1 //===- Symbols.h ------------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLD_COFF_SYMBOLS_H 10 #define LLD_COFF_SYMBOLS_H 11 12 #include "Chunks.h" 13 #include "Config.h" 14 #include "lld/Common/LLVM.h" 15 #include "lld/Common/Memory.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/Object/Archive.h" 18 #include "llvm/Object/COFF.h" 19 #include <atomic> 20 #include <memory> 21 #include <vector> 22 23 namespace lld { 24 25 std::string toString(coff::Symbol &b); 26 27 // There are two different ways to convert an Archive::Symbol to a string: 28 // One for Microsoft name mangling and one for Itanium name mangling. 29 // Call the functions toCOFFString and toELFString, not just toString. 30 std::string toCOFFString(const coff::Archive::Symbol &b); 31 32 namespace coff { 33 34 using llvm::object::Archive; 35 using llvm::object::COFFSymbolRef; 36 using llvm::object::coff_import_header; 37 using llvm::object::coff_symbol_generic; 38 39 class ArchiveFile; 40 class InputFile; 41 class ObjFile; 42 class SymbolTable; 43 44 // The base class for real symbol classes. 45 class Symbol { 46 public: 47 enum Kind { 48 // The order of these is significant. We start with the regular defined 49 // symbols as those are the most prevalent and the zero tag is the cheapest 50 // to set. Among the defined kinds, the lower the kind is preferred over 51 // the higher kind when testing whether one symbol should take precedence 52 // over another. 53 DefinedRegularKind = 0, 54 DefinedCommonKind, 55 DefinedLocalImportKind, 56 DefinedImportThunkKind, 57 DefinedImportDataKind, 58 DefinedAbsoluteKind, 59 DefinedSyntheticKind, 60 61 UndefinedKind, 62 LazyArchiveKind, 63 LazyObjectKind, 64 LazyDLLSymbolKind, 65 66 LastDefinedCOFFKind = DefinedCommonKind, 67 LastDefinedKind = DefinedSyntheticKind, 68 }; 69 70 Kind kind() const { return static_cast<Kind>(symbolKind); } 71 72 // Returns the symbol name. 73 StringRef getName() { 74 // COFF symbol names are read lazily for a performance reason. 75 // Non-external symbol names are never used by the linker except for logging 76 // or debugging. Their internal references are resolved not by name but by 77 // symbol index. And because they are not external, no one can refer them by 78 // name. Object files contain lots of non-external symbols, and creating 79 // StringRefs for them (which involves lots of strlen() on the string table) 80 // is a waste of time. 81 if (nameData == nullptr) 82 computeName(); 83 return StringRef(nameData, nameSize); 84 } 85 86 void replaceKeepingName(Symbol *other, size_t size); 87 88 // Returns the file from which this symbol was created. 89 InputFile *getFile(); 90 91 // Indicates that this symbol will be included in the final image. Only valid 92 // after calling markLive. 93 bool isLive() const; 94 95 bool isLazy() const { 96 return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind || 97 symbolKind == LazyDLLSymbolKind; 98 } 99 100 private: 101 void computeName(); 102 103 protected: 104 friend SymbolTable; 105 explicit Symbol(Kind k, StringRef n = "") 106 : symbolKind(k), isExternal(true), isCOMDAT(false), 107 writtenToSymtab(false), pendingArchiveLoad(false), isGCRoot(false), 108 isRuntimePseudoReloc(false), deferUndefined(false), canInline(true), 109 nameSize(n.size()), nameData(n.empty() ? nullptr : n.data()) {} 110 111 const unsigned symbolKind : 8; 112 unsigned isExternal : 1; 113 114 public: 115 // This bit is used by the \c DefinedRegular subclass. 116 unsigned isCOMDAT : 1; 117 118 // This bit is used by Writer::createSymbolAndStringTable() to prevent 119 // symbols from being written to the symbol table more than once. 120 unsigned writtenToSymtab : 1; 121 122 // True if this symbol was referenced by a regular (non-bitcode) object. 123 unsigned isUsedInRegularObj : 1; 124 125 // True if we've seen both a lazy and an undefined symbol with this symbol 126 // name, which means that we have enqueued an archive member load and should 127 // not load any more archive members to resolve the same symbol. 128 unsigned pendingArchiveLoad : 1; 129 130 /// True if we've already added this symbol to the list of GC roots. 131 unsigned isGCRoot : 1; 132 133 unsigned isRuntimePseudoReloc : 1; 134 135 // True if we want to allow this symbol to be undefined in the early 136 // undefined check pass in SymbolTable::reportUnresolvable(), as it 137 // might be fixed up later. 138 unsigned deferUndefined : 1; 139 140 // False if LTO shouldn't inline whatever this symbol points to. If a symbol 141 // is overwritten after LTO, LTO shouldn't inline the symbol because it 142 // doesn't know the final contents of the symbol. 143 unsigned canInline : 1; 144 145 protected: 146 // Symbol name length. Assume symbol lengths fit in a 32-bit integer. 147 uint32_t nameSize; 148 149 const char *nameData; 150 }; 151 152 // The base class for any defined symbols, including absolute symbols, 153 // etc. 154 class Defined : public Symbol { 155 public: 156 Defined(Kind k, StringRef n) : Symbol(k, n) {} 157 158 static bool classof(const Symbol *s) { return s->kind() <= LastDefinedKind; } 159 160 // Returns the RVA (relative virtual address) of this symbol. The 161 // writer sets and uses RVAs. 162 uint64_t getRVA(); 163 164 // Returns the chunk containing this symbol. Absolute symbols and __ImageBase 165 // do not have chunks, so this may return null. 166 Chunk *getChunk(); 167 }; 168 169 // Symbols defined via a COFF object file or bitcode file. For COFF files, this 170 // stores a coff_symbol_generic*, and names of internal symbols are lazily 171 // loaded through that. For bitcode files, Sym is nullptr and the name is stored 172 // as a decomposed StringRef. 173 class DefinedCOFF : public Defined { 174 friend Symbol; 175 176 public: 177 DefinedCOFF(Kind k, InputFile *f, StringRef n, const coff_symbol_generic *s) 178 : Defined(k, n), file(f), sym(s) {} 179 180 static bool classof(const Symbol *s) { 181 return s->kind() <= LastDefinedCOFFKind; 182 } 183 184 InputFile *getFile() { return file; } 185 186 COFFSymbolRef getCOFFSymbol(); 187 188 InputFile *file; 189 190 protected: 191 const coff_symbol_generic *sym; 192 }; 193 194 // Regular defined symbols read from object file symbol tables. 195 class DefinedRegular : public DefinedCOFF { 196 public: 197 DefinedRegular(InputFile *f, StringRef n, bool isCOMDAT, 198 bool isExternal = false, 199 const coff_symbol_generic *s = nullptr, 200 SectionChunk *c = nullptr) 201 : DefinedCOFF(DefinedRegularKind, f, n, s), data(c ? &c->repl : nullptr) { 202 this->isExternal = isExternal; 203 this->isCOMDAT = isCOMDAT; 204 } 205 206 static bool classof(const Symbol *s) { 207 return s->kind() == DefinedRegularKind; 208 } 209 210 uint64_t getRVA() const { return (*data)->getRVA() + sym->Value; } 211 SectionChunk *getChunk() const { return *data; } 212 uint32_t getValue() const { return sym->Value; } 213 214 SectionChunk **data; 215 }; 216 217 class DefinedCommon : public DefinedCOFF { 218 public: 219 DefinedCommon(InputFile *f, StringRef n, uint64_t size, 220 const coff_symbol_generic *s = nullptr, 221 CommonChunk *c = nullptr) 222 : DefinedCOFF(DefinedCommonKind, f, n, s), data(c), size(size) { 223 this->isExternal = true; 224 } 225 226 static bool classof(const Symbol *s) { 227 return s->kind() == DefinedCommonKind; 228 } 229 230 uint64_t getRVA() { return data->getRVA(); } 231 CommonChunk *getChunk() { return data; } 232 233 private: 234 friend SymbolTable; 235 uint64_t getSize() const { return size; } 236 CommonChunk *data; 237 uint64_t size; 238 }; 239 240 // Absolute symbols. 241 class DefinedAbsolute : public Defined { 242 public: 243 DefinedAbsolute(StringRef n, COFFSymbolRef s) 244 : Defined(DefinedAbsoluteKind, n), va(s.getValue()) { 245 isExternal = s.isExternal(); 246 } 247 248 DefinedAbsolute(StringRef n, uint64_t v) 249 : Defined(DefinedAbsoluteKind, n), va(v) {} 250 251 static bool classof(const Symbol *s) { 252 return s->kind() == DefinedAbsoluteKind; 253 } 254 255 uint64_t getRVA() { return va - config->imageBase; } 256 void setVA(uint64_t v) { va = v; } 257 uint64_t getVA() const { return va; } 258 259 // Section index relocations against absolute symbols resolve to 260 // this 16 bit number, and it is the largest valid section index 261 // plus one. This variable keeps it. 262 static uint16_t numOutputSections; 263 264 private: 265 uint64_t va; 266 }; 267 268 // This symbol is used for linker-synthesized symbols like __ImageBase and 269 // __safe_se_handler_table. 270 class DefinedSynthetic : public Defined { 271 public: 272 explicit DefinedSynthetic(StringRef name, Chunk *c) 273 : Defined(DefinedSyntheticKind, name), c(c) {} 274 275 static bool classof(const Symbol *s) { 276 return s->kind() == DefinedSyntheticKind; 277 } 278 279 // A null chunk indicates that this is __ImageBase. Otherwise, this is some 280 // other synthesized chunk, like SEHTableChunk. 281 uint32_t getRVA() { return c ? c->getRVA() : 0; } 282 Chunk *getChunk() { return c; } 283 284 private: 285 Chunk *c; 286 }; 287 288 // This class represents a symbol defined in an archive file. It is 289 // created from an archive file header, and it knows how to load an 290 // object file from an archive to replace itself with a defined 291 // symbol. If the resolver finds both Undefined and LazyArchive for 292 // the same name, it will ask the LazyArchive to load a file. 293 class LazyArchive : public Symbol { 294 public: 295 LazyArchive(ArchiveFile *f, const Archive::Symbol s) 296 : Symbol(LazyArchiveKind, s.getName()), file(f), sym(s) {} 297 298 static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; } 299 300 MemoryBufferRef getMemberBuffer(); 301 302 ArchiveFile *file; 303 const Archive::Symbol sym; 304 }; 305 306 class LazyObject : public Symbol { 307 public: 308 LazyObject(LazyObjFile *f, StringRef n) 309 : Symbol(LazyObjectKind, n), file(f) {} 310 static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; } 311 LazyObjFile *file; 312 }; 313 314 // MinGW only. 315 class LazyDLLSymbol : public Symbol { 316 public: 317 LazyDLLSymbol(DLLFile *f, DLLFile::Symbol *s, StringRef n) 318 : Symbol(LazyDLLSymbolKind, n), file(f), sym(s) {} 319 static bool classof(const Symbol *s) { 320 return s->kind() == LazyDLLSymbolKind; 321 } 322 323 DLLFile *file; 324 DLLFile::Symbol *sym; 325 }; 326 327 // Undefined symbols. 328 class Undefined : public Symbol { 329 public: 330 explicit Undefined(StringRef n) : Symbol(UndefinedKind, n) {} 331 332 static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; } 333 334 // An undefined symbol can have a fallback symbol which gives an 335 // undefined symbol a second chance if it would remain undefined. 336 // If it remains undefined, it'll be replaced with whatever the 337 // Alias pointer points to. 338 Symbol *weakAlias = nullptr; 339 340 // If this symbol is external weak, try to resolve it to a defined 341 // symbol by searching the chain of fallback symbols. Returns the symbol if 342 // successful, otherwise returns null. 343 Defined *getWeakAlias(); 344 }; 345 346 // Windows-specific classes. 347 348 // This class represents a symbol imported from a DLL. This has two 349 // names for internal use and external use. The former is used for 350 // name resolution, and the latter is used for the import descriptor 351 // table in an output. The former has "__imp_" prefix. 352 class DefinedImportData : public Defined { 353 public: 354 DefinedImportData(StringRef n, ImportFile *f) 355 : Defined(DefinedImportDataKind, n), file(f) { 356 } 357 358 static bool classof(const Symbol *s) { 359 return s->kind() == DefinedImportDataKind; 360 } 361 362 uint64_t getRVA() { return file->location->getRVA(); } 363 Chunk *getChunk() { return file->location; } 364 void setLocation(Chunk *addressTable) { file->location = addressTable; } 365 366 StringRef getDLLName() { return file->dllName; } 367 StringRef getExternalName() { return file->externalName; } 368 uint16_t getOrdinal() { return file->hdr->OrdinalHint; } 369 370 ImportFile *file; 371 372 // This is a pointer to the synthetic symbol associated with the load thunk 373 // for this symbol that will be called if the DLL is delay-loaded. This is 374 // needed for Control Flow Guard because if this DefinedImportData symbol is a 375 // valid call target, the corresponding load thunk must also be marked as a 376 // valid call target. 377 DefinedSynthetic *loadThunkSym = nullptr; 378 }; 379 380 // This class represents a symbol for a jump table entry which jumps 381 // to a function in a DLL. Linker are supposed to create such symbols 382 // without "__imp_" prefix for all function symbols exported from 383 // DLLs, so that you can call DLL functions as regular functions with 384 // a regular name. A function pointer is given as a DefinedImportData. 385 class DefinedImportThunk : public Defined { 386 public: 387 DefinedImportThunk(StringRef name, DefinedImportData *s, uint16_t machine); 388 389 static bool classof(const Symbol *s) { 390 return s->kind() == DefinedImportThunkKind; 391 } 392 393 uint64_t getRVA() { return data->getRVA(); } 394 Chunk *getChunk() { return data; } 395 396 DefinedImportData *wrappedSym; 397 398 private: 399 Chunk *data; 400 }; 401 402 // If you have a symbol "foo" in your object file, a symbol name 403 // "__imp_foo" becomes automatically available as a pointer to "foo". 404 // This class is for such automatically-created symbols. 405 // Yes, this is an odd feature. We didn't intend to implement that. 406 // This is here just for compatibility with MSVC. 407 class DefinedLocalImport : public Defined { 408 public: 409 DefinedLocalImport(StringRef n, Defined *s) 410 : Defined(DefinedLocalImportKind, n), data(make<LocalImportChunk>(s)) {} 411 412 static bool classof(const Symbol *s) { 413 return s->kind() == DefinedLocalImportKind; 414 } 415 416 uint64_t getRVA() { return data->getRVA(); } 417 Chunk *getChunk() { return data; } 418 419 private: 420 LocalImportChunk *data; 421 }; 422 423 inline uint64_t Defined::getRVA() { 424 switch (kind()) { 425 case DefinedAbsoluteKind: 426 return cast<DefinedAbsolute>(this)->getRVA(); 427 case DefinedSyntheticKind: 428 return cast<DefinedSynthetic>(this)->getRVA(); 429 case DefinedImportDataKind: 430 return cast<DefinedImportData>(this)->getRVA(); 431 case DefinedImportThunkKind: 432 return cast<DefinedImportThunk>(this)->getRVA(); 433 case DefinedLocalImportKind: 434 return cast<DefinedLocalImport>(this)->getRVA(); 435 case DefinedCommonKind: 436 return cast<DefinedCommon>(this)->getRVA(); 437 case DefinedRegularKind: 438 return cast<DefinedRegular>(this)->getRVA(); 439 case LazyArchiveKind: 440 case LazyObjectKind: 441 case LazyDLLSymbolKind: 442 case UndefinedKind: 443 llvm_unreachable("Cannot get the address for an undefined symbol."); 444 } 445 llvm_unreachable("unknown symbol kind"); 446 } 447 448 inline Chunk *Defined::getChunk() { 449 switch (kind()) { 450 case DefinedRegularKind: 451 return cast<DefinedRegular>(this)->getChunk(); 452 case DefinedAbsoluteKind: 453 return nullptr; 454 case DefinedSyntheticKind: 455 return cast<DefinedSynthetic>(this)->getChunk(); 456 case DefinedImportDataKind: 457 return cast<DefinedImportData>(this)->getChunk(); 458 case DefinedImportThunkKind: 459 return cast<DefinedImportThunk>(this)->getChunk(); 460 case DefinedLocalImportKind: 461 return cast<DefinedLocalImport>(this)->getChunk(); 462 case DefinedCommonKind: 463 return cast<DefinedCommon>(this)->getChunk(); 464 case LazyArchiveKind: 465 case LazyObjectKind: 466 case LazyDLLSymbolKind: 467 case UndefinedKind: 468 llvm_unreachable("Cannot get the chunk of an undefined symbol."); 469 } 470 llvm_unreachable("unknown symbol kind"); 471 } 472 473 // A buffer class that is large enough to hold any Symbol-derived 474 // object. We allocate memory using this class and instantiate a symbol 475 // using the placement new. 476 union SymbolUnion { 477 alignas(DefinedRegular) char a[sizeof(DefinedRegular)]; 478 alignas(DefinedCommon) char b[sizeof(DefinedCommon)]; 479 alignas(DefinedAbsolute) char c[sizeof(DefinedAbsolute)]; 480 alignas(DefinedSynthetic) char d[sizeof(DefinedSynthetic)]; 481 alignas(LazyArchive) char e[sizeof(LazyArchive)]; 482 alignas(Undefined) char f[sizeof(Undefined)]; 483 alignas(DefinedImportData) char g[sizeof(DefinedImportData)]; 484 alignas(DefinedImportThunk) char h[sizeof(DefinedImportThunk)]; 485 alignas(DefinedLocalImport) char i[sizeof(DefinedLocalImport)]; 486 alignas(LazyObject) char j[sizeof(LazyObject)]; 487 alignas(LazyDLLSymbol) char k[sizeof(LazyDLLSymbol)]; 488 }; 489 490 template <typename T, typename... ArgT> 491 void replaceSymbol(Symbol *s, ArgT &&... arg) { 492 static_assert(std::is_trivially_destructible<T>(), 493 "Symbol types must be trivially destructible"); 494 static_assert(sizeof(T) <= sizeof(SymbolUnion), "Symbol too small"); 495 static_assert(alignof(T) <= alignof(SymbolUnion), 496 "SymbolUnion not aligned enough"); 497 assert(static_cast<Symbol *>(static_cast<T *>(nullptr)) == nullptr && 498 "Not a Symbol"); 499 bool canInline = s->canInline; 500 new (s) T(std::forward<ArgT>(arg)...); 501 s->canInline = canInline; 502 } 503 } // namespace coff 504 505 } // namespace lld 506 507 #endif 508