xref: /freebsd/contrib/llvm-project/lld/COFF/Symbols.h (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_COFF_SYMBOLS_H
10 #define LLD_COFF_SYMBOLS_H
11 
12 #include "Chunks.h"
13 #include "Config.h"
14 #include "lld/Common/LLVM.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/Object/Archive.h"
18 #include "llvm/Object/COFF.h"
19 #include <atomic>
20 #include <memory>
21 #include <vector>
22 
23 namespace lld {
24 
25 std::string toString(coff::Symbol &b);
26 
27 // There are two different ways to convert an Archive::Symbol to a string:
28 // One for Microsoft name mangling and one for Itanium name mangling.
29 // Call the functions toCOFFString and toELFString, not just toString.
30 std::string toCOFFString(const coff::Archive::Symbol &b);
31 
32 namespace coff {
33 
34 using llvm::object::Archive;
35 using llvm::object::COFFSymbolRef;
36 using llvm::object::coff_import_header;
37 using llvm::object::coff_symbol_generic;
38 
39 class ArchiveFile;
40 class InputFile;
41 class ObjFile;
42 class SymbolTable;
43 
44 // The base class for real symbol classes.
45 class Symbol {
46 public:
47   enum Kind {
48     // The order of these is significant. We start with the regular defined
49     // symbols as those are the most prevalent and the zero tag is the cheapest
50     // to set. Among the defined kinds, the lower the kind is preferred over
51     // the higher kind when testing whether one symbol should take precedence
52     // over another.
53     DefinedRegularKind = 0,
54     DefinedCommonKind,
55     DefinedLocalImportKind,
56     DefinedImportThunkKind,
57     DefinedImportDataKind,
58     DefinedAbsoluteKind,
59     DefinedSyntheticKind,
60 
61     UndefinedKind,
62     LazyArchiveKind,
63     LazyObjectKind,
64     LazyDLLSymbolKind,
65 
66     LastDefinedCOFFKind = DefinedCommonKind,
67     LastDefinedKind = DefinedSyntheticKind,
68   };
69 
70   Kind kind() const { return static_cast<Kind>(symbolKind); }
71 
72   // Returns the symbol name.
73   StringRef getName() {
74     // COFF symbol names are read lazily for a performance reason.
75     // Non-external symbol names are never used by the linker except for logging
76     // or debugging. Their internal references are resolved not by name but by
77     // symbol index. And because they are not external, no one can refer them by
78     // name. Object files contain lots of non-external symbols, and creating
79     // StringRefs for them (which involves lots of strlen() on the string table)
80     // is a waste of time.
81     if (nameData == nullptr)
82       computeName();
83     return StringRef(nameData, nameSize);
84   }
85 
86   void replaceKeepingName(Symbol *other, size_t size);
87 
88   // Returns the file from which this symbol was created.
89   InputFile *getFile();
90 
91   // Indicates that this symbol will be included in the final image. Only valid
92   // after calling markLive.
93   bool isLive() const;
94 
95   bool isLazy() const {
96     return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind ||
97            symbolKind == LazyDLLSymbolKind;
98   }
99 
100 private:
101   void computeName();
102 
103 protected:
104   friend SymbolTable;
105   explicit Symbol(Kind k, StringRef n = "")
106       : symbolKind(k), isExternal(true), isCOMDAT(false),
107         writtenToSymtab(false), pendingArchiveLoad(false), isGCRoot(false),
108         isRuntimePseudoReloc(false), deferUndefined(false), canInline(true),
109         nameSize(n.size()), nameData(n.empty() ? nullptr : n.data()) {
110     assert((!n.empty() || k <= LastDefinedCOFFKind) &&
111            "If the name is empty, the Symbol must be a DefinedCOFF.");
112   }
113 
114   const unsigned symbolKind : 8;
115   unsigned isExternal : 1;
116 
117 public:
118   // This bit is used by the \c DefinedRegular subclass.
119   unsigned isCOMDAT : 1;
120 
121   // This bit is used by Writer::createSymbolAndStringTable() to prevent
122   // symbols from being written to the symbol table more than once.
123   unsigned writtenToSymtab : 1;
124 
125   // True if this symbol was referenced by a regular (non-bitcode) object.
126   unsigned isUsedInRegularObj : 1;
127 
128   // True if we've seen both a lazy and an undefined symbol with this symbol
129   // name, which means that we have enqueued an archive member load and should
130   // not load any more archive members to resolve the same symbol.
131   unsigned pendingArchiveLoad : 1;
132 
133   /// True if we've already added this symbol to the list of GC roots.
134   unsigned isGCRoot : 1;
135 
136   unsigned isRuntimePseudoReloc : 1;
137 
138   // True if we want to allow this symbol to be undefined in the early
139   // undefined check pass in SymbolTable::reportUnresolvable(), as it
140   // might be fixed up later.
141   unsigned deferUndefined : 1;
142 
143   // False if LTO shouldn't inline whatever this symbol points to. If a symbol
144   // is overwritten after LTO, LTO shouldn't inline the symbol because it
145   // doesn't know the final contents of the symbol.
146   unsigned canInline : 1;
147 
148 protected:
149   // Symbol name length. Assume symbol lengths fit in a 32-bit integer.
150   uint32_t nameSize;
151 
152   const char *nameData;
153 };
154 
155 // The base class for any defined symbols, including absolute symbols,
156 // etc.
157 class Defined : public Symbol {
158 public:
159   Defined(Kind k, StringRef n) : Symbol(k, n) {}
160 
161   static bool classof(const Symbol *s) { return s->kind() <= LastDefinedKind; }
162 
163   // Returns the RVA (relative virtual address) of this symbol. The
164   // writer sets and uses RVAs.
165   uint64_t getRVA();
166 
167   // Returns the chunk containing this symbol. Absolute symbols and __ImageBase
168   // do not have chunks, so this may return null.
169   Chunk *getChunk();
170 };
171 
172 // Symbols defined via a COFF object file or bitcode file.  For COFF files, this
173 // stores a coff_symbol_generic*, and names of internal symbols are lazily
174 // loaded through that. For bitcode files, Sym is nullptr and the name is stored
175 // as a decomposed StringRef.
176 class DefinedCOFF : public Defined {
177   friend Symbol;
178 
179 public:
180   DefinedCOFF(Kind k, InputFile *f, StringRef n, const coff_symbol_generic *s)
181       : Defined(k, n), file(f), sym(s) {}
182 
183   static bool classof(const Symbol *s) {
184     return s->kind() <= LastDefinedCOFFKind;
185   }
186 
187   InputFile *getFile() { return file; }
188 
189   COFFSymbolRef getCOFFSymbol();
190 
191   InputFile *file;
192 
193 protected:
194   const coff_symbol_generic *sym;
195 };
196 
197 // Regular defined symbols read from object file symbol tables.
198 class DefinedRegular : public DefinedCOFF {
199 public:
200   DefinedRegular(InputFile *f, StringRef n, bool isCOMDAT,
201                  bool isExternal = false,
202                  const coff_symbol_generic *s = nullptr,
203                  SectionChunk *c = nullptr)
204       : DefinedCOFF(DefinedRegularKind, f, n, s), data(c ? &c->repl : nullptr) {
205     this->isExternal = isExternal;
206     this->isCOMDAT = isCOMDAT;
207   }
208 
209   static bool classof(const Symbol *s) {
210     return s->kind() == DefinedRegularKind;
211   }
212 
213   uint64_t getRVA() const { return (*data)->getRVA() + sym->Value; }
214   SectionChunk *getChunk() const { return *data; }
215   uint32_t getValue() const { return sym->Value; }
216 
217   SectionChunk **data;
218 };
219 
220 class DefinedCommon : public DefinedCOFF {
221 public:
222   DefinedCommon(InputFile *f, StringRef n, uint64_t size,
223                 const coff_symbol_generic *s = nullptr,
224                 CommonChunk *c = nullptr)
225       : DefinedCOFF(DefinedCommonKind, f, n, s), data(c), size(size) {
226     this->isExternal = true;
227   }
228 
229   static bool classof(const Symbol *s) {
230     return s->kind() == DefinedCommonKind;
231   }
232 
233   uint64_t getRVA() { return data->getRVA(); }
234   CommonChunk *getChunk() { return data; }
235 
236 private:
237   friend SymbolTable;
238   uint64_t getSize() const { return size; }
239   CommonChunk *data;
240   uint64_t size;
241 };
242 
243 // Absolute symbols.
244 class DefinedAbsolute : public Defined {
245 public:
246   DefinedAbsolute(StringRef n, COFFSymbolRef s)
247       : Defined(DefinedAbsoluteKind, n), va(s.getValue()) {
248     isExternal = s.isExternal();
249   }
250 
251   DefinedAbsolute(StringRef n, uint64_t v)
252       : Defined(DefinedAbsoluteKind, n), va(v) {}
253 
254   static bool classof(const Symbol *s) {
255     return s->kind() == DefinedAbsoluteKind;
256   }
257 
258   uint64_t getRVA() { return va - config->imageBase; }
259   void setVA(uint64_t v) { va = v; }
260   uint64_t getVA() const { return va; }
261 
262   // Section index relocations against absolute symbols resolve to
263   // this 16 bit number, and it is the largest valid section index
264   // plus one. This variable keeps it.
265   static uint16_t numOutputSections;
266 
267 private:
268   uint64_t va;
269 };
270 
271 // This symbol is used for linker-synthesized symbols like __ImageBase and
272 // __safe_se_handler_table.
273 class DefinedSynthetic : public Defined {
274 public:
275   explicit DefinedSynthetic(StringRef name, Chunk *c)
276       : Defined(DefinedSyntheticKind, name), c(c) {}
277 
278   static bool classof(const Symbol *s) {
279     return s->kind() == DefinedSyntheticKind;
280   }
281 
282   // A null chunk indicates that this is __ImageBase. Otherwise, this is some
283   // other synthesized chunk, like SEHTableChunk.
284   uint32_t getRVA() { return c ? c->getRVA() : 0; }
285   Chunk *getChunk() { return c; }
286 
287 private:
288   Chunk *c;
289 };
290 
291 // This class represents a symbol defined in an archive file. It is
292 // created from an archive file header, and it knows how to load an
293 // object file from an archive to replace itself with a defined
294 // symbol. If the resolver finds both Undefined and LazyArchive for
295 // the same name, it will ask the LazyArchive to load a file.
296 class LazyArchive : public Symbol {
297 public:
298   LazyArchive(ArchiveFile *f, const Archive::Symbol s)
299       : Symbol(LazyArchiveKind, s.getName()), file(f), sym(s) {}
300 
301   static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
302 
303   MemoryBufferRef getMemberBuffer();
304 
305   ArchiveFile *file;
306   const Archive::Symbol sym;
307 };
308 
309 class LazyObject : public Symbol {
310 public:
311   LazyObject(InputFile *f, StringRef n) : Symbol(LazyObjectKind, n), file(f) {}
312   static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
313   InputFile *file;
314 };
315 
316 // MinGW only.
317 class LazyDLLSymbol : public Symbol {
318 public:
319   LazyDLLSymbol(DLLFile *f, DLLFile::Symbol *s, StringRef n)
320       : Symbol(LazyDLLSymbolKind, n), file(f), sym(s) {}
321   static bool classof(const Symbol *s) {
322     return s->kind() == LazyDLLSymbolKind;
323   }
324 
325   DLLFile *file;
326   DLLFile::Symbol *sym;
327 };
328 
329 // Undefined symbols.
330 class Undefined : public Symbol {
331 public:
332   explicit Undefined(StringRef n) : Symbol(UndefinedKind, n) {}
333 
334   static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
335 
336   // An undefined symbol can have a fallback symbol which gives an
337   // undefined symbol a second chance if it would remain undefined.
338   // If it remains undefined, it'll be replaced with whatever the
339   // Alias pointer points to.
340   Symbol *weakAlias = nullptr;
341 
342   // If this symbol is external weak, try to resolve it to a defined
343   // symbol by searching the chain of fallback symbols. Returns the symbol if
344   // successful, otherwise returns null.
345   Defined *getWeakAlias();
346 };
347 
348 // Windows-specific classes.
349 
350 // This class represents a symbol imported from a DLL. This has two
351 // names for internal use and external use. The former is used for
352 // name resolution, and the latter is used for the import descriptor
353 // table in an output. The former has "__imp_" prefix.
354 class DefinedImportData : public Defined {
355 public:
356   DefinedImportData(StringRef n, ImportFile *f)
357       : Defined(DefinedImportDataKind, n), file(f) {
358   }
359 
360   static bool classof(const Symbol *s) {
361     return s->kind() == DefinedImportDataKind;
362   }
363 
364   uint64_t getRVA() { return file->location->getRVA(); }
365   Chunk *getChunk() { return file->location; }
366   void setLocation(Chunk *addressTable) { file->location = addressTable; }
367 
368   StringRef getDLLName() { return file->dllName; }
369   StringRef getExternalName() { return file->externalName; }
370   uint16_t getOrdinal() { return file->hdr->OrdinalHint; }
371 
372   ImportFile *file;
373 
374   // This is a pointer to the synthetic symbol associated with the load thunk
375   // for this symbol that will be called if the DLL is delay-loaded. This is
376   // needed for Control Flow Guard because if this DefinedImportData symbol is a
377   // valid call target, the corresponding load thunk must also be marked as a
378   // valid call target.
379   DefinedSynthetic *loadThunkSym = nullptr;
380 };
381 
382 // This class represents a symbol for a jump table entry which jumps
383 // to a function in a DLL. Linker are supposed to create such symbols
384 // without "__imp_" prefix for all function symbols exported from
385 // DLLs, so that you can call DLL functions as regular functions with
386 // a regular name. A function pointer is given as a DefinedImportData.
387 class DefinedImportThunk : public Defined {
388 public:
389   DefinedImportThunk(StringRef name, DefinedImportData *s, uint16_t machine);
390 
391   static bool classof(const Symbol *s) {
392     return s->kind() == DefinedImportThunkKind;
393   }
394 
395   uint64_t getRVA() { return data->getRVA(); }
396   Chunk *getChunk() { return data; }
397 
398   DefinedImportData *wrappedSym;
399 
400 private:
401   Chunk *data;
402 };
403 
404 // If you have a symbol "foo" in your object file, a symbol name
405 // "__imp_foo" becomes automatically available as a pointer to "foo".
406 // This class is for such automatically-created symbols.
407 // Yes, this is an odd feature. We didn't intend to implement that.
408 // This is here just for compatibility with MSVC.
409 class DefinedLocalImport : public Defined {
410 public:
411   DefinedLocalImport(StringRef n, Defined *s)
412       : Defined(DefinedLocalImportKind, n), data(make<LocalImportChunk>(s)) {}
413 
414   static bool classof(const Symbol *s) {
415     return s->kind() == DefinedLocalImportKind;
416   }
417 
418   uint64_t getRVA() { return data->getRVA(); }
419   Chunk *getChunk() { return data; }
420 
421 private:
422   LocalImportChunk *data;
423 };
424 
425 inline uint64_t Defined::getRVA() {
426   switch (kind()) {
427   case DefinedAbsoluteKind:
428     return cast<DefinedAbsolute>(this)->getRVA();
429   case DefinedSyntheticKind:
430     return cast<DefinedSynthetic>(this)->getRVA();
431   case DefinedImportDataKind:
432     return cast<DefinedImportData>(this)->getRVA();
433   case DefinedImportThunkKind:
434     return cast<DefinedImportThunk>(this)->getRVA();
435   case DefinedLocalImportKind:
436     return cast<DefinedLocalImport>(this)->getRVA();
437   case DefinedCommonKind:
438     return cast<DefinedCommon>(this)->getRVA();
439   case DefinedRegularKind:
440     return cast<DefinedRegular>(this)->getRVA();
441   case LazyArchiveKind:
442   case LazyObjectKind:
443   case LazyDLLSymbolKind:
444   case UndefinedKind:
445     llvm_unreachable("Cannot get the address for an undefined symbol.");
446   }
447   llvm_unreachable("unknown symbol kind");
448 }
449 
450 inline Chunk *Defined::getChunk() {
451   switch (kind()) {
452   case DefinedRegularKind:
453     return cast<DefinedRegular>(this)->getChunk();
454   case DefinedAbsoluteKind:
455     return nullptr;
456   case DefinedSyntheticKind:
457     return cast<DefinedSynthetic>(this)->getChunk();
458   case DefinedImportDataKind:
459     return cast<DefinedImportData>(this)->getChunk();
460   case DefinedImportThunkKind:
461     return cast<DefinedImportThunk>(this)->getChunk();
462   case DefinedLocalImportKind:
463     return cast<DefinedLocalImport>(this)->getChunk();
464   case DefinedCommonKind:
465     return cast<DefinedCommon>(this)->getChunk();
466   case LazyArchiveKind:
467   case LazyObjectKind:
468   case LazyDLLSymbolKind:
469   case UndefinedKind:
470     llvm_unreachable("Cannot get the chunk of an undefined symbol.");
471   }
472   llvm_unreachable("unknown symbol kind");
473 }
474 
475 // A buffer class that is large enough to hold any Symbol-derived
476 // object. We allocate memory using this class and instantiate a symbol
477 // using the placement new.
478 union SymbolUnion {
479   alignas(DefinedRegular) char a[sizeof(DefinedRegular)];
480   alignas(DefinedCommon) char b[sizeof(DefinedCommon)];
481   alignas(DefinedAbsolute) char c[sizeof(DefinedAbsolute)];
482   alignas(DefinedSynthetic) char d[sizeof(DefinedSynthetic)];
483   alignas(LazyArchive) char e[sizeof(LazyArchive)];
484   alignas(Undefined) char f[sizeof(Undefined)];
485   alignas(DefinedImportData) char g[sizeof(DefinedImportData)];
486   alignas(DefinedImportThunk) char h[sizeof(DefinedImportThunk)];
487   alignas(DefinedLocalImport) char i[sizeof(DefinedLocalImport)];
488   alignas(LazyObject) char j[sizeof(LazyObject)];
489   alignas(LazyDLLSymbol) char k[sizeof(LazyDLLSymbol)];
490 };
491 
492 template <typename T, typename... ArgT>
493 void replaceSymbol(Symbol *s, ArgT &&... arg) {
494   static_assert(std::is_trivially_destructible<T>(),
495                 "Symbol types must be trivially destructible");
496   static_assert(sizeof(T) <= sizeof(SymbolUnion), "Symbol too small");
497   static_assert(alignof(T) <= alignof(SymbolUnion),
498                 "SymbolUnion not aligned enough");
499   assert(static_cast<Symbol *>(static_cast<T *>(nullptr)) == nullptr &&
500          "Not a Symbol");
501   bool canInline = s->canInline;
502   new (s) T(std::forward<ArgT>(arg)...);
503   s->canInline = canInline;
504 }
505 } // namespace coff
506 
507 } // namespace lld
508 
509 #endif
510