1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "COFFLinkerContext.h" 11 #include "Chunks.h" 12 #include "Config.h" 13 #include "DebugTypes.h" 14 #include "Driver.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "lld/Common/DWARF.h" 18 #include "llvm-c/lto.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/BinaryFormat/COFF.h" 23 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" 24 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" 25 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 26 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" 27 #include "llvm/DebugInfo/PDB/Native/NativeSession.h" 28 #include "llvm/DebugInfo/PDB/Native/PDBFile.h" 29 #include "llvm/LTO/LTO.h" 30 #include "llvm/Object/Binary.h" 31 #include "llvm/Object/COFF.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Endian.h" 34 #include "llvm/Support/Error.h" 35 #include "llvm/Support/ErrorOr.h" 36 #include "llvm/Support/FileSystem.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include <cstring> 40 #include <system_error> 41 #include <utility> 42 43 using namespace llvm; 44 using namespace llvm::COFF; 45 using namespace llvm::codeview; 46 using namespace llvm::object; 47 using namespace llvm::support::endian; 48 using namespace lld; 49 using namespace lld::coff; 50 51 using llvm::Triple; 52 using llvm::support::ulittle32_t; 53 54 // Returns the last element of a path, which is supposed to be a filename. 55 static StringRef getBasename(StringRef path) { 56 return sys::path::filename(path, sys::path::Style::windows); 57 } 58 59 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". 60 std::string lld::toString(const coff::InputFile *file) { 61 if (!file) 62 return "<internal>"; 63 if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind) 64 return std::string(file->getName()); 65 66 return (getBasename(file->parentName) + "(" + getBasename(file->getName()) + 67 ")") 68 .str(); 69 } 70 71 /// Checks that Source is compatible with being a weak alias to Target. 72 /// If Source is Undefined and has no weak alias set, makes it a weak 73 /// alias to Target. 74 static void checkAndSetWeakAlias(SymbolTable *symtab, InputFile *f, 75 Symbol *source, Symbol *target) { 76 if (auto *u = dyn_cast<Undefined>(source)) { 77 if (u->weakAlias && u->weakAlias != target) { 78 // Weak aliases as produced by GCC are named in the form 79 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name 80 // of another symbol emitted near the weak symbol. 81 // Just use the definition from the first object file that defined 82 // this weak symbol. 83 if (config->mingw) 84 return; 85 symtab->reportDuplicate(source, f); 86 } 87 u->weakAlias = target; 88 } 89 } 90 91 static bool ignoredSymbolName(StringRef name) { 92 return name == "@feat.00" || name == "@comp.id"; 93 } 94 95 ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m) 96 : InputFile(ctx, ArchiveKind, m) {} 97 98 void ArchiveFile::parse() { 99 // Parse a MemoryBufferRef as an archive file. 100 file = CHECK(Archive::create(mb), this); 101 102 // Read the symbol table to construct Lazy objects. 103 for (const Archive::Symbol &sym : file->symbols()) 104 ctx.symtab.addLazyArchive(this, sym); 105 } 106 107 // Returns a buffer pointing to a member file containing a given symbol. 108 void ArchiveFile::addMember(const Archive::Symbol &sym) { 109 const Archive::Child &c = 110 CHECK(sym.getMember(), 111 "could not get the member for symbol " + toCOFFString(sym)); 112 113 // Return an empty buffer if we have already returned the same buffer. 114 if (!seen.insert(c.getChildOffset()).second) 115 return; 116 117 driver->enqueueArchiveMember(c, sym, getName()); 118 } 119 120 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) { 121 std::vector<MemoryBufferRef> v; 122 Error err = Error::success(); 123 for (const Archive::Child &c : file->children(err)) { 124 MemoryBufferRef mbref = 125 CHECK(c.getMemoryBufferRef(), 126 file->getFileName() + 127 ": could not get the buffer for a child of the archive"); 128 v.push_back(mbref); 129 } 130 if (err) 131 fatal(file->getFileName() + 132 ": Archive::children failed: " + toString(std::move(err))); 133 return v; 134 } 135 136 void ObjFile::parseLazy() { 137 // Native object file. 138 std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this); 139 COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get()); 140 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 141 for (uint32_t i = 0; i < numSymbols; ++i) { 142 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 143 if (coffSym.isUndefined() || !coffSym.isExternal() || 144 coffSym.isWeakExternal()) 145 continue; 146 StringRef name = check(coffObj->getSymbolName(coffSym)); 147 if (coffSym.isAbsolute() && ignoredSymbolName(name)) 148 continue; 149 ctx.symtab.addLazyObject(this, name); 150 i += coffSym.getNumberOfAuxSymbols(); 151 } 152 } 153 154 void ObjFile::parse() { 155 // Parse a memory buffer as a COFF file. 156 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 157 158 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 159 bin.release(); 160 coffObj.reset(obj); 161 } else { 162 fatal(toString(this) + " is not a COFF file"); 163 } 164 165 // Read section and symbol tables. 166 initializeChunks(); 167 initializeSymbols(); 168 initializeFlags(); 169 initializeDependencies(); 170 } 171 172 const coff_section *ObjFile::getSection(uint32_t i) { 173 auto sec = coffObj->getSection(i); 174 if (!sec) 175 fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError())); 176 return *sec; 177 } 178 179 // We set SectionChunk pointers in the SparseChunks vector to this value 180 // temporarily to mark comdat sections as having an unknown resolution. As we 181 // walk the object file's symbol table, once we visit either a leader symbol or 182 // an associative section definition together with the parent comdat's leader, 183 // we set the pointer to either nullptr (to mark the section as discarded) or a 184 // valid SectionChunk for that section. 185 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); 186 187 void ObjFile::initializeChunks() { 188 uint32_t numSections = coffObj->getNumberOfSections(); 189 sparseChunks.resize(numSections + 1); 190 for (uint32_t i = 1; i < numSections + 1; ++i) { 191 const coff_section *sec = getSection(i); 192 if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) 193 sparseChunks[i] = pendingComdat; 194 else 195 sparseChunks[i] = readSection(i, nullptr, ""); 196 } 197 } 198 199 SectionChunk *ObjFile::readSection(uint32_t sectionNumber, 200 const coff_aux_section_definition *def, 201 StringRef leaderName) { 202 const coff_section *sec = getSection(sectionNumber); 203 204 StringRef name; 205 if (Expected<StringRef> e = coffObj->getSectionName(sec)) 206 name = *e; 207 else 208 fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " + 209 toString(e.takeError())); 210 211 if (name == ".drectve") { 212 ArrayRef<uint8_t> data; 213 cantFail(coffObj->getSectionContents(sec, data)); 214 directives = StringRef((const char *)data.data(), data.size()); 215 return nullptr; 216 } 217 218 if (name == ".llvm_addrsig") { 219 addrsigSec = sec; 220 return nullptr; 221 } 222 223 if (name == ".llvm.call-graph-profile") { 224 callgraphSec = sec; 225 return nullptr; 226 } 227 228 // Object files may have DWARF debug info or MS CodeView debug info 229 // (or both). 230 // 231 // DWARF sections don't need any special handling from the perspective 232 // of the linker; they are just a data section containing relocations. 233 // We can just link them to complete debug info. 234 // 235 // CodeView needs linker support. We need to interpret debug info, 236 // and then write it to a separate .pdb file. 237 238 // Ignore DWARF debug info unless /debug is given. 239 if (!config->debug && name.startswith(".debug_")) 240 return nullptr; 241 242 if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) 243 return nullptr; 244 auto *c = make<SectionChunk>(this, sec); 245 if (def) 246 c->checksum = def->CheckSum; 247 248 // CodeView sections are stored to a different vector because they are not 249 // linked in the regular manner. 250 if (c->isCodeView()) 251 debugChunks.push_back(c); 252 else if (name == ".gfids$y") 253 guardFidChunks.push_back(c); 254 else if (name == ".giats$y") 255 guardIATChunks.push_back(c); 256 else if (name == ".gljmp$y") 257 guardLJmpChunks.push_back(c); 258 else if (name == ".gehcont$y") 259 guardEHContChunks.push_back(c); 260 else if (name == ".sxdata") 261 sxDataChunks.push_back(c); 262 else if (config->tailMerge && sec->NumberOfRelocations == 0 && 263 name == ".rdata" && leaderName.startswith("??_C@")) 264 // COFF sections that look like string literal sections (i.e. no 265 // relocations, in .rdata, leader symbol name matches the MSVC name mangling 266 // for string literals) are subject to string tail merging. 267 MergeChunk::addSection(ctx, c); 268 else if (name == ".rsrc" || name.startswith(".rsrc$")) 269 resourceChunks.push_back(c); 270 else 271 chunks.push_back(c); 272 273 return c; 274 } 275 276 void ObjFile::includeResourceChunks() { 277 chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end()); 278 } 279 280 void ObjFile::readAssociativeDefinition( 281 COFFSymbolRef sym, const coff_aux_section_definition *def) { 282 readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj())); 283 } 284 285 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, 286 const coff_aux_section_definition *def, 287 uint32_t parentIndex) { 288 SectionChunk *parent = sparseChunks[parentIndex]; 289 int32_t sectionNumber = sym.getSectionNumber(); 290 291 auto diag = [&]() { 292 StringRef name = check(coffObj->getSymbolName(sym)); 293 294 StringRef parentName; 295 const coff_section *parentSec = getSection(parentIndex); 296 if (Expected<StringRef> e = coffObj->getSectionName(parentSec)) 297 parentName = *e; 298 error(toString(this) + ": associative comdat " + name + " (sec " + 299 Twine(sectionNumber) + ") has invalid reference to section " + 300 parentName + " (sec " + Twine(parentIndex) + ")"); 301 }; 302 303 if (parent == pendingComdat) { 304 // This can happen if an associative comdat refers to another associative 305 // comdat that appears after it (invalid per COFF spec) or to a section 306 // without any symbols. 307 diag(); 308 return; 309 } 310 311 // Check whether the parent is prevailing. If it is, so are we, and we read 312 // the section; otherwise mark it as discarded. 313 if (parent) { 314 SectionChunk *c = readSection(sectionNumber, def, ""); 315 sparseChunks[sectionNumber] = c; 316 if (c) { 317 c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; 318 parent->addAssociative(c); 319 } 320 } else { 321 sparseChunks[sectionNumber] = nullptr; 322 } 323 } 324 325 void ObjFile::recordPrevailingSymbolForMingw( 326 COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 327 // For comdat symbols in executable sections, where this is the copy 328 // of the section chunk we actually include instead of discarding it, 329 // add the symbol to a map to allow using it for implicitly 330 // associating .[px]data$<func> sections to it. 331 // Use the suffix from the .text$<func> instead of the leader symbol 332 // name, for cases where the names differ (i386 mangling/decorations, 333 // cases where the leader is a weak symbol named .weak.func.default*). 334 int32_t sectionNumber = sym.getSectionNumber(); 335 SectionChunk *sc = sparseChunks[sectionNumber]; 336 if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { 337 StringRef name = sc->getSectionName().split('$').second; 338 prevailingSectionMap[name] = sectionNumber; 339 } 340 } 341 342 void ObjFile::maybeAssociateSEHForMingw( 343 COFFSymbolRef sym, const coff_aux_section_definition *def, 344 const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 345 StringRef name = check(coffObj->getSymbolName(sym)); 346 if (name.consume_front(".pdata$") || name.consume_front(".xdata$") || 347 name.consume_front(".eh_frame$")) { 348 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly 349 // associative to the symbol <func>. 350 auto parentSym = prevailingSectionMap.find(name); 351 if (parentSym != prevailingSectionMap.end()) 352 readAssociativeDefinition(sym, def, parentSym->second); 353 } 354 } 355 356 Symbol *ObjFile::createRegular(COFFSymbolRef sym) { 357 SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; 358 if (sym.isExternal()) { 359 StringRef name = check(coffObj->getSymbolName(sym)); 360 if (sc) 361 return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc, 362 sym.getValue()); 363 // For MinGW symbols named .weak.* that point to a discarded section, 364 // don't create an Undefined symbol. If nothing ever refers to the symbol, 365 // everything should be fine. If something actually refers to the symbol 366 // (e.g. the undefined weak alias), linking will fail due to undefined 367 // references at the end. 368 if (config->mingw && name.startswith(".weak.")) 369 return nullptr; 370 return ctx.symtab.addUndefined(name, this, false); 371 } 372 if (sc) 373 return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 374 /*IsExternal*/ false, sym.getGeneric(), sc); 375 return nullptr; 376 } 377 378 void ObjFile::initializeSymbols() { 379 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 380 symbols.resize(numSymbols); 381 382 SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases; 383 std::vector<uint32_t> pendingIndexes; 384 pendingIndexes.reserve(numSymbols); 385 386 DenseMap<StringRef, uint32_t> prevailingSectionMap; 387 std::vector<const coff_aux_section_definition *> comdatDefs( 388 coffObj->getNumberOfSections() + 1); 389 390 for (uint32_t i = 0; i < numSymbols; ++i) { 391 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 392 bool prevailingComdat; 393 if (coffSym.isUndefined()) { 394 symbols[i] = createUndefined(coffSym); 395 } else if (coffSym.isWeakExternal()) { 396 symbols[i] = createUndefined(coffSym); 397 uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex; 398 weakAliases.emplace_back(symbols[i], tagIndex); 399 } else if (Optional<Symbol *> optSym = 400 createDefined(coffSym, comdatDefs, prevailingComdat)) { 401 symbols[i] = *optSym; 402 if (config->mingw && prevailingComdat) 403 recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap); 404 } else { 405 // createDefined() returns None if a symbol belongs to a section that 406 // was pending at the point when the symbol was read. This can happen in 407 // two cases: 408 // 1) section definition symbol for a comdat leader; 409 // 2) symbol belongs to a comdat section associated with another section. 410 // In both of these cases, we can expect the section to be resolved by 411 // the time we finish visiting the remaining symbols in the symbol 412 // table. So we postpone the handling of this symbol until that time. 413 pendingIndexes.push_back(i); 414 } 415 i += coffSym.getNumberOfAuxSymbols(); 416 } 417 418 for (uint32_t i : pendingIndexes) { 419 COFFSymbolRef sym = check(coffObj->getSymbol(i)); 420 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 421 if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) 422 readAssociativeDefinition(sym, def); 423 else if (config->mingw) 424 maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); 425 } 426 if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { 427 StringRef name = check(coffObj->getSymbolName(sym)); 428 log("comdat section " + name + 429 " without leader and unassociated, discarding"); 430 continue; 431 } 432 symbols[i] = createRegular(sym); 433 } 434 435 for (auto &kv : weakAliases) { 436 Symbol *sym = kv.first; 437 uint32_t idx = kv.second; 438 checkAndSetWeakAlias(&ctx.symtab, this, sym, symbols[idx]); 439 } 440 441 // Free the memory used by sparseChunks now that symbol loading is finished. 442 decltype(sparseChunks)().swap(sparseChunks); 443 } 444 445 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) { 446 StringRef name = check(coffObj->getSymbolName(sym)); 447 return ctx.symtab.addUndefined(name, this, sym.isWeakExternal()); 448 } 449 450 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, 451 int32_t section) { 452 uint32_t numSymbols = obj->getNumberOfSymbols(); 453 for (uint32_t i = 0; i < numSymbols; ++i) { 454 COFFSymbolRef sym = check(obj->getSymbol(i)); 455 if (sym.getSectionNumber() != section) 456 continue; 457 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) 458 return def; 459 } 460 return nullptr; 461 } 462 463 void ObjFile::handleComdatSelection( 464 COFFSymbolRef sym, COMDATType &selection, bool &prevailing, 465 DefinedRegular *leader, 466 const llvm::object::coff_aux_section_definition *def) { 467 if (prevailing) 468 return; 469 // There's already an existing comdat for this symbol: `Leader`. 470 // Use the comdats's selection field to determine if the new 471 // symbol in `Sym` should be discarded, produce a duplicate symbol 472 // error, etc. 473 474 SectionChunk *leaderChunk = leader->getChunk(); 475 COMDATType leaderSelection = leaderChunk->selection; 476 477 assert(leader->data && "Comdat leader without SectionChunk?"); 478 if (isa<BitcodeFile>(leader->file)) { 479 // If the leader is only a LTO symbol, we don't know e.g. its final size 480 // yet, so we can't do the full strict comdat selection checking yet. 481 selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY; 482 } 483 484 if ((selection == IMAGE_COMDAT_SELECT_ANY && 485 leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || 486 (selection == IMAGE_COMDAT_SELECT_LARGEST && 487 leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { 488 // cl.exe picks "any" for vftables when building with /GR- and 489 // "largest" when building with /GR. To be able to link object files 490 // compiled with each flag, "any" and "largest" are merged as "largest". 491 leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; 492 } 493 494 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". 495 // Clang on the other hand picks "any". To be able to link two object files 496 // with a __declspec(selectany) declaration, one compiled with gcc and the 497 // other with clang, we merge them as proper "same size as" 498 if (config->mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && 499 leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || 500 (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && 501 leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { 502 leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; 503 } 504 505 // Other than that, comdat selections must match. This is a bit more 506 // strict than link.exe which allows merging "any" and "largest" if "any" 507 // is the first symbol the linker sees, and it allows merging "largest" 508 // with everything (!) if "largest" is the first symbol the linker sees. 509 // Making this symmetric independent of which selection is seen first 510 // seems better though. 511 // (This behavior matches ModuleLinker::getComdatResult().) 512 if (selection != leaderSelection) { 513 log(("conflicting comdat type for " + toString(*leader) + ": " + 514 Twine((int)leaderSelection) + " in " + toString(leader->getFile()) + 515 " and " + Twine((int)selection) + " in " + toString(this)) 516 .str()); 517 ctx.symtab.reportDuplicate(leader, this); 518 return; 519 } 520 521 switch (selection) { 522 case IMAGE_COMDAT_SELECT_NODUPLICATES: 523 ctx.symtab.reportDuplicate(leader, this); 524 break; 525 526 case IMAGE_COMDAT_SELECT_ANY: 527 // Nothing to do. 528 break; 529 530 case IMAGE_COMDAT_SELECT_SAME_SIZE: 531 if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { 532 if (!config->mingw) { 533 ctx.symtab.reportDuplicate(leader, this); 534 } else { 535 const coff_aux_section_definition *leaderDef = nullptr; 536 if (leaderChunk->file) 537 leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(), 538 leaderChunk->getSectionNumber()); 539 if (!leaderDef || leaderDef->Length != def->Length) 540 ctx.symtab.reportDuplicate(leader, this); 541 } 542 } 543 break; 544 545 case IMAGE_COMDAT_SELECT_EXACT_MATCH: { 546 SectionChunk newChunk(this, getSection(sym)); 547 // link.exe only compares section contents here and doesn't complain 548 // if the two comdat sections have e.g. different alignment. 549 // Match that. 550 if (leaderChunk->getContents() != newChunk.getContents()) 551 ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue()); 552 break; 553 } 554 555 case IMAGE_COMDAT_SELECT_ASSOCIATIVE: 556 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. 557 // (This means lld-link doesn't produce duplicate symbol errors for 558 // associative comdats while link.exe does, but associate comdats 559 // are never extern in practice.) 560 llvm_unreachable("createDefined not called for associative comdats"); 561 562 case IMAGE_COMDAT_SELECT_LARGEST: 563 if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { 564 // Replace the existing comdat symbol with the new one. 565 StringRef name = check(coffObj->getSymbolName(sym)); 566 // FIXME: This is incorrect: With /opt:noref, the previous sections 567 // make it into the final executable as well. Correct handling would 568 // be to undo reading of the whole old section that's being replaced, 569 // or doing one pass that determines what the final largest comdat 570 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading 571 // only the largest one. 572 replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true, 573 /*IsExternal*/ true, sym.getGeneric(), 574 nullptr); 575 prevailing = true; 576 } 577 break; 578 579 case IMAGE_COMDAT_SELECT_NEWEST: 580 llvm_unreachable("should have been rejected earlier"); 581 } 582 } 583 584 Optional<Symbol *> ObjFile::createDefined( 585 COFFSymbolRef sym, 586 std::vector<const coff_aux_section_definition *> &comdatDefs, 587 bool &prevailing) { 588 prevailing = false; 589 auto getName = [&]() { return check(coffObj->getSymbolName(sym)); }; 590 591 if (sym.isCommon()) { 592 auto *c = make<CommonChunk>(sym); 593 chunks.push_back(c); 594 return ctx.symtab.addCommon(this, getName(), sym.getValue(), 595 sym.getGeneric(), c); 596 } 597 598 if (sym.isAbsolute()) { 599 StringRef name = getName(); 600 601 if (name == "@feat.00") 602 feat00Flags = sym.getValue(); 603 // Skip special symbols. 604 if (ignoredSymbolName(name)) 605 return nullptr; 606 607 if (sym.isExternal()) 608 return ctx.symtab.addAbsolute(name, sym); 609 return make<DefinedAbsolute>(name, sym); 610 } 611 612 int32_t sectionNumber = sym.getSectionNumber(); 613 if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) 614 return nullptr; 615 616 if (llvm::COFF::isReservedSectionNumber(sectionNumber)) 617 fatal(toString(this) + ": " + getName() + 618 " should not refer to special section " + Twine(sectionNumber)); 619 620 if ((uint32_t)sectionNumber >= sparseChunks.size()) 621 fatal(toString(this) + ": " + getName() + 622 " should not refer to non-existent section " + Twine(sectionNumber)); 623 624 // Comdat handling. 625 // A comdat symbol consists of two symbol table entries. 626 // The first symbol entry has the name of the section (e.g. .text), fixed 627 // values for the other fields, and one auxiliary record. 628 // The second symbol entry has the name of the comdat symbol, called the 629 // "comdat leader". 630 // When this function is called for the first symbol entry of a comdat, 631 // it sets comdatDefs and returns None, and when it's called for the second 632 // symbol entry it reads comdatDefs and then sets it back to nullptr. 633 634 // Handle comdat leader. 635 if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { 636 comdatDefs[sectionNumber] = nullptr; 637 DefinedRegular *leader; 638 639 if (sym.isExternal()) { 640 std::tie(leader, prevailing) = 641 ctx.symtab.addComdat(this, getName(), sym.getGeneric()); 642 } else { 643 leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 644 /*IsExternal*/ false, sym.getGeneric()); 645 prevailing = true; 646 } 647 648 if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || 649 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe 650 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. 651 def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { 652 fatal("unknown comdat type " + std::to_string((int)def->Selection) + 653 " for " + getName() + " in " + toString(this)); 654 } 655 COMDATType selection = (COMDATType)def->Selection; 656 657 if (leader->isCOMDAT) 658 handleComdatSelection(sym, selection, prevailing, leader, def); 659 660 if (prevailing) { 661 SectionChunk *c = readSection(sectionNumber, def, getName()); 662 sparseChunks[sectionNumber] = c; 663 c->sym = cast<DefinedRegular>(leader); 664 c->selection = selection; 665 cast<DefinedRegular>(leader)->data = &c->repl; 666 } else { 667 sparseChunks[sectionNumber] = nullptr; 668 } 669 return leader; 670 } 671 672 // Prepare to handle the comdat leader symbol by setting the section's 673 // ComdatDefs pointer if we encounter a non-associative comdat. 674 if (sparseChunks[sectionNumber] == pendingComdat) { 675 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 676 if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) 677 comdatDefs[sectionNumber] = def; 678 } 679 return None; 680 } 681 682 return createRegular(sym); 683 } 684 685 MachineTypes ObjFile::getMachineType() { 686 if (coffObj) 687 return static_cast<MachineTypes>(coffObj->getMachine()); 688 return IMAGE_FILE_MACHINE_UNKNOWN; 689 } 690 691 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { 692 if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName)) 693 return sec->consumeDebugMagic(); 694 return {}; 695 } 696 697 // OBJ files systematically store critical information in a .debug$S stream, 698 // even if the TU was compiled with no debug info. At least two records are 699 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the 700 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is 701 // currently used to initialize the hotPatchable member. 702 void ObjFile::initializeFlags() { 703 ArrayRef<uint8_t> data = getDebugSection(".debug$S"); 704 if (data.empty()) 705 return; 706 707 DebugSubsectionArray subsections; 708 709 BinaryStreamReader reader(data, support::little); 710 ExitOnError exitOnErr; 711 exitOnErr(reader.readArray(subsections, data.size())); 712 713 for (const DebugSubsectionRecord &ss : subsections) { 714 if (ss.kind() != DebugSubsectionKind::Symbols) 715 continue; 716 717 unsigned offset = 0; 718 719 // Only parse the first two records. We are only looking for S_OBJNAME 720 // and S_COMPILE3, and they usually appear at the beginning of the 721 // stream. 722 for (unsigned i = 0; i < 2; ++i) { 723 Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset); 724 if (!sym) { 725 consumeError(sym.takeError()); 726 return; 727 } 728 if (sym->kind() == SymbolKind::S_COMPILE3) { 729 auto cs = 730 cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get())); 731 hotPatchable = 732 (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; 733 } 734 if (sym->kind() == SymbolKind::S_OBJNAME) { 735 auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>( 736 sym.get())); 737 pchSignature = objName.Signature; 738 } 739 offset += sym->length(); 740 } 741 } 742 } 743 744 // Depending on the compilation flags, OBJs can refer to external files, 745 // necessary to merge this OBJ into the final PDB. We currently support two 746 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. 747 // And PDB type servers, when compiling with /Zi. This function extracts these 748 // dependencies and makes them available as a TpiSource interface (see 749 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular 750 // output even with /Yc and /Yu and with /Zi. 751 void ObjFile::initializeDependencies() { 752 if (!config->debug) 753 return; 754 755 bool isPCH = false; 756 757 ArrayRef<uint8_t> data = getDebugSection(".debug$P"); 758 if (!data.empty()) 759 isPCH = true; 760 else 761 data = getDebugSection(".debug$T"); 762 763 // symbols but no types, make a plain, empty TpiSource anyway, because it 764 // simplifies adding the symbols later. 765 if (data.empty()) { 766 if (!debugChunks.empty()) 767 debugTypesObj = makeTpiSource(ctx, this); 768 return; 769 } 770 771 // Get the first type record. It will indicate if this object uses a type 772 // server (/Zi) or a PCH file (/Yu). 773 CVTypeArray types; 774 BinaryStreamReader reader(data, support::little); 775 cantFail(reader.readArray(types, reader.getLength())); 776 CVTypeArray::Iterator firstType = types.begin(); 777 if (firstType == types.end()) 778 return; 779 780 // Remember the .debug$T or .debug$P section. 781 debugTypes = data; 782 783 // This object file is a PCH file that others will depend on. 784 if (isPCH) { 785 debugTypesObj = makePrecompSource(ctx, this); 786 return; 787 } 788 789 // This object file was compiled with /Zi. Enqueue the PDB dependency. 790 if (firstType->kind() == LF_TYPESERVER2) { 791 TypeServer2Record ts = cantFail( 792 TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data())); 793 debugTypesObj = makeUseTypeServerSource(ctx, this, ts); 794 enqueuePdbFile(ts.getName(), this); 795 return; 796 } 797 798 // This object was compiled with /Yu. It uses types from another object file 799 // with a matching signature. 800 if (firstType->kind() == LF_PRECOMP) { 801 PrecompRecord precomp = cantFail( 802 TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data())); 803 debugTypesObj = makeUsePrecompSource(ctx, this, precomp); 804 // Drop the LF_PRECOMP record from the input stream. 805 debugTypes = debugTypes.drop_front(firstType->RecordData.size()); 806 return; 807 } 808 809 // This is a plain old object file. 810 debugTypesObj = makeTpiSource(ctx, this); 811 } 812 813 // Make a PDB path assuming the PDB is in the same folder as the OBJ 814 static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) { 815 StringRef localPath = 816 !file->parentName.empty() ? file->parentName : file->getName(); 817 SmallString<128> path = sys::path::parent_path(localPath); 818 819 // Currently, type server PDBs are only created by MSVC cl, which only runs 820 // on Windows, so we can assume type server paths are Windows style. 821 sys::path::append(path, 822 sys::path::filename(tSPath, sys::path::Style::windows)); 823 return std::string(path.str()); 824 } 825 826 // The casing of the PDB path stamped in the OBJ can differ from the actual path 827 // on disk. With this, we ensure to always use lowercase as a key for the 828 // pdbInputFileInstances map, at least on Windows. 829 static std::string normalizePdbPath(StringRef path) { 830 #if defined(_WIN32) 831 return path.lower(); 832 #else // LINUX 833 return std::string(path); 834 #endif 835 } 836 837 // If existing, return the actual PDB path on disk. 838 static Optional<std::string> findPdbPath(StringRef pdbPath, 839 ObjFile *dependentFile) { 840 // Ensure the file exists before anything else. In some cases, if the path 841 // points to a removable device, Driver::enqueuePath() would fail with an 842 // error (EAGAIN, "resource unavailable try again") which we want to skip 843 // silently. 844 if (llvm::sys::fs::exists(pdbPath)) 845 return normalizePdbPath(pdbPath); 846 std::string ret = getPdbBaseName(dependentFile, pdbPath); 847 if (llvm::sys::fs::exists(ret)) 848 return normalizePdbPath(ret); 849 return None; 850 } 851 852 PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m) 853 : InputFile(ctx, PDBKind, m) {} 854 855 PDBInputFile::~PDBInputFile() = default; 856 857 PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx, 858 StringRef path, 859 ObjFile *fromFile) { 860 auto p = findPdbPath(path.str(), fromFile); 861 if (!p) 862 return nullptr; 863 auto it = ctx.pdbInputFileInstances.find(*p); 864 if (it != ctx.pdbInputFileInstances.end()) 865 return it->second; 866 return nullptr; 867 } 868 869 void PDBInputFile::parse() { 870 ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this; 871 872 std::unique_ptr<pdb::IPDBSession> thisSession; 873 loadErr.emplace(pdb::NativeSession::createFromPdb( 874 MemoryBuffer::getMemBuffer(mb, false), thisSession)); 875 if (*loadErr) 876 return; // fail silently at this point - the error will be handled later, 877 // when merging the debug type stream 878 879 session.reset(static_cast<pdb::NativeSession *>(thisSession.release())); 880 881 pdb::PDBFile &pdbFile = session->getPDBFile(); 882 auto expectedInfo = pdbFile.getPDBInfoStream(); 883 // All PDB Files should have an Info stream. 884 if (!expectedInfo) { 885 loadErr.emplace(expectedInfo.takeError()); 886 return; 887 } 888 debugTypesObj = makeTypeServerSource(ctx, this); 889 } 890 891 // Used only for DWARF debug info, which is not common (except in MinGW 892 // environments). This returns an optional pair of file name and line 893 // number for where the variable was defined. 894 Optional<std::pair<StringRef, uint32_t>> 895 ObjFile::getVariableLocation(StringRef var) { 896 if (!dwarf) { 897 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 898 if (!dwarf) 899 return None; 900 } 901 if (config->machine == I386) 902 var.consume_front("_"); 903 Optional<std::pair<std::string, unsigned>> ret = dwarf->getVariableLoc(var); 904 if (!ret) 905 return None; 906 return std::make_pair(saver().save(ret->first), ret->second); 907 } 908 909 // Used only for DWARF debug info, which is not common (except in MinGW 910 // environments). 911 Optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, 912 uint32_t sectionIndex) { 913 if (!dwarf) { 914 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 915 if (!dwarf) 916 return None; 917 } 918 919 return dwarf->getDILineInfo(offset, sectionIndex); 920 } 921 922 void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) { 923 auto p = findPdbPath(path.str(), fromFile); 924 if (!p) 925 return; 926 auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr); 927 if (!it.second) 928 return; // already scheduled for load 929 driver->enqueuePDB(*p); 930 } 931 932 void ImportFile::parse() { 933 const char *buf = mb.getBufferStart(); 934 const auto *hdr = reinterpret_cast<const coff_import_header *>(buf); 935 936 // Check if the total size is valid. 937 if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) 938 fatal("broken import library"); 939 940 // Read names and create an __imp_ symbol. 941 StringRef name = saver().save(StringRef(buf + sizeof(*hdr))); 942 StringRef impName = saver().save("__imp_" + name); 943 const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1; 944 dllName = std::string(StringRef(nameStart)); 945 StringRef extName; 946 switch (hdr->getNameType()) { 947 case IMPORT_ORDINAL: 948 extName = ""; 949 break; 950 case IMPORT_NAME: 951 extName = name; 952 break; 953 case IMPORT_NAME_NOPREFIX: 954 extName = ltrim1(name, "?@_"); 955 break; 956 case IMPORT_NAME_UNDECORATE: 957 extName = ltrim1(name, "?@_"); 958 extName = extName.substr(0, extName.find('@')); 959 break; 960 } 961 962 this->hdr = hdr; 963 externalName = extName; 964 965 impSym = ctx.symtab.addImportData(impName, this); 966 // If this was a duplicate, we logged an error but may continue; 967 // in this case, impSym is nullptr. 968 if (!impSym) 969 return; 970 971 if (hdr->getType() == llvm::COFF::IMPORT_CONST) 972 static_cast<void>(ctx.symtab.addImportData(name, this)); 973 974 // If type is function, we need to create a thunk which jump to an 975 // address pointed by the __imp_ symbol. (This allows you to call 976 // DLL functions just like regular non-DLL functions.) 977 if (hdr->getType() == llvm::COFF::IMPORT_CODE) 978 thunkSym = ctx.symtab.addImportThunk( 979 name, cast_or_null<DefinedImportData>(impSym), hdr->Machine); 980 } 981 982 BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb, 983 StringRef archiveName, uint64_t offsetInArchive, 984 bool lazy) 985 : InputFile(ctx, BitcodeKind, mb, lazy) { 986 std::string path = mb.getBufferIdentifier().str(); 987 if (config->thinLTOIndexOnly) 988 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 989 990 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 991 // name. If two archives define two members with the same name, this 992 // causes a collision which result in only one of the objects being taken 993 // into consideration at LTO time (which very likely causes undefined 994 // symbols later in the link stage). So we append file offset to make 995 // filename unique. 996 MemoryBufferRef mbref(mb.getBuffer(), 997 saver().save(archiveName.empty() 998 ? path 999 : archiveName + 1000 sys::path::filename(path) + 1001 utostr(offsetInArchive))); 1002 1003 obj = check(lto::InputFile::create(mbref)); 1004 } 1005 1006 BitcodeFile::~BitcodeFile() = default; 1007 1008 namespace { 1009 // Convenience class for initializing a coff_section with specific flags. 1010 class FakeSection { 1011 public: 1012 FakeSection(int c) { section.Characteristics = c; } 1013 1014 coff_section section; 1015 }; 1016 1017 // Convenience class for initializing a SectionChunk with specific flags. 1018 class FakeSectionChunk { 1019 public: 1020 FakeSectionChunk(const coff_section *section) : chunk(nullptr, section) { 1021 // Comdats from LTO files can't be fully treated as regular comdats 1022 // at this point; we don't know what size or contents they are going to 1023 // have, so we can't do proper checking of such aspects of them. 1024 chunk.selection = IMAGE_COMDAT_SELECT_ANY; 1025 } 1026 1027 SectionChunk chunk; 1028 }; 1029 1030 FakeSection ltoTextSection(IMAGE_SCN_MEM_EXECUTE); 1031 FakeSection ltoDataSection(IMAGE_SCN_CNT_INITIALIZED_DATA); 1032 FakeSectionChunk ltoTextSectionChunk(<oTextSection.section); 1033 FakeSectionChunk ltoDataSectionChunk(<oDataSection.section); 1034 } // namespace 1035 1036 void BitcodeFile::parse() { 1037 llvm::StringSaver &saver = lld::saver(); 1038 std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); 1039 for (size_t i = 0; i != obj->getComdatTable().size(); ++i) 1040 // FIXME: Check nodeduplicate 1041 comdat[i] = 1042 ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first)); 1043 for (const lto::InputFile::Symbol &objSym : obj->symbols()) { 1044 StringRef symName = saver.save(objSym.getName()); 1045 int comdatIndex = objSym.getComdatIndex(); 1046 Symbol *sym; 1047 SectionChunk *fakeSC = nullptr; 1048 if (objSym.isExecutable()) 1049 fakeSC = <oTextSectionChunk.chunk; 1050 else 1051 fakeSC = <oDataSectionChunk.chunk; 1052 if (objSym.isUndefined()) { 1053 sym = ctx.symtab.addUndefined(symName, this, false); 1054 } else if (objSym.isCommon()) { 1055 sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize()); 1056 } else if (objSym.isWeak() && objSym.isIndirect()) { 1057 // Weak external. 1058 sym = ctx.symtab.addUndefined(symName, this, true); 1059 std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); 1060 Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback)); 1061 checkAndSetWeakAlias(&ctx.symtab, this, sym, alias); 1062 } else if (comdatIndex != -1) { 1063 if (symName == obj->getComdatTable()[comdatIndex].first) { 1064 sym = comdat[comdatIndex].first; 1065 if (cast<DefinedRegular>(sym)->data == nullptr) 1066 cast<DefinedRegular>(sym)->data = &fakeSC->repl; 1067 } else if (comdat[comdatIndex].second) { 1068 sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC); 1069 } else { 1070 sym = ctx.symtab.addUndefined(symName, this, false); 1071 } 1072 } else { 1073 sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC); 1074 } 1075 symbols.push_back(sym); 1076 if (objSym.isUsed()) 1077 config->gcroot.push_back(sym); 1078 } 1079 directives = obj->getCOFFLinkerOpts(); 1080 } 1081 1082 void BitcodeFile::parseLazy() { 1083 for (const lto::InputFile::Symbol &sym : obj->symbols()) 1084 if (!sym.isUndefined()) 1085 ctx.symtab.addLazyObject(this, sym.getName()); 1086 } 1087 1088 MachineTypes BitcodeFile::getMachineType() { 1089 switch (Triple(obj->getTargetTriple()).getArch()) { 1090 case Triple::x86_64: 1091 return AMD64; 1092 case Triple::x86: 1093 return I386; 1094 case Triple::arm: 1095 return ARMNT; 1096 case Triple::aarch64: 1097 return ARM64; 1098 default: 1099 return IMAGE_FILE_MACHINE_UNKNOWN; 1100 } 1101 } 1102 1103 std::string lld::coff::replaceThinLTOSuffix(StringRef path) { 1104 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1105 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1106 1107 if (path.consume_back(suffix)) 1108 return (path + repl).str(); 1109 return std::string(path); 1110 } 1111 1112 static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) { 1113 for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) { 1114 const coff_section *sec = CHECK(coffObj->getSection(i), file); 1115 if (rva >= sec->VirtualAddress && 1116 rva <= sec->VirtualAddress + sec->VirtualSize) { 1117 return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0; 1118 } 1119 } 1120 return false; 1121 } 1122 1123 void DLLFile::parse() { 1124 // Parse a memory buffer as a PE-COFF executable. 1125 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 1126 1127 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 1128 bin.release(); 1129 coffObj.reset(obj); 1130 } else { 1131 error(toString(this) + " is not a COFF file"); 1132 return; 1133 } 1134 1135 if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) { 1136 error(toString(this) + " is not a PE-COFF executable"); 1137 return; 1138 } 1139 1140 for (const auto &exp : coffObj->export_directories()) { 1141 StringRef dllName, symbolName; 1142 uint32_t exportRVA; 1143 checkError(exp.getDllName(dllName)); 1144 checkError(exp.getSymbolName(symbolName)); 1145 checkError(exp.getExportRVA(exportRVA)); 1146 1147 if (symbolName.empty()) 1148 continue; 1149 1150 bool code = isRVACode(coffObj.get(), exportRVA, this); 1151 1152 Symbol *s = make<Symbol>(); 1153 s->dllName = dllName; 1154 s->symbolName = symbolName; 1155 s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA; 1156 s->nameType = ImportNameType::IMPORT_NAME; 1157 1158 if (coffObj->getMachine() == I386) { 1159 s->symbolName = symbolName = saver().save("_" + symbolName); 1160 s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX; 1161 } 1162 1163 StringRef impName = saver().save("__imp_" + symbolName); 1164 ctx.symtab.addLazyDLLSymbol(this, s, impName); 1165 if (code) 1166 ctx.symtab.addLazyDLLSymbol(this, s, symbolName); 1167 } 1168 } 1169 1170 MachineTypes DLLFile::getMachineType() { 1171 if (coffObj) 1172 return static_cast<MachineTypes>(coffObj->getMachine()); 1173 return IMAGE_FILE_MACHINE_UNKNOWN; 1174 } 1175 1176 void DLLFile::makeImport(DLLFile::Symbol *s) { 1177 if (!seen.insert(s->symbolName).second) 1178 return; 1179 1180 size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs 1181 size_t size = sizeof(coff_import_header) + impSize; 1182 char *buf = bAlloc().Allocate<char>(size); 1183 memset(buf, 0, size); 1184 char *p = buf; 1185 auto *imp = reinterpret_cast<coff_import_header *>(p); 1186 p += sizeof(*imp); 1187 imp->Sig2 = 0xFFFF; 1188 imp->Machine = coffObj->getMachine(); 1189 imp->SizeOfData = impSize; 1190 imp->OrdinalHint = 0; // Only linking by name 1191 imp->TypeInfo = (s->nameType << 2) | s->importType; 1192 1193 // Write symbol name and DLL name. 1194 memcpy(p, s->symbolName.data(), s->symbolName.size()); 1195 p += s->symbolName.size() + 1; 1196 memcpy(p, s->dllName.data(), s->dllName.size()); 1197 MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName); 1198 ImportFile *impFile = make<ImportFile>(ctx, mbref); 1199 ctx.symtab.addFile(impFile); 1200 } 1201