256     sec->header.SizeOfRawData = rawSize;
1257     if (rawSize != 0)
1258       sec->header.PointerToRawData = fileSize;
1259     rva += alignTo(virtualSize, config->align);
1260     fileSize += alignTo(rawSize, config->fileAlign);
1261   }
1262   sizeOfImage = alignTo(rva, config->align);
1263 
1264   // Assign addresses to sections in MergeChunks.
1265   for (MergeChunk *mc : MergeChunk::instances)
1266     if (mc)
1267       mc->assignSubsectionRVAs();
1268 }
1269 
1270 template <typename PEHeaderTy> void Writer::writeHeader() {
1271   // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1272   // executable consists of an MS-DOS MZ executable. If the executable is run
1273   // under DOS, that program gets run (usually to just print an error message).
1274   // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1275   // the PE header instead.
1276   uint8_t *buf = buffer->getBufferStart();
1277   auto *dos = reinterpret_cast<dos_header *>(buf);
1278   buf += sizeof(dos_header);
1279   dos->Magic[0] = 'M';
1280   dos->Magic[1] = 'Z';
1281   dos->UsedBytesInTheLastPage = dosStubSize % 512;
1282   dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1283   dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1284 
1285   dos->AddressOfRelocationTable = sizeof(dos_header);
1286   dos->AddressOfNewExeHeader = dosStubSize;
1287 
1288   // Write DOS program.
1289   memcpy(buf, dosProgram, sizeof(dosProgram));
1290   buf += sizeof(dosProgram);
1291 
1292   // Write PE magic
1293   memcpy(buf, PEMagic, sizeof(PEMagic));
1294   buf += sizeof(PEMagic);
1295 
1296   // Write COFF header
1297   auto *coff = reinterpret_cast<coff_file_header *>(buf);
1298   buf += sizeof(*coff);
1299   coff->Machine = config->machine;
1300   coff->NumberOfSections = outputSections.size();
1301   coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1302   if (config->largeAddressAware)
1303     coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1304   if (!config->is64())
1305     coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1306   if (config->dll)
1307     coff->Characteristics |= IMAGE_FILE_DLL;
1308   if (config->driverUponly)
1309     coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1310   if (!config->relocatable)
1311     coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1312   if (config->swaprunCD)
1313     coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1314   if (config->swaprunNet)
1315     coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1316   coff->SizeOfOptionalHeader =
1317       sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1318 
1319   // Write PE header
1320   auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1321   buf += sizeof(*pe);
1322   pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1323 
1324   // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1325   // reason signing the resulting PE file with Authenticode produces a
1326   // signature that fails to validate on Windows 7 (but is OK on 10).
1327   // Set it to 14.0, which is what VS2015 outputs, and which avoids
1328   // that problem.
1329   pe->MajorLinkerVersion = 14;
1330   pe->MinorLinkerVersion = 0;
1331 
1332   pe->ImageBase = config->imageBase;
1333   pe->SectionAlignment = config->align;
1334   pe->FileAlignment = config->fileAlign;
1335   pe->MajorImageVersion = config->majorImageVersion;
1336   pe->MinorImageVersion = config->minorImageVersion;
1337   pe->MajorOperatingSystemVersion = config->majorOSVersion;
1338   pe->MinorOperatingSystemVersion = config->minorOSVersion;
1339   pe->MajorSubsystemVersion = config->majorOSVersion;
1340   pe->MinorSubsystemVersion = config->minorOSVersion;
1341   pe->Subsystem = config->subsystem;
1342   pe->SizeOfImage = sizeOfImage;
1343   pe->SizeOfHeaders = sizeOfHeaders;
1344   if (!config->noEntry) {
1345     Defined *entry = cast<Defined>(config->entry);
1346     pe->AddressOfEntryPoint = entry->getRVA();
1347     // Pointer to thumb code must have the LSB set, so adjust it.
1348     if (config->machine == ARMNT)
1349       pe->AddressOfEntryPoint |= 1;
1350   }
1351   pe->SizeOfStackReserve = config->stackReserve;
1352   pe->SizeOfStackCommit = config->stackCommit;
1353   pe->SizeOfHeapReserve = config->heapReserve;
1354   pe->SizeOfHeapCommit = config->heapCommit;
1355   if (config->appContainer)
1356     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1357   if (config->driverWdm)
1358     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1359   if (config->dynamicBase)
1360     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1361   if (config->highEntropyVA)
1362     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1363   if (!config->allowBind)
1364     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1365   if (config->nxCompat)
1366     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1367   if (!config->allowIsolation)
1368     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1369   if (config->guardCF != GuardCFLevel::Off)
1370     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1371   if (config->integrityCheck)
1372     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1373   if (setNoSEHCharacteristic)
1374     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1375   if (config->terminalServerAware)
1376     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1377   pe->NumberOfRvaAndSize = numberOfDataDirectory;
1378   if (textSec->getVirtualSize()) {
1379     pe->BaseOfCode = textSec->getRVA();
1380     pe->SizeOfCode = textSec->getRawSize();
1381   }
1382   pe->SizeOfInitializedData = getSizeOfInitializedData();
1383 
1384   // Write data directory
1385   auto *dir = reinterpret_cast<data_directory *>(buf);
1386   buf += sizeof(*dir) * numberOfDataDirectory;
1387   if (edataStart) {
1388     dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1389     dir[EXPORT_TABLE].Size =
1390         edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1391   }
1392   if (importTableStart) {
1393     dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1394     dir[IMPORT_TABLE].Size = importTableSize;
1395   }
1396   if (iatStart) {
1397     dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1398     dir[IAT].Size = iatSize;
1399   }
1400   if (rsrcSec->getVirtualSize()) {
1401     dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1402     dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1403   }
1404   if (firstPdata) {
1405     dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
1406     dir[EXCEPTION_TABLE].Size =
1407         lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
1408   }
1409   if (relocSec->getVirtualSize()) {
1410     dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1411     dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1412   }
1413   if (Symbol *sym = symtab->findUnderscore("_tls_used")) {
1414     if (Defined *b = dyn_cast<Defined>(sym)) {
1415       dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1416       dir[TLS_TABLE].Size = config->is64()
1417                                 ? sizeof(object::coff_tls_directory64)
1418                                 : sizeof(object::coff_tls_directory32);
1419     }
1420   }
1421   if (debugDirectory) {
1422     dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1423     dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1424   }
1425   if (Symbol *sym = symtab->findUnderscore("_load_config_used")) {
1426     if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1427       SectionChunk *sc = b->getChunk();
1428       assert(b->getRVA() >= sc->getRVA());
1429       uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1430       if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1431         fatal("_load_config_used is malformed");
1432 
1433       ArrayRef<uint8_t> secContents = sc->getContents();
1434       uint32_t loadConfigSize =
1435           *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1436       if (offsetInChunk + loadConfigSize > sc->getSize())
1437         fatal("_load_config_used is too large");
1438       dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1439       dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1440     }
1441   }
1442   if (!delayIdata.empty()) {
1443     dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1444         delayIdata.getDirRVA();
1445     dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1446   }
1447 
1448   // Write section table
1449   for (OutputSection *sec : outputSections) {
1450     sec->writeHeaderTo(buf);
1451     buf += sizeof(coff_section);
1452   }
1453   sectionTable = ArrayRef<uint8_t>(
1454       buf - outputSections.size() * sizeof(coff_section), buf);
1455 
1456   if (outputSymtab.empty() && strtab.empty())
1457     return;
1458 
1459   coff->PointerToSymbolTable = pointerToSymbolTable;
1460   uint32_t numberOfSymbols = outputSymtab.size();
1461   coff->NumberOfSymbols = numberOfSymbols;
1462   auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1463       buffer->getBufferStart() + coff->PointerToSymbolTable);
1464   for (size_t i = 0; i != numberOfSymbols; ++i)
1465     symbolTable[i] = outputSymtab[i];
1466   // Create the string table, it follows immediately after the symbol table.
1467   // The first 4 bytes is length including itself.
1468   buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1469   write32le(buf, strtab.size() + 4);
1470   if (!strtab.empty())
1471     memcpy(buf + 4, strtab.data(), strtab.size());
1472 }
1473 
1474 void Writer::openFile(StringRef path) {
1475   buffer = CHECK(
1476       FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1477       "failed to open " + path);
1478 }
1479 
1480 void Writer::createSEHTable() {
1481   SymbolRVASet handlers;
1482   for (ObjFile *file : ObjFile::instances) {
1483     if (!file->hasSafeSEH())
1484       error("/safeseh: " + file->getName() + " is not compatible with SEH");
1485     markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1486   }
1487 
1488   // Set the "no SEH" characteristic if there really were no handlers, or if
1489   // there is no load config object to point to the table of handlers.
1490   setNoSEHCharacteristic =
1491       handlers.empty() || !symtab->findUnderscore("_load_config_used");
1492 
1493   maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1494                    "__safe_se_handler_count");
1495 }
1496 
1497 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1498 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1499 // symbol's offset into that Chunk.
1500 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1501   Chunk *c = s->getChunk();
1502   if (auto *sc = dyn_cast<SectionChunk>(c))
1503     c = sc->repl; // Look through ICF replacement.
1504   uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1505   rvaSet.insert({c, off});
1506 }
1507 
1508 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1509 // symbol in an executable section.
1510 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1511                                          Symbol *s) {
1512   if (!s)
1513     return;
1514 
1515   switch (s->kind()) {
1516   case Symbol::DefinedLocalImportKind:
1517   case Symbol::DefinedImportDataKind:
1518     // Defines an __imp_ pointer, so it is data, so it is ignored.
1519     break;
1520   case Symbol::DefinedCommonKind:
1521     // Common is always data, so it is ignored.
1522     break;
1523   case Symbol::DefinedAbsoluteKind:
1524   case Symbol::DefinedSyntheticKind:
1525     // Absolute is never code, synthetic generally isn't and usually isn't
1526     // determinable.
1527     break;
1528   case Symbol::LazyArchiveKind:
1529   case Symbol::LazyObjectKind:
1530   case Symbol::UndefinedKind:
1531     // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1532     // symbols shouldn't have relocations.
1533     break;
1534 
1535   case Symbol::DefinedImportThunkKind:
1536     // Thunks are always code, include them.
1537     addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1538     break;
1539 
1540   case Symbol::DefinedRegularKind: {
1541     // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1542     // address taken if the symbol type is function and it's in an executable
1543     // section.
1544     auto *d = cast<DefinedRegular>(s);
1545     if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1546       SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1547       if (sc && sc->live &&
1548           sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1549         addSymbolToRVASet(addressTakenSyms, d);
1550     }
1551     break;
1552   }
1553   }
1554 }
1555 
1556 // Visit all relocations from all section contributions of this object file and
1557 // mark the relocation target as address-taken.
1558 static void markSymbolsWithRelocations(ObjFile *file,
1559                                        SymbolRVASet &usedSymbols) {
1560   for (Chunk *c : file->getChunks()) {
1561     // We only care about live section chunks. Common chunks and other chunks
1562     // don't generally contain relocations.
1563     SectionChunk *sc = dyn_cast<SectionChunk>(c);
1564     if (!sc || !sc->live)
1565       continue;
1566 
1567     for (const coff_relocation &reloc : sc->getRelocs()) {
1568       if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32)
1569         // Ignore relative relocations on x86. On x86_64 they can't be ignored
1570         // since they're also used to compute absolute addresses.
1571         continue;
1572 
1573       Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1574       maybeAddAddressTakenFunction(usedSymbols, ref);
1575     }
1576   }
1577 }
1578 
1579 // Create the guard function id table. This is a table of RVAs of all
1580 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1581 // table.
1582 void Writer::createGuardCFTables() {
1583   SymbolRVASet addressTakenSyms;
1584   SymbolRVASet longJmpTargets;
1585   for (ObjFile *file : ObjFile::instances) {
1586     // If the object was compiled with /guard:cf, the address taken symbols
1587     // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
1588     // sections. If the object was not compiled with /guard:cf, we assume there
1589     // were no setjmp targets, and that all code symbols with relocations are
1590     // possibly address-taken.
1591     if (file->hasGuardCF()) {
1592       markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1593       markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1594     } else {
1595       markSymbolsWithRelocations(file, addressTakenSyms);
1596     }
1597   }
1598 
1599   // Mark the image entry as address-taken.
1600   if (config->entry)
1601     maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1602 
1603   // Mark exported symbols in executable sections as address-taken.
1604   for (Export &e : config->exports)
1605     maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1606 
1607   // Ensure sections referenced in the gfid table are 16-byte aligned.
1608   for (const ChunkAndOffset &c : addressTakenSyms)
1609     if (c.inputChunk->getAlignment() < 16)
1610       c.inputChunk->setAlignment(16);
1611 
1612   maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1613                    "__guard_fids_count");
1614 
1615   // Add the longjmp target table unless the user told us not to.
1616   if (config->guardCF == GuardCFLevel::Full)
1617     maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1618                      "__guard_longjmp_count");
1619 
1620   // Set __guard_flags, which will be used in the load config to indicate that
1621   // /guard:cf was enabled.
1622   uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
1623                         uint32_t(coff_guard_flags::HasFidTable);
1624   if (config->guardCF == GuardCFLevel::Full)
1625     guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
1626   Symbol *flagSym = symtab->findUnderscore("__guard_flags");
1627   cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1628 }
1629 
1630 // Take a list of input sections containing symbol table indices and add those
1631 // symbols to an RVA table. The challenge is that symbol RVAs are not known and
1632 // depend on the table size, so we can't directly build a set of integers.
1633 void Writer::markSymbolsForRVATable(ObjFile *file,
1634                                     ArrayRef<SectionChunk *> symIdxChunks,
1635                                     SymbolRVASet &tableSymbols) {
1636   for (SectionChunk *c : symIdxChunks) {
1637     // Skip sections discarded by linker GC. This comes up when a .gfids section
1638     // is associated with something like a vtable and the vtable is discarded.
1639     // In this case, the associated gfids section is discarded, and we don't
1640     // mark the virtual member functions as address-taken by the vtable.
1641     if (!c->live)
1642       continue;
1643 
1644     // Validate that the contents look like symbol table indices.
1645     ArrayRef<uint8_t> data = c->getContents();
1646     if (data.size() % 4 != 0) {
1647       warn("ignoring " + c->getSectionName() +
1648            " symbol table index section in object " + toString(file));
1649       continue;
1650     }
1651 
1652     // Read each symbol table index and check if that symbol was included in the
1653     // final link. If so, add it to the table symbol set.
1654     ArrayRef<ulittle32_t> symIndices(
1655         reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1656     ArrayRef<Symbol *> objSymbols = file->getSymbols();
1657     for (uint32_t symIndex : symIndices) {
1658       if (symIndex >= objSymbols.size()) {
1659         warn("ignoring invalid symbol table index in section " +
1660              c->getSectionName() + " in object " + toString(file));
1661         continue;
1662       }
1663       if (Symbol *s = objSymbols[symIndex]) {
1664         if (s->isLive())
1665           addSymbolToRVASet(tableSymbols, cast<Defined>(s));
1666       }
1667     }
1668   }
1669 }
1670 
1671 // Replace the absolute table symbol with a synthetic symbol pointing to
1672 // tableChunk so that we can emit base relocations for it and resolve section
1673 // relative relocations.
1674 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
1675                               StringRef countSym) {
1676   if (tableSymbols.empty())
1677     return;
1678 
1679   RVATableChunk *tableChunk = make<RVATableChunk>(std::move(tableSymbols));
1680   rdataSec->addChunk(tableChunk);
1681 
1682   Symbol *t = symtab->findUnderscore(tableSym);
1683   Symbol *c = symtab->findUnderscore(countSym);
1684   replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
1685   cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / 4);
1686 }
1687 
1688 // MinGW specific. Gather all relocations that are imported from a DLL even
1689 // though the code didn't expect it to, produce the table that the runtime
1690 // uses for fixing them up, and provide the synthetic symbols that the
1691 // runtime uses for finding the table.
1692 void Writer::createRuntimePseudoRelocs() {
1693   std::vector<RuntimePseudoReloc> rels;
1694 
1695   for (Chunk *c : symtab->getChunks()) {
1696     auto *sc = dyn_cast<SectionChunk>(c);
1697     if (!sc || !sc->live)
1698       continue;
1699     sc->getRuntimePseudoRelocs(rels);
1700   }
1701 
1702   if (!rels.empty())
1703     log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
1704   PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
1705   rdataSec->addChunk(table);
1706   EmptyChunk *endOfList = make<EmptyChunk>();
1707   rdataSec->addChunk(endOfList);
1708 
1709   Symbol *headSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1710   Symbol *endSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1711   replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
1712   replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
1713 }
1714 
1715 // MinGW specific.
1716 // The MinGW .ctors and .dtors lists have sentinels at each end;
1717 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1718 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1719 // and __DTOR_LIST__ respectively.
1720 void Writer::insertCtorDtorSymbols() {
1721   AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1);
1722   AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0);
1723   AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1);
1724   AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0);
1725   ctorsSec->insertChunkAtStart(ctorListHead);
1726   ctorsSec->addChunk(ctorListEnd);
1727   dtorsSec->insertChunkAtStart(dtorListHead);
1728   dtorsSec->addChunk(dtorListEnd);
1729 
1730   Symbol *ctorListSym = symtab->findUnderscore("__CTOR_LIST__");
1731   Symbol *dtorListSym = symtab->findUnderscore("__DTOR_LIST__");
1732   replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
1733                                   ctorListHead);
1734   replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
1735                                   dtorListHead);
1736 }
1737 
1738 // Handles /section options to allow users to overwrite
1739 // section attributes.
1740 void Writer::setSectionPermissions() {
1741   for (auto &p : config->section) {
1742     StringRef name = p.first;
1743     uint32_t perm = p.second;
1744     for (OutputSection *sec : outputSections)
1745       if (sec->name == name)
1746         sec->setPermissions(perm);
1747   }
1748 }
1749 
1750 // Write section contents to a mmap'ed file.
1751 void Writer::writeSections() {
1752   // Record the number of sections to apply section index relocations
1753   // against absolute symbols. See applySecIdx in Chunks.cpp..
1754   DefinedAbsolute::numOutputSections = outputSections.size();
1755 
1756   uint8_t *buf = buffer->getBufferStart();
1757   for (OutputSection *sec : outputSections) {
1758     uint8_t *secBuf = buf + sec->getFileOff();
1759     // Fill gaps between functions in .text with INT3 instructions
1760     // instead of leaving as NUL bytes (which can be interpreted as
1761     // ADD instructions).
1762     if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE)
1763       memset(secBuf, 0xCC, sec->getRawSize());
1764     parallelForEach(sec->chunks, [&](Chunk *c) {
1765       c->writeTo(secBuf + c->getRVA() - sec->getRVA());
1766     });
1767   }
1768 }
1769 
1770 void Writer::writeBuildId() {
1771   // There are two important parts to the build ID.
1772   // 1) If building with debug info, the COFF debug directory contains a
1773   //    timestamp as well as a Guid and Age of the PDB.
1774   // 2) In all cases, the PE COFF file header also contains a timestamp.
1775   // For reproducibility, instead of a timestamp we want to use a hash of the
1776   // PE contents.
1777   if (config->debug) {
1778     assert(buildId && "BuildId is not set!");
1779     // BuildId->BuildId was filled in when the PDB was written.
1780   }
1781 
1782   // At this point the only fields in the COFF file which remain unset are the
1783   // "timestamp" in the COFF file header, and the ones in the coff debug
1784   // directory.  Now we can hash the file and write that hash to the various
1785   // timestamp fields in the file.
1786   StringRef outputFileData(
1787       reinterpret_cast<const char *>(buffer->getBufferStart()),
1788       buffer->getBufferSize());
1789 
1790   uint32_t timestamp = config->timestamp;
1791   uint64_t hash = 0;
1792   bool generateSyntheticBuildId =
1793       config->mingw && config->debug && config->pdbPath.empty();
1794 
1795   if (config->repro || generateSyntheticBuildId)
1796     hash = xxHash64(outputFileData);
1797 
1798   if (config->repro)
1799     timestamp = static_cast<uint32_t>(hash);
1800 
1801   if (generateSyntheticBuildId) {
1802     // For MinGW builds without a PDB file, we still generate a build id
1803     // to allow associating a crash dump to the executable.
1804     buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
1805     buildId->buildId->PDB70.Age = 1;
1806     memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
1807     // xxhash only gives us 8 bytes, so put some fixed data in the other half.
1808     memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
1809   }
1810 
1811   if (debugDirectory)
1812     debugDirectory->setTimeDateStamp(timestamp);
1813 
1814   uint8_t *buf = buffer->getBufferStart();
1815   buf += dosStubSize + sizeof(PEMagic);
1816   object::coff_file_header *coffHeader =
1817       reinterpret_cast<coff_file_header *>(buf);
1818   coffHeader->TimeDateStamp = timestamp;
1819 }
1820 
1821 // Sort .pdata section contents according to PE/COFF spec 5.5.
1822 void Writer::sortExceptionTable() {
1823   if (!firstPdata)
1824     return;
1825   // We assume .pdata contains function table entries only.
1826   auto bufAddr = [&](Chunk *c) {
1827     OutputSection *os = c->getOutputSection();
1828     return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
1829            os->getRVA();
1830   };
1831   uint8_t *begin = bufAddr(firstPdata);
1832   uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
1833   if (config->machine == AMD64) {
1834     struct Entry { ulittle32_t begin, end, unwind; };
1835     parallelSort(
1836         MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1837         [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1838     return;
1839   }
1840   if (config->machine == ARMNT || config->machine == ARM64) {
1841     struct Entry { ulittle32_t begin, unwind; };
1842     parallelSort(
1843         MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1844         [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1845     return;
1846   }
1847   lld::errs() << "warning: don't know how to handle .pdata.\n";
1848 }
1849 
1850 // The CRT section contains, among other things, the array of function
1851 // pointers that initialize every global variable that is not trivially
1852 // constructed. The CRT calls them one after the other prior to invoking
1853 // main().
1854 //
1855 // As per C++ spec, 3.6.2/2.3,
1856 // "Variables with ordered initialization defined within a single
1857 // translation unit shall be initialized in the order of their definitions
1858 // in the translation unit"
1859 //
1860 // It is therefore critical to sort the chunks containing the function
1861 // pointers in the order that they are listed in the object file (top to
1862 // bottom), otherwise global objects might not be initialized in the
1863 // correct order.
1864 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
1865   auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
1866     auto sa = dyn_cast<SectionChunk>(a);
1867     auto sb = dyn_cast<SectionChunk>(b);
1868     assert(sa && sb && "Non-section chunks in CRT section!");
1869 
1870     StringRef sAObj = sa->file->mb.getBufferIdentifier();
1871     StringRef sBObj = sb->file->mb.getBufferIdentifier();
1872 
1873     return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
1874   };
1875   llvm::stable_sort(chunks, sectionChunkOrder);
1876 
1877   if (config->verbose) {
1878     for (auto &c : chunks) {
1879       auto sc = dyn_cast<SectionChunk>(c);
1880       log("  " + sc->file->mb.getBufferIdentifier().str() +
1881           ", SectionID: " + Twine(sc->getSectionNumber()));
1882     }
1883   }
1884 }
1885 
1886 OutputSection *Writer::findSection(StringRef name) {
1887   for (OutputSection *sec : outputSections)
1888     if (sec->name == name)
1889       return sec;
1890   return nullptr;
1891 }
1892 
1893 uint32_t Writer::getSizeOfInitializedData() {
1894   uint32_t res = 0;
1895   for (OutputSection *s : outputSections)
1896     if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
1897       res += s->getRawSize();
1898   return res;
1899 }
1900 
1901 // Add base relocations to .reloc section.
1902 void Writer::addBaserels() {
1903   if (!config->relocatable)
1904     return;
1905   relocSec->chunks.clear();
1906   std::vector<Baserel> v;
1907   for (OutputSection *sec : outputSections) {
1908     if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
1909       continue;
1910     // Collect all locations for base relocations.
1911     for (Chunk *c : sec->chunks)
1912       c->getBaserels(&v);
1913     // Add the addresses to .reloc section.
1914     if (!v.empty())
1915       addBaserelBlocks(v);
1916     v.clear();
1917   }
1918 }
1919 
1920 // Add addresses to .reloc section. Note that addresses are grouped by page.
1921 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
1922   const uint32_t mask = ~uint32_t(pageSize - 1);
1923   uint32_t page = v[0].rva & mask;
1924   size_t i = 0, j = 1;
1925   for (size_t e = v.size(); j < e; ++j) {
1926     uint32_t p = v[j].rva & mask;
1927     if (p == page)
1928       continue;
1929     relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
1930     i = j;
1931     page = p;
1932   }
1933   if (i == j)
1934     return;
1935   relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
1936 }
1937 
1938 PartialSection *Writer::createPartialSection(StringRef name,
1939                                              uint32_t outChars) {
1940   PartialSection *&pSec = partialSections[{name, outChars}];
1941   if (pSec)
1942     return pSec;
1943   pSec = make<PartialSection>(name, outChars);
1944   return pSec;
1945 }
1946 
1947 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
1948   auto it = partialSections.find({name, outChars});
1949   if (it != partialSections.end())
1950     return it->second;
1951   return nullptr;
1952 }
1953 
1954 } // namespace coff
1955 } // namespace lld
1956