1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "COFFLinkerContext.h" 11 #include "Chunks.h" 12 #include "Config.h" 13 #include "DebugTypes.h" 14 #include "Driver.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "lld/Common/DWARF.h" 18 #include "llvm-c/lto.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/BinaryFormat/COFF.h" 22 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" 23 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" 24 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 25 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" 26 #include "llvm/DebugInfo/PDB/Native/NativeSession.h" 27 #include "llvm/DebugInfo/PDB/Native/PDBFile.h" 28 #include "llvm/LTO/LTO.h" 29 #include "llvm/Object/Binary.h" 30 #include "llvm/Object/COFF.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/Endian.h" 33 #include "llvm/Support/Error.h" 34 #include "llvm/Support/ErrorOr.h" 35 #include "llvm/Support/FileSystem.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/TargetParser/Triple.h" 39 #include <cstring> 40 #include <optional> 41 #include <system_error> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace llvm::COFF; 46 using namespace llvm::codeview; 47 using namespace llvm::object; 48 using namespace llvm::support::endian; 49 using namespace lld; 50 using namespace lld::coff; 51 52 using llvm::Triple; 53 using llvm::support::ulittle32_t; 54 55 // Returns the last element of a path, which is supposed to be a filename. 56 static StringRef getBasename(StringRef path) { 57 return sys::path::filename(path, sys::path::Style::windows); 58 } 59 60 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". 61 std::string lld::toString(const coff::InputFile *file) { 62 if (!file) 63 return "<internal>"; 64 if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind) 65 return std::string(file->getName()); 66 67 return (getBasename(file->parentName) + "(" + getBasename(file->getName()) + 68 ")") 69 .str(); 70 } 71 72 /// Checks that Source is compatible with being a weak alias to Target. 73 /// If Source is Undefined and has no weak alias set, makes it a weak 74 /// alias to Target. 75 static void checkAndSetWeakAlias(COFFLinkerContext &ctx, InputFile *f, 76 Symbol *source, Symbol *target) { 77 if (auto *u = dyn_cast<Undefined>(source)) { 78 if (u->weakAlias && u->weakAlias != target) { 79 // Weak aliases as produced by GCC are named in the form 80 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name 81 // of another symbol emitted near the weak symbol. 82 // Just use the definition from the first object file that defined 83 // this weak symbol. 84 if (ctx.config.allowDuplicateWeak) 85 return; 86 ctx.symtab.reportDuplicate(source, f); 87 } 88 u->weakAlias = target; 89 } 90 } 91 92 static bool ignoredSymbolName(StringRef name) { 93 return name == "@feat.00" || name == "@comp.id"; 94 } 95 96 ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m) 97 : InputFile(ctx, ArchiveKind, m) {} 98 99 void ArchiveFile::parse() { 100 // Parse a MemoryBufferRef as an archive file. 101 file = CHECK(Archive::create(mb), this); 102 103 // Read the symbol table to construct Lazy objects. 104 for (const Archive::Symbol &sym : file->symbols()) 105 ctx.symtab.addLazyArchive(this, sym); 106 } 107 108 // Returns a buffer pointing to a member file containing a given symbol. 109 void ArchiveFile::addMember(const Archive::Symbol &sym) { 110 const Archive::Child &c = 111 CHECK(sym.getMember(), 112 "could not get the member for symbol " + toCOFFString(ctx, sym)); 113 114 // Return an empty buffer if we have already returned the same buffer. 115 if (!seen.insert(c.getChildOffset()).second) 116 return; 117 118 ctx.driver.enqueueArchiveMember(c, sym, getName()); 119 } 120 121 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) { 122 std::vector<MemoryBufferRef> v; 123 Error err = Error::success(); 124 for (const Archive::Child &c : file->children(err)) { 125 MemoryBufferRef mbref = 126 CHECK(c.getMemoryBufferRef(), 127 file->getFileName() + 128 ": could not get the buffer for a child of the archive"); 129 v.push_back(mbref); 130 } 131 if (err) 132 fatal(file->getFileName() + 133 ": Archive::children failed: " + toString(std::move(err))); 134 return v; 135 } 136 137 void ObjFile::parseLazy() { 138 // Native object file. 139 std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this); 140 COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get()); 141 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 142 for (uint32_t i = 0; i < numSymbols; ++i) { 143 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 144 if (coffSym.isUndefined() || !coffSym.isExternal() || 145 coffSym.isWeakExternal()) 146 continue; 147 StringRef name = check(coffObj->getSymbolName(coffSym)); 148 if (coffSym.isAbsolute() && ignoredSymbolName(name)) 149 continue; 150 ctx.symtab.addLazyObject(this, name); 151 i += coffSym.getNumberOfAuxSymbols(); 152 } 153 } 154 155 void ObjFile::parse() { 156 // Parse a memory buffer as a COFF file. 157 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 158 159 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 160 bin.release(); 161 coffObj.reset(obj); 162 } else { 163 fatal(toString(this) + " is not a COFF file"); 164 } 165 166 // Read section and symbol tables. 167 initializeChunks(); 168 initializeSymbols(); 169 initializeFlags(); 170 initializeDependencies(); 171 } 172 173 const coff_section *ObjFile::getSection(uint32_t i) { 174 auto sec = coffObj->getSection(i); 175 if (!sec) 176 fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError())); 177 return *sec; 178 } 179 180 // We set SectionChunk pointers in the SparseChunks vector to this value 181 // temporarily to mark comdat sections as having an unknown resolution. As we 182 // walk the object file's symbol table, once we visit either a leader symbol or 183 // an associative section definition together with the parent comdat's leader, 184 // we set the pointer to either nullptr (to mark the section as discarded) or a 185 // valid SectionChunk for that section. 186 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); 187 188 void ObjFile::initializeChunks() { 189 uint32_t numSections = coffObj->getNumberOfSections(); 190 sparseChunks.resize(numSections + 1); 191 for (uint32_t i = 1; i < numSections + 1; ++i) { 192 const coff_section *sec = getSection(i); 193 if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) 194 sparseChunks[i] = pendingComdat; 195 else 196 sparseChunks[i] = readSection(i, nullptr, ""); 197 } 198 } 199 200 SectionChunk *ObjFile::readSection(uint32_t sectionNumber, 201 const coff_aux_section_definition *def, 202 StringRef leaderName) { 203 const coff_section *sec = getSection(sectionNumber); 204 205 StringRef name; 206 if (Expected<StringRef> e = coffObj->getSectionName(sec)) 207 name = *e; 208 else 209 fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " + 210 toString(e.takeError())); 211 212 if (name == ".drectve") { 213 ArrayRef<uint8_t> data; 214 cantFail(coffObj->getSectionContents(sec, data)); 215 directives = StringRef((const char *)data.data(), data.size()); 216 return nullptr; 217 } 218 219 if (name == ".llvm_addrsig") { 220 addrsigSec = sec; 221 return nullptr; 222 } 223 224 if (name == ".llvm.call-graph-profile") { 225 callgraphSec = sec; 226 return nullptr; 227 } 228 229 // Object files may have DWARF debug info or MS CodeView debug info 230 // (or both). 231 // 232 // DWARF sections don't need any special handling from the perspective 233 // of the linker; they are just a data section containing relocations. 234 // We can just link them to complete debug info. 235 // 236 // CodeView needs linker support. We need to interpret debug info, 237 // and then write it to a separate .pdb file. 238 239 // Ignore DWARF debug info unless requested to be included. 240 if (!ctx.config.includeDwarfChunks && name.starts_with(".debug_")) 241 return nullptr; 242 243 if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) 244 return nullptr; 245 auto *c = make<SectionChunk>(this, sec); 246 if (def) 247 c->checksum = def->CheckSum; 248 249 // CodeView sections are stored to a different vector because they are not 250 // linked in the regular manner. 251 if (c->isCodeView()) 252 debugChunks.push_back(c); 253 else if (name == ".gfids$y") 254 guardFidChunks.push_back(c); 255 else if (name == ".giats$y") 256 guardIATChunks.push_back(c); 257 else if (name == ".gljmp$y") 258 guardLJmpChunks.push_back(c); 259 else if (name == ".gehcont$y") 260 guardEHContChunks.push_back(c); 261 else if (name == ".sxdata") 262 sxDataChunks.push_back(c); 263 else if (ctx.config.tailMerge && sec->NumberOfRelocations == 0 && 264 name == ".rdata" && leaderName.starts_with("??_C@")) 265 // COFF sections that look like string literal sections (i.e. no 266 // relocations, in .rdata, leader symbol name matches the MSVC name mangling 267 // for string literals) are subject to string tail merging. 268 MergeChunk::addSection(ctx, c); 269 else if (name == ".rsrc" || name.starts_with(".rsrc$")) 270 resourceChunks.push_back(c); 271 else 272 chunks.push_back(c); 273 274 return c; 275 } 276 277 void ObjFile::includeResourceChunks() { 278 chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end()); 279 } 280 281 void ObjFile::readAssociativeDefinition( 282 COFFSymbolRef sym, const coff_aux_section_definition *def) { 283 readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj())); 284 } 285 286 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, 287 const coff_aux_section_definition *def, 288 uint32_t parentIndex) { 289 SectionChunk *parent = sparseChunks[parentIndex]; 290 int32_t sectionNumber = sym.getSectionNumber(); 291 292 auto diag = [&]() { 293 StringRef name = check(coffObj->getSymbolName(sym)); 294 295 StringRef parentName; 296 const coff_section *parentSec = getSection(parentIndex); 297 if (Expected<StringRef> e = coffObj->getSectionName(parentSec)) 298 parentName = *e; 299 error(toString(this) + ": associative comdat " + name + " (sec " + 300 Twine(sectionNumber) + ") has invalid reference to section " + 301 parentName + " (sec " + Twine(parentIndex) + ")"); 302 }; 303 304 if (parent == pendingComdat) { 305 // This can happen if an associative comdat refers to another associative 306 // comdat that appears after it (invalid per COFF spec) or to a section 307 // without any symbols. 308 diag(); 309 return; 310 } 311 312 // Check whether the parent is prevailing. If it is, so are we, and we read 313 // the section; otherwise mark it as discarded. 314 if (parent) { 315 SectionChunk *c = readSection(sectionNumber, def, ""); 316 sparseChunks[sectionNumber] = c; 317 if (c) { 318 c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; 319 parent->addAssociative(c); 320 } 321 } else { 322 sparseChunks[sectionNumber] = nullptr; 323 } 324 } 325 326 void ObjFile::recordPrevailingSymbolForMingw( 327 COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 328 // For comdat symbols in executable sections, where this is the copy 329 // of the section chunk we actually include instead of discarding it, 330 // add the symbol to a map to allow using it for implicitly 331 // associating .[px]data$<func> sections to it. 332 // Use the suffix from the .text$<func> instead of the leader symbol 333 // name, for cases where the names differ (i386 mangling/decorations, 334 // cases where the leader is a weak symbol named .weak.func.default*). 335 int32_t sectionNumber = sym.getSectionNumber(); 336 SectionChunk *sc = sparseChunks[sectionNumber]; 337 if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { 338 StringRef name = sc->getSectionName().split('$').second; 339 prevailingSectionMap[name] = sectionNumber; 340 } 341 } 342 343 void ObjFile::maybeAssociateSEHForMingw( 344 COFFSymbolRef sym, const coff_aux_section_definition *def, 345 const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 346 StringRef name = check(coffObj->getSymbolName(sym)); 347 if (name.consume_front(".pdata$") || name.consume_front(".xdata$") || 348 name.consume_front(".eh_frame$")) { 349 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly 350 // associative to the symbol <func>. 351 auto parentSym = prevailingSectionMap.find(name); 352 if (parentSym != prevailingSectionMap.end()) 353 readAssociativeDefinition(sym, def, parentSym->second); 354 } 355 } 356 357 Symbol *ObjFile::createRegular(COFFSymbolRef sym) { 358 SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; 359 if (sym.isExternal()) { 360 StringRef name = check(coffObj->getSymbolName(sym)); 361 if (sc) 362 return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc, 363 sym.getValue()); 364 // For MinGW symbols named .weak.* that point to a discarded section, 365 // don't create an Undefined symbol. If nothing ever refers to the symbol, 366 // everything should be fine. If something actually refers to the symbol 367 // (e.g. the undefined weak alias), linking will fail due to undefined 368 // references at the end. 369 if (ctx.config.mingw && name.starts_with(".weak.")) 370 return nullptr; 371 return ctx.symtab.addUndefined(name, this, false); 372 } 373 if (sc) 374 return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 375 /*IsExternal*/ false, sym.getGeneric(), sc); 376 return nullptr; 377 } 378 379 void ObjFile::initializeSymbols() { 380 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 381 symbols.resize(numSymbols); 382 383 SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases; 384 std::vector<uint32_t> pendingIndexes; 385 pendingIndexes.reserve(numSymbols); 386 387 DenseMap<StringRef, uint32_t> prevailingSectionMap; 388 std::vector<const coff_aux_section_definition *> comdatDefs( 389 coffObj->getNumberOfSections() + 1); 390 391 for (uint32_t i = 0; i < numSymbols; ++i) { 392 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 393 bool prevailingComdat; 394 if (coffSym.isUndefined()) { 395 symbols[i] = createUndefined(coffSym); 396 } else if (coffSym.isWeakExternal()) { 397 symbols[i] = createUndefined(coffSym); 398 uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex; 399 weakAliases.emplace_back(symbols[i], tagIndex); 400 } else if (std::optional<Symbol *> optSym = 401 createDefined(coffSym, comdatDefs, prevailingComdat)) { 402 symbols[i] = *optSym; 403 if (ctx.config.mingw && prevailingComdat) 404 recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap); 405 } else { 406 // createDefined() returns std::nullopt if a symbol belongs to a section 407 // that was pending at the point when the symbol was read. This can happen 408 // in two cases: 409 // 1) section definition symbol for a comdat leader; 410 // 2) symbol belongs to a comdat section associated with another section. 411 // In both of these cases, we can expect the section to be resolved by 412 // the time we finish visiting the remaining symbols in the symbol 413 // table. So we postpone the handling of this symbol until that time. 414 pendingIndexes.push_back(i); 415 } 416 i += coffSym.getNumberOfAuxSymbols(); 417 } 418 419 for (uint32_t i : pendingIndexes) { 420 COFFSymbolRef sym = check(coffObj->getSymbol(i)); 421 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 422 if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) 423 readAssociativeDefinition(sym, def); 424 else if (ctx.config.mingw) 425 maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); 426 } 427 if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { 428 StringRef name = check(coffObj->getSymbolName(sym)); 429 log("comdat section " + name + 430 " without leader and unassociated, discarding"); 431 continue; 432 } 433 symbols[i] = createRegular(sym); 434 } 435 436 for (auto &kv : weakAliases) { 437 Symbol *sym = kv.first; 438 uint32_t idx = kv.second; 439 checkAndSetWeakAlias(ctx, this, sym, symbols[idx]); 440 } 441 442 // Free the memory used by sparseChunks now that symbol loading is finished. 443 decltype(sparseChunks)().swap(sparseChunks); 444 } 445 446 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) { 447 StringRef name = check(coffObj->getSymbolName(sym)); 448 return ctx.symtab.addUndefined(name, this, sym.isWeakExternal()); 449 } 450 451 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, 452 int32_t section) { 453 uint32_t numSymbols = obj->getNumberOfSymbols(); 454 for (uint32_t i = 0; i < numSymbols; ++i) { 455 COFFSymbolRef sym = check(obj->getSymbol(i)); 456 if (sym.getSectionNumber() != section) 457 continue; 458 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) 459 return def; 460 } 461 return nullptr; 462 } 463 464 void ObjFile::handleComdatSelection( 465 COFFSymbolRef sym, COMDATType &selection, bool &prevailing, 466 DefinedRegular *leader, 467 const llvm::object::coff_aux_section_definition *def) { 468 if (prevailing) 469 return; 470 // There's already an existing comdat for this symbol: `Leader`. 471 // Use the comdats's selection field to determine if the new 472 // symbol in `Sym` should be discarded, produce a duplicate symbol 473 // error, etc. 474 475 SectionChunk *leaderChunk = leader->getChunk(); 476 COMDATType leaderSelection = leaderChunk->selection; 477 478 assert(leader->data && "Comdat leader without SectionChunk?"); 479 if (isa<BitcodeFile>(leader->file)) { 480 // If the leader is only a LTO symbol, we don't know e.g. its final size 481 // yet, so we can't do the full strict comdat selection checking yet. 482 selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY; 483 } 484 485 if ((selection == IMAGE_COMDAT_SELECT_ANY && 486 leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || 487 (selection == IMAGE_COMDAT_SELECT_LARGEST && 488 leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { 489 // cl.exe picks "any" for vftables when building with /GR- and 490 // "largest" when building with /GR. To be able to link object files 491 // compiled with each flag, "any" and "largest" are merged as "largest". 492 leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; 493 } 494 495 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". 496 // Clang on the other hand picks "any". To be able to link two object files 497 // with a __declspec(selectany) declaration, one compiled with gcc and the 498 // other with clang, we merge them as proper "same size as" 499 if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && 500 leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || 501 (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && 502 leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { 503 leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; 504 } 505 506 // Other than that, comdat selections must match. This is a bit more 507 // strict than link.exe which allows merging "any" and "largest" if "any" 508 // is the first symbol the linker sees, and it allows merging "largest" 509 // with everything (!) if "largest" is the first symbol the linker sees. 510 // Making this symmetric independent of which selection is seen first 511 // seems better though. 512 // (This behavior matches ModuleLinker::getComdatResult().) 513 if (selection != leaderSelection) { 514 log(("conflicting comdat type for " + toString(ctx, *leader) + ": " + 515 Twine((int)leaderSelection) + " in " + toString(leader->getFile()) + 516 " and " + Twine((int)selection) + " in " + toString(this)) 517 .str()); 518 ctx.symtab.reportDuplicate(leader, this); 519 return; 520 } 521 522 switch (selection) { 523 case IMAGE_COMDAT_SELECT_NODUPLICATES: 524 ctx.symtab.reportDuplicate(leader, this); 525 break; 526 527 case IMAGE_COMDAT_SELECT_ANY: 528 // Nothing to do. 529 break; 530 531 case IMAGE_COMDAT_SELECT_SAME_SIZE: 532 if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { 533 if (!ctx.config.mingw) { 534 ctx.symtab.reportDuplicate(leader, this); 535 } else { 536 const coff_aux_section_definition *leaderDef = nullptr; 537 if (leaderChunk->file) 538 leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(), 539 leaderChunk->getSectionNumber()); 540 if (!leaderDef || leaderDef->Length != def->Length) 541 ctx.symtab.reportDuplicate(leader, this); 542 } 543 } 544 break; 545 546 case IMAGE_COMDAT_SELECT_EXACT_MATCH: { 547 SectionChunk newChunk(this, getSection(sym)); 548 // link.exe only compares section contents here and doesn't complain 549 // if the two comdat sections have e.g. different alignment. 550 // Match that. 551 if (leaderChunk->getContents() != newChunk.getContents()) 552 ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue()); 553 break; 554 } 555 556 case IMAGE_COMDAT_SELECT_ASSOCIATIVE: 557 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. 558 // (This means lld-link doesn't produce duplicate symbol errors for 559 // associative comdats while link.exe does, but associate comdats 560 // are never extern in practice.) 561 llvm_unreachable("createDefined not called for associative comdats"); 562 563 case IMAGE_COMDAT_SELECT_LARGEST: 564 if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { 565 // Replace the existing comdat symbol with the new one. 566 StringRef name = check(coffObj->getSymbolName(sym)); 567 // FIXME: This is incorrect: With /opt:noref, the previous sections 568 // make it into the final executable as well. Correct handling would 569 // be to undo reading of the whole old section that's being replaced, 570 // or doing one pass that determines what the final largest comdat 571 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading 572 // only the largest one. 573 replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true, 574 /*IsExternal*/ true, sym.getGeneric(), 575 nullptr); 576 prevailing = true; 577 } 578 break; 579 580 case IMAGE_COMDAT_SELECT_NEWEST: 581 llvm_unreachable("should have been rejected earlier"); 582 } 583 } 584 585 std::optional<Symbol *> ObjFile::createDefined( 586 COFFSymbolRef sym, 587 std::vector<const coff_aux_section_definition *> &comdatDefs, 588 bool &prevailing) { 589 prevailing = false; 590 auto getName = [&]() { return check(coffObj->getSymbolName(sym)); }; 591 592 if (sym.isCommon()) { 593 auto *c = make<CommonChunk>(sym); 594 chunks.push_back(c); 595 return ctx.symtab.addCommon(this, getName(), sym.getValue(), 596 sym.getGeneric(), c); 597 } 598 599 if (sym.isAbsolute()) { 600 StringRef name = getName(); 601 602 if (name == "@feat.00") 603 feat00Flags = sym.getValue(); 604 // Skip special symbols. 605 if (ignoredSymbolName(name)) 606 return nullptr; 607 608 if (sym.isExternal()) 609 return ctx.symtab.addAbsolute(name, sym); 610 return make<DefinedAbsolute>(ctx, name, sym); 611 } 612 613 int32_t sectionNumber = sym.getSectionNumber(); 614 if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) 615 return nullptr; 616 617 if (llvm::COFF::isReservedSectionNumber(sectionNumber)) 618 fatal(toString(this) + ": " + getName() + 619 " should not refer to special section " + Twine(sectionNumber)); 620 621 if ((uint32_t)sectionNumber >= sparseChunks.size()) 622 fatal(toString(this) + ": " + getName() + 623 " should not refer to non-existent section " + Twine(sectionNumber)); 624 625 // Comdat handling. 626 // A comdat symbol consists of two symbol table entries. 627 // The first symbol entry has the name of the section (e.g. .text), fixed 628 // values for the other fields, and one auxiliary record. 629 // The second symbol entry has the name of the comdat symbol, called the 630 // "comdat leader". 631 // When this function is called for the first symbol entry of a comdat, 632 // it sets comdatDefs and returns std::nullopt, and when it's called for the 633 // second symbol entry it reads comdatDefs and then sets it back to nullptr. 634 635 // Handle comdat leader. 636 if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { 637 comdatDefs[sectionNumber] = nullptr; 638 DefinedRegular *leader; 639 640 if (sym.isExternal()) { 641 std::tie(leader, prevailing) = 642 ctx.symtab.addComdat(this, getName(), sym.getGeneric()); 643 } else { 644 leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 645 /*IsExternal*/ false, sym.getGeneric()); 646 prevailing = true; 647 } 648 649 if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || 650 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe 651 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. 652 def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { 653 fatal("unknown comdat type " + std::to_string((int)def->Selection) + 654 " for " + getName() + " in " + toString(this)); 655 } 656 COMDATType selection = (COMDATType)def->Selection; 657 658 if (leader->isCOMDAT) 659 handleComdatSelection(sym, selection, prevailing, leader, def); 660 661 if (prevailing) { 662 SectionChunk *c = readSection(sectionNumber, def, getName()); 663 sparseChunks[sectionNumber] = c; 664 if (!c) 665 return nullptr; 666 c->sym = cast<DefinedRegular>(leader); 667 c->selection = selection; 668 cast<DefinedRegular>(leader)->data = &c->repl; 669 } else { 670 sparseChunks[sectionNumber] = nullptr; 671 } 672 return leader; 673 } 674 675 // Prepare to handle the comdat leader symbol by setting the section's 676 // ComdatDefs pointer if we encounter a non-associative comdat. 677 if (sparseChunks[sectionNumber] == pendingComdat) { 678 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 679 if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) 680 comdatDefs[sectionNumber] = def; 681 } 682 return std::nullopt; 683 } 684 685 return createRegular(sym); 686 } 687 688 MachineTypes ObjFile::getMachineType() { 689 if (coffObj) 690 return static_cast<MachineTypes>(coffObj->getMachine()); 691 return IMAGE_FILE_MACHINE_UNKNOWN; 692 } 693 694 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { 695 if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName)) 696 return sec->consumeDebugMagic(); 697 return {}; 698 } 699 700 // OBJ files systematically store critical information in a .debug$S stream, 701 // even if the TU was compiled with no debug info. At least two records are 702 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the 703 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is 704 // currently used to initialize the hotPatchable member. 705 void ObjFile::initializeFlags() { 706 ArrayRef<uint8_t> data = getDebugSection(".debug$S"); 707 if (data.empty()) 708 return; 709 710 DebugSubsectionArray subsections; 711 712 BinaryStreamReader reader(data, llvm::endianness::little); 713 ExitOnError exitOnErr; 714 exitOnErr(reader.readArray(subsections, data.size())); 715 716 for (const DebugSubsectionRecord &ss : subsections) { 717 if (ss.kind() != DebugSubsectionKind::Symbols) 718 continue; 719 720 unsigned offset = 0; 721 722 // Only parse the first two records. We are only looking for S_OBJNAME 723 // and S_COMPILE3, and they usually appear at the beginning of the 724 // stream. 725 for (unsigned i = 0; i < 2; ++i) { 726 Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset); 727 if (!sym) { 728 consumeError(sym.takeError()); 729 return; 730 } 731 if (sym->kind() == SymbolKind::S_COMPILE3) { 732 auto cs = 733 cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get())); 734 hotPatchable = 735 (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; 736 } 737 if (sym->kind() == SymbolKind::S_OBJNAME) { 738 auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>( 739 sym.get())); 740 if (objName.Signature) 741 pchSignature = objName.Signature; 742 } 743 offset += sym->length(); 744 } 745 } 746 } 747 748 // Depending on the compilation flags, OBJs can refer to external files, 749 // necessary to merge this OBJ into the final PDB. We currently support two 750 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. 751 // And PDB type servers, when compiling with /Zi. This function extracts these 752 // dependencies and makes them available as a TpiSource interface (see 753 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular 754 // output even with /Yc and /Yu and with /Zi. 755 void ObjFile::initializeDependencies() { 756 if (!ctx.config.debug) 757 return; 758 759 bool isPCH = false; 760 761 ArrayRef<uint8_t> data = getDebugSection(".debug$P"); 762 if (!data.empty()) 763 isPCH = true; 764 else 765 data = getDebugSection(".debug$T"); 766 767 // symbols but no types, make a plain, empty TpiSource anyway, because it 768 // simplifies adding the symbols later. 769 if (data.empty()) { 770 if (!debugChunks.empty()) 771 debugTypesObj = makeTpiSource(ctx, this); 772 return; 773 } 774 775 // Get the first type record. It will indicate if this object uses a type 776 // server (/Zi) or a PCH file (/Yu). 777 CVTypeArray types; 778 BinaryStreamReader reader(data, llvm::endianness::little); 779 cantFail(reader.readArray(types, reader.getLength())); 780 CVTypeArray::Iterator firstType = types.begin(); 781 if (firstType == types.end()) 782 return; 783 784 // Remember the .debug$T or .debug$P section. 785 debugTypes = data; 786 787 // This object file is a PCH file that others will depend on. 788 if (isPCH) { 789 debugTypesObj = makePrecompSource(ctx, this); 790 return; 791 } 792 793 // This object file was compiled with /Zi. Enqueue the PDB dependency. 794 if (firstType->kind() == LF_TYPESERVER2) { 795 TypeServer2Record ts = cantFail( 796 TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data())); 797 debugTypesObj = makeUseTypeServerSource(ctx, this, ts); 798 enqueuePdbFile(ts.getName(), this); 799 return; 800 } 801 802 // This object was compiled with /Yu. It uses types from another object file 803 // with a matching signature. 804 if (firstType->kind() == LF_PRECOMP) { 805 PrecompRecord precomp = cantFail( 806 TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data())); 807 // We're better off trusting the LF_PRECOMP signature. In some cases the 808 // S_OBJNAME record doesn't contain a valid PCH signature. 809 if (precomp.Signature) 810 pchSignature = precomp.Signature; 811 debugTypesObj = makeUsePrecompSource(ctx, this, precomp); 812 // Drop the LF_PRECOMP record from the input stream. 813 debugTypes = debugTypes.drop_front(firstType->RecordData.size()); 814 return; 815 } 816 817 // This is a plain old object file. 818 debugTypesObj = makeTpiSource(ctx, this); 819 } 820 821 // Make a PDB path assuming the PDB is in the same folder as the OBJ 822 static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) { 823 StringRef localPath = 824 !file->parentName.empty() ? file->parentName : file->getName(); 825 SmallString<128> path = sys::path::parent_path(localPath); 826 827 // Currently, type server PDBs are only created by MSVC cl, which only runs 828 // on Windows, so we can assume type server paths are Windows style. 829 sys::path::append(path, 830 sys::path::filename(tSPath, sys::path::Style::windows)); 831 return std::string(path.str()); 832 } 833 834 // The casing of the PDB path stamped in the OBJ can differ from the actual path 835 // on disk. With this, we ensure to always use lowercase as a key for the 836 // pdbInputFileInstances map, at least on Windows. 837 static std::string normalizePdbPath(StringRef path) { 838 #if defined(_WIN32) 839 return path.lower(); 840 #else // LINUX 841 return std::string(path); 842 #endif 843 } 844 845 // If existing, return the actual PDB path on disk. 846 static std::optional<std::string> findPdbPath(StringRef pdbPath, 847 ObjFile *dependentFile) { 848 // Ensure the file exists before anything else. In some cases, if the path 849 // points to a removable device, Driver::enqueuePath() would fail with an 850 // error (EAGAIN, "resource unavailable try again") which we want to skip 851 // silently. 852 if (llvm::sys::fs::exists(pdbPath)) 853 return normalizePdbPath(pdbPath); 854 std::string ret = getPdbBaseName(dependentFile, pdbPath); 855 if (llvm::sys::fs::exists(ret)) 856 return normalizePdbPath(ret); 857 return std::nullopt; 858 } 859 860 PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m) 861 : InputFile(ctx, PDBKind, m) {} 862 863 PDBInputFile::~PDBInputFile() = default; 864 865 PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx, 866 StringRef path, 867 ObjFile *fromFile) { 868 auto p = findPdbPath(path.str(), fromFile); 869 if (!p) 870 return nullptr; 871 auto it = ctx.pdbInputFileInstances.find(*p); 872 if (it != ctx.pdbInputFileInstances.end()) 873 return it->second; 874 return nullptr; 875 } 876 877 void PDBInputFile::parse() { 878 ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this; 879 880 std::unique_ptr<pdb::IPDBSession> thisSession; 881 Error E = pdb::NativeSession::createFromPdb( 882 MemoryBuffer::getMemBuffer(mb, false), thisSession); 883 if (E) { 884 loadErrorStr.emplace(toString(std::move(E))); 885 return; // fail silently at this point - the error will be handled later, 886 // when merging the debug type stream 887 } 888 889 session.reset(static_cast<pdb::NativeSession *>(thisSession.release())); 890 891 pdb::PDBFile &pdbFile = session->getPDBFile(); 892 auto expectedInfo = pdbFile.getPDBInfoStream(); 893 // All PDB Files should have an Info stream. 894 if (!expectedInfo) { 895 loadErrorStr.emplace(toString(expectedInfo.takeError())); 896 return; 897 } 898 debugTypesObj = makeTypeServerSource(ctx, this); 899 } 900 901 // Used only for DWARF debug info, which is not common (except in MinGW 902 // environments). This returns an optional pair of file name and line 903 // number for where the variable was defined. 904 std::optional<std::pair<StringRef, uint32_t>> 905 ObjFile::getVariableLocation(StringRef var) { 906 if (!dwarf) { 907 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 908 if (!dwarf) 909 return std::nullopt; 910 } 911 if (ctx.config.machine == I386) 912 var.consume_front("_"); 913 std::optional<std::pair<std::string, unsigned>> ret = 914 dwarf->getVariableLoc(var); 915 if (!ret) 916 return std::nullopt; 917 return std::make_pair(saver().save(ret->first), ret->second); 918 } 919 920 // Used only for DWARF debug info, which is not common (except in MinGW 921 // environments). 922 std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, 923 uint32_t sectionIndex) { 924 if (!dwarf) { 925 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 926 if (!dwarf) 927 return std::nullopt; 928 } 929 930 return dwarf->getDILineInfo(offset, sectionIndex); 931 } 932 933 void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) { 934 auto p = findPdbPath(path.str(), fromFile); 935 if (!p) 936 return; 937 auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr); 938 if (!it.second) 939 return; // already scheduled for load 940 ctx.driver.enqueuePDB(*p); 941 } 942 943 ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m) 944 : InputFile(ctx, ImportKind, m), live(!ctx.config.doGC), thunkLive(live) {} 945 946 void ImportFile::parse() { 947 const char *buf = mb.getBufferStart(); 948 const auto *hdr = reinterpret_cast<const coff_import_header *>(buf); 949 950 // Check if the total size is valid. 951 if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) 952 fatal("broken import library"); 953 954 // Read names and create an __imp_ symbol. 955 StringRef name = saver().save(StringRef(buf + sizeof(*hdr))); 956 StringRef impName = saver().save("__imp_" + name); 957 const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1; 958 dllName = std::string(StringRef(nameStart)); 959 StringRef extName; 960 switch (hdr->getNameType()) { 961 case IMPORT_ORDINAL: 962 extName = ""; 963 break; 964 case IMPORT_NAME: 965 extName = name; 966 break; 967 case IMPORT_NAME_NOPREFIX: 968 extName = ltrim1(name, "?@_"); 969 break; 970 case IMPORT_NAME_UNDECORATE: 971 extName = ltrim1(name, "?@_"); 972 extName = extName.substr(0, extName.find('@')); 973 break; 974 } 975 976 this->hdr = hdr; 977 externalName = extName; 978 979 impSym = ctx.symtab.addImportData(impName, this); 980 // If this was a duplicate, we logged an error but may continue; 981 // in this case, impSym is nullptr. 982 if (!impSym) 983 return; 984 985 if (hdr->getType() == llvm::COFF::IMPORT_CONST) 986 static_cast<void>(ctx.symtab.addImportData(name, this)); 987 988 // If type is function, we need to create a thunk which jump to an 989 // address pointed by the __imp_ symbol. (This allows you to call 990 // DLL functions just like regular non-DLL functions.) 991 if (hdr->getType() == llvm::COFF::IMPORT_CODE) 992 thunkSym = ctx.symtab.addImportThunk( 993 name, cast_or_null<DefinedImportData>(impSym), hdr->Machine); 994 } 995 996 BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb, 997 StringRef archiveName, uint64_t offsetInArchive, 998 bool lazy) 999 : InputFile(ctx, BitcodeKind, mb, lazy) { 1000 std::string path = mb.getBufferIdentifier().str(); 1001 if (ctx.config.thinLTOIndexOnly) 1002 path = replaceThinLTOSuffix(mb.getBufferIdentifier(), 1003 ctx.config.thinLTOObjectSuffixReplace.first, 1004 ctx.config.thinLTOObjectSuffixReplace.second); 1005 1006 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1007 // name. If two archives define two members with the same name, this 1008 // causes a collision which result in only one of the objects being taken 1009 // into consideration at LTO time (which very likely causes undefined 1010 // symbols later in the link stage). So we append file offset to make 1011 // filename unique. 1012 MemoryBufferRef mbref(mb.getBuffer(), 1013 saver().save(archiveName.empty() 1014 ? path 1015 : archiveName + 1016 sys::path::filename(path) + 1017 utostr(offsetInArchive))); 1018 1019 obj = check(lto::InputFile::create(mbref)); 1020 } 1021 1022 BitcodeFile::~BitcodeFile() = default; 1023 1024 void BitcodeFile::parse() { 1025 llvm::StringSaver &saver = lld::saver(); 1026 1027 std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); 1028 for (size_t i = 0; i != obj->getComdatTable().size(); ++i) 1029 // FIXME: Check nodeduplicate 1030 comdat[i] = 1031 ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first)); 1032 for (const lto::InputFile::Symbol &objSym : obj->symbols()) { 1033 StringRef symName = saver.save(objSym.getName()); 1034 int comdatIndex = objSym.getComdatIndex(); 1035 Symbol *sym; 1036 SectionChunk *fakeSC = nullptr; 1037 if (objSym.isExecutable()) 1038 fakeSC = &ctx.ltoTextSectionChunk.chunk; 1039 else 1040 fakeSC = &ctx.ltoDataSectionChunk.chunk; 1041 if (objSym.isUndefined()) { 1042 sym = ctx.symtab.addUndefined(symName, this, false); 1043 if (objSym.isWeak()) 1044 sym->deferUndefined = true; 1045 // If one LTO object file references (i.e. has an undefined reference to) 1046 // a symbol with an __imp_ prefix, the LTO compilation itself sees it 1047 // as unprefixed but with a dllimport attribute instead, and doesn't 1048 // understand the relation to a concrete IR symbol with the __imp_ prefix. 1049 // 1050 // For such cases, mark the symbol as used in a regular object (i.e. the 1051 // symbol must be retained) so that the linker can associate the 1052 // references in the end. If the symbol is defined in an import library 1053 // or in a regular object file, this has no effect, but if it is defined 1054 // in another LTO object file, this makes sure it is kept, to fulfill 1055 // the reference when linking the output of the LTO compilation. 1056 if (symName.starts_with("__imp_")) 1057 sym->isUsedInRegularObj = true; 1058 } else if (objSym.isCommon()) { 1059 sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize()); 1060 } else if (objSym.isWeak() && objSym.isIndirect()) { 1061 // Weak external. 1062 sym = ctx.symtab.addUndefined(symName, this, true); 1063 std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); 1064 Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback)); 1065 checkAndSetWeakAlias(ctx, this, sym, alias); 1066 } else if (comdatIndex != -1) { 1067 if (symName == obj->getComdatTable()[comdatIndex].first) { 1068 sym = comdat[comdatIndex].first; 1069 if (cast<DefinedRegular>(sym)->data == nullptr) 1070 cast<DefinedRegular>(sym)->data = &fakeSC->repl; 1071 } else if (comdat[comdatIndex].second) { 1072 sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC); 1073 } else { 1074 sym = ctx.symtab.addUndefined(symName, this, false); 1075 } 1076 } else { 1077 sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC, 0, 1078 objSym.isWeak()); 1079 } 1080 symbols.push_back(sym); 1081 if (objSym.isUsed()) 1082 ctx.config.gcroot.push_back(sym); 1083 } 1084 directives = obj->getCOFFLinkerOpts(); 1085 } 1086 1087 void BitcodeFile::parseLazy() { 1088 for (const lto::InputFile::Symbol &sym : obj->symbols()) 1089 if (!sym.isUndefined()) 1090 ctx.symtab.addLazyObject(this, sym.getName()); 1091 } 1092 1093 MachineTypes BitcodeFile::getMachineType() { 1094 switch (Triple(obj->getTargetTriple()).getArch()) { 1095 case Triple::x86_64: 1096 return AMD64; 1097 case Triple::x86: 1098 return I386; 1099 case Triple::arm: 1100 case Triple::thumb: 1101 return ARMNT; 1102 case Triple::aarch64: 1103 return ARM64; 1104 default: 1105 return IMAGE_FILE_MACHINE_UNKNOWN; 1106 } 1107 } 1108 1109 std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix, 1110 StringRef repl) { 1111 if (path.consume_back(suffix)) 1112 return (path + repl).str(); 1113 return std::string(path); 1114 } 1115 1116 static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) { 1117 for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) { 1118 const coff_section *sec = CHECK(coffObj->getSection(i), file); 1119 if (rva >= sec->VirtualAddress && 1120 rva <= sec->VirtualAddress + sec->VirtualSize) { 1121 return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0; 1122 } 1123 } 1124 return false; 1125 } 1126 1127 void DLLFile::parse() { 1128 // Parse a memory buffer as a PE-COFF executable. 1129 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 1130 1131 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 1132 bin.release(); 1133 coffObj.reset(obj); 1134 } else { 1135 error(toString(this) + " is not a COFF file"); 1136 return; 1137 } 1138 1139 if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) { 1140 error(toString(this) + " is not a PE-COFF executable"); 1141 return; 1142 } 1143 1144 for (const auto &exp : coffObj->export_directories()) { 1145 StringRef dllName, symbolName; 1146 uint32_t exportRVA; 1147 checkError(exp.getDllName(dllName)); 1148 checkError(exp.getSymbolName(symbolName)); 1149 checkError(exp.getExportRVA(exportRVA)); 1150 1151 if (symbolName.empty()) 1152 continue; 1153 1154 bool code = isRVACode(coffObj.get(), exportRVA, this); 1155 1156 Symbol *s = make<Symbol>(); 1157 s->dllName = dllName; 1158 s->symbolName = symbolName; 1159 s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA; 1160 s->nameType = ImportNameType::IMPORT_NAME; 1161 1162 if (coffObj->getMachine() == I386) { 1163 s->symbolName = symbolName = saver().save("_" + symbolName); 1164 s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX; 1165 } 1166 1167 StringRef impName = saver().save("__imp_" + symbolName); 1168 ctx.symtab.addLazyDLLSymbol(this, s, impName); 1169 if (code) 1170 ctx.symtab.addLazyDLLSymbol(this, s, symbolName); 1171 } 1172 } 1173 1174 MachineTypes DLLFile::getMachineType() { 1175 if (coffObj) 1176 return static_cast<MachineTypes>(coffObj->getMachine()); 1177 return IMAGE_FILE_MACHINE_UNKNOWN; 1178 } 1179 1180 void DLLFile::makeImport(DLLFile::Symbol *s) { 1181 if (!seen.insert(s->symbolName).second) 1182 return; 1183 1184 size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs 1185 size_t size = sizeof(coff_import_header) + impSize; 1186 char *buf = bAlloc().Allocate<char>(size); 1187 memset(buf, 0, size); 1188 char *p = buf; 1189 auto *imp = reinterpret_cast<coff_import_header *>(p); 1190 p += sizeof(*imp); 1191 imp->Sig2 = 0xFFFF; 1192 imp->Machine = coffObj->getMachine(); 1193 imp->SizeOfData = impSize; 1194 imp->OrdinalHint = 0; // Only linking by name 1195 imp->TypeInfo = (s->nameType << 2) | s->importType; 1196 1197 // Write symbol name and DLL name. 1198 memcpy(p, s->symbolName.data(), s->symbolName.size()); 1199 p += s->symbolName.size() + 1; 1200 memcpy(p, s->dllName.data(), s->dllName.size()); 1201 MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName); 1202 ImportFile *impFile = make<ImportFile>(ctx, mbref); 1203 ctx.symtab.addFile(impFile); 1204 } 1205