1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "COFFLinkerContext.h" 11 #include "Chunks.h" 12 #include "Config.h" 13 #include "DebugTypes.h" 14 #include "Driver.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "lld/Common/DWARF.h" 18 #include "llvm-c/lto.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/BinaryFormat/COFF.h" 22 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" 23 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" 24 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 25 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" 26 #include "llvm/DebugInfo/PDB/Native/NativeSession.h" 27 #include "llvm/DebugInfo/PDB/Native/PDBFile.h" 28 #include "llvm/LTO/LTO.h" 29 #include "llvm/Object/Binary.h" 30 #include "llvm/Object/COFF.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/Endian.h" 33 #include "llvm/Support/Error.h" 34 #include "llvm/Support/ErrorOr.h" 35 #include "llvm/Support/FileSystem.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/TargetParser/Triple.h" 39 #include <cstring> 40 #include <optional> 41 #include <system_error> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace llvm::COFF; 46 using namespace llvm::codeview; 47 using namespace llvm::object; 48 using namespace llvm::support::endian; 49 using namespace lld; 50 using namespace lld::coff; 51 52 using llvm::Triple; 53 using llvm::support::ulittle32_t; 54 55 // Returns the last element of a path, which is supposed to be a filename. 56 static StringRef getBasename(StringRef path) { 57 return sys::path::filename(path, sys::path::Style::windows); 58 } 59 60 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". 61 std::string lld::toString(const coff::InputFile *file) { 62 if (!file) 63 return "<internal>"; 64 if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind) 65 return std::string(file->getName()); 66 67 return (getBasename(file->parentName) + "(" + getBasename(file->getName()) + 68 ")") 69 .str(); 70 } 71 72 /// Checks that Source is compatible with being a weak alias to Target. 73 /// If Source is Undefined and has no weak alias set, makes it a weak 74 /// alias to Target. 75 static void checkAndSetWeakAlias(COFFLinkerContext &ctx, InputFile *f, 76 Symbol *source, Symbol *target) { 77 if (auto *u = dyn_cast<Undefined>(source)) { 78 if (u->weakAlias && u->weakAlias != target) { 79 // Weak aliases as produced by GCC are named in the form 80 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name 81 // of another symbol emitted near the weak symbol. 82 // Just use the definition from the first object file that defined 83 // this weak symbol. 84 if (ctx.config.allowDuplicateWeak) 85 return; 86 ctx.symtab.reportDuplicate(source, f); 87 } 88 u->weakAlias = target; 89 } 90 } 91 92 static bool ignoredSymbolName(StringRef name) { 93 return name == "@feat.00" || name == "@comp.id"; 94 } 95 96 ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m) 97 : InputFile(ctx, ArchiveKind, m) {} 98 99 void ArchiveFile::parse() { 100 // Parse a MemoryBufferRef as an archive file. 101 file = CHECK(Archive::create(mb), this); 102 103 // Read the symbol table to construct Lazy objects. 104 for (const Archive::Symbol &sym : file->symbols()) 105 ctx.symtab.addLazyArchive(this, sym); 106 } 107 108 // Returns a buffer pointing to a member file containing a given symbol. 109 void ArchiveFile::addMember(const Archive::Symbol &sym) { 110 const Archive::Child &c = 111 CHECK(sym.getMember(), 112 "could not get the member for symbol " + toCOFFString(ctx, sym)); 113 114 // Return an empty buffer if we have already returned the same buffer. 115 if (!seen.insert(c.getChildOffset()).second) 116 return; 117 118 ctx.driver.enqueueArchiveMember(c, sym, getName()); 119 } 120 121 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) { 122 std::vector<MemoryBufferRef> v; 123 Error err = Error::success(); 124 for (const Archive::Child &c : file->children(err)) { 125 MemoryBufferRef mbref = 126 CHECK(c.getMemoryBufferRef(), 127 file->getFileName() + 128 ": could not get the buffer for a child of the archive"); 129 v.push_back(mbref); 130 } 131 if (err) 132 fatal(file->getFileName() + 133 ": Archive::children failed: " + toString(std::move(err))); 134 return v; 135 } 136 137 void ObjFile::parseLazy() { 138 // Native object file. 139 std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this); 140 COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get()); 141 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 142 for (uint32_t i = 0; i < numSymbols; ++i) { 143 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 144 if (coffSym.isUndefined() || !coffSym.isExternal() || 145 coffSym.isWeakExternal()) 146 continue; 147 StringRef name = check(coffObj->getSymbolName(coffSym)); 148 if (coffSym.isAbsolute() && ignoredSymbolName(name)) 149 continue; 150 ctx.symtab.addLazyObject(this, name); 151 i += coffSym.getNumberOfAuxSymbols(); 152 } 153 } 154 155 struct ECMapEntry { 156 ulittle32_t src; 157 ulittle32_t dst; 158 ulittle32_t type; 159 }; 160 161 void ObjFile::initializeECThunks() { 162 for (SectionChunk *chunk : hybmpChunks) { 163 if (chunk->getContents().size() % sizeof(ECMapEntry)) { 164 error("Invalid .hybmp chunk size " + Twine(chunk->getContents().size())); 165 continue; 166 } 167 168 const uint8_t *end = 169 chunk->getContents().data() + chunk->getContents().size(); 170 for (const uint8_t *iter = chunk->getContents().data(); iter != end; 171 iter += sizeof(ECMapEntry)) { 172 auto entry = reinterpret_cast<const ECMapEntry *>(iter); 173 switch (entry->type) { 174 case Arm64ECThunkType::Entry: 175 ctx.symtab.addEntryThunk(getSymbol(entry->src), getSymbol(entry->dst)); 176 break; 177 case Arm64ECThunkType::Exit: 178 case Arm64ECThunkType::GuestExit: 179 break; 180 default: 181 warn("Ignoring unknown EC thunk type " + Twine(entry->type)); 182 } 183 } 184 } 185 } 186 187 void ObjFile::parse() { 188 // Parse a memory buffer as a COFF file. 189 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 190 191 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 192 bin.release(); 193 coffObj.reset(obj); 194 } else { 195 fatal(toString(this) + " is not a COFF file"); 196 } 197 198 // Read section and symbol tables. 199 initializeChunks(); 200 initializeSymbols(); 201 initializeFlags(); 202 initializeDependencies(); 203 initializeECThunks(); 204 } 205 206 const coff_section *ObjFile::getSection(uint32_t i) { 207 auto sec = coffObj->getSection(i); 208 if (!sec) 209 fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError())); 210 return *sec; 211 } 212 213 // We set SectionChunk pointers in the SparseChunks vector to this value 214 // temporarily to mark comdat sections as having an unknown resolution. As we 215 // walk the object file's symbol table, once we visit either a leader symbol or 216 // an associative section definition together with the parent comdat's leader, 217 // we set the pointer to either nullptr (to mark the section as discarded) or a 218 // valid SectionChunk for that section. 219 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); 220 221 void ObjFile::initializeChunks() { 222 uint32_t numSections = coffObj->getNumberOfSections(); 223 sparseChunks.resize(numSections + 1); 224 for (uint32_t i = 1; i < numSections + 1; ++i) { 225 const coff_section *sec = getSection(i); 226 if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) 227 sparseChunks[i] = pendingComdat; 228 else 229 sparseChunks[i] = readSection(i, nullptr, ""); 230 } 231 } 232 233 SectionChunk *ObjFile::readSection(uint32_t sectionNumber, 234 const coff_aux_section_definition *def, 235 StringRef leaderName) { 236 const coff_section *sec = getSection(sectionNumber); 237 238 StringRef name; 239 if (Expected<StringRef> e = coffObj->getSectionName(sec)) 240 name = *e; 241 else 242 fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " + 243 toString(e.takeError())); 244 245 if (name == ".drectve") { 246 ArrayRef<uint8_t> data; 247 cantFail(coffObj->getSectionContents(sec, data)); 248 directives = StringRef((const char *)data.data(), data.size()); 249 return nullptr; 250 } 251 252 if (name == ".llvm_addrsig") { 253 addrsigSec = sec; 254 return nullptr; 255 } 256 257 if (name == ".llvm.call-graph-profile") { 258 callgraphSec = sec; 259 return nullptr; 260 } 261 262 // Object files may have DWARF debug info or MS CodeView debug info 263 // (or both). 264 // 265 // DWARF sections don't need any special handling from the perspective 266 // of the linker; they are just a data section containing relocations. 267 // We can just link them to complete debug info. 268 // 269 // CodeView needs linker support. We need to interpret debug info, 270 // and then write it to a separate .pdb file. 271 272 // Ignore DWARF debug info unless requested to be included. 273 if (!ctx.config.includeDwarfChunks && name.starts_with(".debug_")) 274 return nullptr; 275 276 if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) 277 return nullptr; 278 SectionChunk *c; 279 if (isArm64EC(getMachineType())) 280 c = make<SectionChunkEC>(this, sec); 281 else 282 c = make<SectionChunk>(this, sec); 283 if (def) 284 c->checksum = def->CheckSum; 285 286 // CodeView sections are stored to a different vector because they are not 287 // linked in the regular manner. 288 if (c->isCodeView()) 289 debugChunks.push_back(c); 290 else if (name == ".gfids$y") 291 guardFidChunks.push_back(c); 292 else if (name == ".giats$y") 293 guardIATChunks.push_back(c); 294 else if (name == ".gljmp$y") 295 guardLJmpChunks.push_back(c); 296 else if (name == ".gehcont$y") 297 guardEHContChunks.push_back(c); 298 else if (name == ".sxdata") 299 sxDataChunks.push_back(c); 300 else if (isArm64EC(getMachineType()) && name == ".hybmp$x") 301 hybmpChunks.push_back(c); 302 else if (ctx.config.tailMerge && sec->NumberOfRelocations == 0 && 303 name == ".rdata" && leaderName.starts_with("??_C@")) 304 // COFF sections that look like string literal sections (i.e. no 305 // relocations, in .rdata, leader symbol name matches the MSVC name mangling 306 // for string literals) are subject to string tail merging. 307 MergeChunk::addSection(ctx, c); 308 else if (name == ".rsrc" || name.starts_with(".rsrc$")) 309 resourceChunks.push_back(c); 310 else 311 chunks.push_back(c); 312 313 return c; 314 } 315 316 void ObjFile::includeResourceChunks() { 317 chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end()); 318 } 319 320 void ObjFile::readAssociativeDefinition( 321 COFFSymbolRef sym, const coff_aux_section_definition *def) { 322 readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj())); 323 } 324 325 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, 326 const coff_aux_section_definition *def, 327 uint32_t parentIndex) { 328 SectionChunk *parent = sparseChunks[parentIndex]; 329 int32_t sectionNumber = sym.getSectionNumber(); 330 331 auto diag = [&]() { 332 StringRef name = check(coffObj->getSymbolName(sym)); 333 334 StringRef parentName; 335 const coff_section *parentSec = getSection(parentIndex); 336 if (Expected<StringRef> e = coffObj->getSectionName(parentSec)) 337 parentName = *e; 338 error(toString(this) + ": associative comdat " + name + " (sec " + 339 Twine(sectionNumber) + ") has invalid reference to section " + 340 parentName + " (sec " + Twine(parentIndex) + ")"); 341 }; 342 343 if (parent == pendingComdat) { 344 // This can happen if an associative comdat refers to another associative 345 // comdat that appears after it (invalid per COFF spec) or to a section 346 // without any symbols. 347 diag(); 348 return; 349 } 350 351 // Check whether the parent is prevailing. If it is, so are we, and we read 352 // the section; otherwise mark it as discarded. 353 if (parent) { 354 SectionChunk *c = readSection(sectionNumber, def, ""); 355 sparseChunks[sectionNumber] = c; 356 if (c) { 357 c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; 358 parent->addAssociative(c); 359 } 360 } else { 361 sparseChunks[sectionNumber] = nullptr; 362 } 363 } 364 365 void ObjFile::recordPrevailingSymbolForMingw( 366 COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 367 // For comdat symbols in executable sections, where this is the copy 368 // of the section chunk we actually include instead of discarding it, 369 // add the symbol to a map to allow using it for implicitly 370 // associating .[px]data$<func> sections to it. 371 // Use the suffix from the .text$<func> instead of the leader symbol 372 // name, for cases where the names differ (i386 mangling/decorations, 373 // cases where the leader is a weak symbol named .weak.func.default*). 374 int32_t sectionNumber = sym.getSectionNumber(); 375 SectionChunk *sc = sparseChunks[sectionNumber]; 376 if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { 377 StringRef name = sc->getSectionName().split('$').second; 378 prevailingSectionMap[name] = sectionNumber; 379 } 380 } 381 382 void ObjFile::maybeAssociateSEHForMingw( 383 COFFSymbolRef sym, const coff_aux_section_definition *def, 384 const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 385 StringRef name = check(coffObj->getSymbolName(sym)); 386 if (name.consume_front(".pdata$") || name.consume_front(".xdata$") || 387 name.consume_front(".eh_frame$")) { 388 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly 389 // associative to the symbol <func>. 390 auto parentSym = prevailingSectionMap.find(name); 391 if (parentSym != prevailingSectionMap.end()) 392 readAssociativeDefinition(sym, def, parentSym->second); 393 } 394 } 395 396 Symbol *ObjFile::createRegular(COFFSymbolRef sym) { 397 SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; 398 if (sym.isExternal()) { 399 StringRef name = check(coffObj->getSymbolName(sym)); 400 if (sc) 401 return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc, 402 sym.getValue()); 403 // For MinGW symbols named .weak.* that point to a discarded section, 404 // don't create an Undefined symbol. If nothing ever refers to the symbol, 405 // everything should be fine. If something actually refers to the symbol 406 // (e.g. the undefined weak alias), linking will fail due to undefined 407 // references at the end. 408 if (ctx.config.mingw && name.starts_with(".weak.")) 409 return nullptr; 410 return ctx.symtab.addUndefined(name, this, false); 411 } 412 if (sc) 413 return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 414 /*IsExternal*/ false, sym.getGeneric(), sc); 415 return nullptr; 416 } 417 418 void ObjFile::initializeSymbols() { 419 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 420 symbols.resize(numSymbols); 421 422 SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases; 423 std::vector<uint32_t> pendingIndexes; 424 pendingIndexes.reserve(numSymbols); 425 426 DenseMap<StringRef, uint32_t> prevailingSectionMap; 427 std::vector<const coff_aux_section_definition *> comdatDefs( 428 coffObj->getNumberOfSections() + 1); 429 430 for (uint32_t i = 0; i < numSymbols; ++i) { 431 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 432 bool prevailingComdat; 433 if (coffSym.isUndefined()) { 434 symbols[i] = createUndefined(coffSym); 435 } else if (coffSym.isWeakExternal()) { 436 symbols[i] = createUndefined(coffSym); 437 uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex; 438 weakAliases.emplace_back(symbols[i], tagIndex); 439 } else if (std::optional<Symbol *> optSym = 440 createDefined(coffSym, comdatDefs, prevailingComdat)) { 441 symbols[i] = *optSym; 442 if (ctx.config.mingw && prevailingComdat) 443 recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap); 444 } else { 445 // createDefined() returns std::nullopt if a symbol belongs to a section 446 // that was pending at the point when the symbol was read. This can happen 447 // in two cases: 448 // 1) section definition symbol for a comdat leader; 449 // 2) symbol belongs to a comdat section associated with another section. 450 // In both of these cases, we can expect the section to be resolved by 451 // the time we finish visiting the remaining symbols in the symbol 452 // table. So we postpone the handling of this symbol until that time. 453 pendingIndexes.push_back(i); 454 } 455 i += coffSym.getNumberOfAuxSymbols(); 456 } 457 458 for (uint32_t i : pendingIndexes) { 459 COFFSymbolRef sym = check(coffObj->getSymbol(i)); 460 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 461 if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) 462 readAssociativeDefinition(sym, def); 463 else if (ctx.config.mingw) 464 maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); 465 } 466 if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { 467 StringRef name = check(coffObj->getSymbolName(sym)); 468 log("comdat section " + name + 469 " without leader and unassociated, discarding"); 470 continue; 471 } 472 symbols[i] = createRegular(sym); 473 } 474 475 for (auto &kv : weakAliases) { 476 Symbol *sym = kv.first; 477 uint32_t idx = kv.second; 478 checkAndSetWeakAlias(ctx, this, sym, symbols[idx]); 479 } 480 481 // Free the memory used by sparseChunks now that symbol loading is finished. 482 decltype(sparseChunks)().swap(sparseChunks); 483 } 484 485 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) { 486 StringRef name = check(coffObj->getSymbolName(sym)); 487 return ctx.symtab.addUndefined(name, this, sym.isWeakExternal()); 488 } 489 490 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, 491 int32_t section) { 492 uint32_t numSymbols = obj->getNumberOfSymbols(); 493 for (uint32_t i = 0; i < numSymbols; ++i) { 494 COFFSymbolRef sym = check(obj->getSymbol(i)); 495 if (sym.getSectionNumber() != section) 496 continue; 497 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) 498 return def; 499 } 500 return nullptr; 501 } 502 503 void ObjFile::handleComdatSelection( 504 COFFSymbolRef sym, COMDATType &selection, bool &prevailing, 505 DefinedRegular *leader, 506 const llvm::object::coff_aux_section_definition *def) { 507 if (prevailing) 508 return; 509 // There's already an existing comdat for this symbol: `Leader`. 510 // Use the comdats's selection field to determine if the new 511 // symbol in `Sym` should be discarded, produce a duplicate symbol 512 // error, etc. 513 514 SectionChunk *leaderChunk = leader->getChunk(); 515 COMDATType leaderSelection = leaderChunk->selection; 516 517 assert(leader->data && "Comdat leader without SectionChunk?"); 518 if (isa<BitcodeFile>(leader->file)) { 519 // If the leader is only a LTO symbol, we don't know e.g. its final size 520 // yet, so we can't do the full strict comdat selection checking yet. 521 selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY; 522 } 523 524 if ((selection == IMAGE_COMDAT_SELECT_ANY && 525 leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || 526 (selection == IMAGE_COMDAT_SELECT_LARGEST && 527 leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { 528 // cl.exe picks "any" for vftables when building with /GR- and 529 // "largest" when building with /GR. To be able to link object files 530 // compiled with each flag, "any" and "largest" are merged as "largest". 531 leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; 532 } 533 534 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". 535 // Clang on the other hand picks "any". To be able to link two object files 536 // with a __declspec(selectany) declaration, one compiled with gcc and the 537 // other with clang, we merge them as proper "same size as" 538 if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && 539 leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || 540 (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && 541 leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { 542 leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; 543 } 544 545 // Other than that, comdat selections must match. This is a bit more 546 // strict than link.exe which allows merging "any" and "largest" if "any" 547 // is the first symbol the linker sees, and it allows merging "largest" 548 // with everything (!) if "largest" is the first symbol the linker sees. 549 // Making this symmetric independent of which selection is seen first 550 // seems better though. 551 // (This behavior matches ModuleLinker::getComdatResult().) 552 if (selection != leaderSelection) { 553 log(("conflicting comdat type for " + toString(ctx, *leader) + ": " + 554 Twine((int)leaderSelection) + " in " + toString(leader->getFile()) + 555 " and " + Twine((int)selection) + " in " + toString(this)) 556 .str()); 557 ctx.symtab.reportDuplicate(leader, this); 558 return; 559 } 560 561 switch (selection) { 562 case IMAGE_COMDAT_SELECT_NODUPLICATES: 563 ctx.symtab.reportDuplicate(leader, this); 564 break; 565 566 case IMAGE_COMDAT_SELECT_ANY: 567 // Nothing to do. 568 break; 569 570 case IMAGE_COMDAT_SELECT_SAME_SIZE: 571 if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { 572 if (!ctx.config.mingw) { 573 ctx.symtab.reportDuplicate(leader, this); 574 } else { 575 const coff_aux_section_definition *leaderDef = nullptr; 576 if (leaderChunk->file) 577 leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(), 578 leaderChunk->getSectionNumber()); 579 if (!leaderDef || leaderDef->Length != def->Length) 580 ctx.symtab.reportDuplicate(leader, this); 581 } 582 } 583 break; 584 585 case IMAGE_COMDAT_SELECT_EXACT_MATCH: { 586 SectionChunk newChunk(this, getSection(sym)); 587 // link.exe only compares section contents here and doesn't complain 588 // if the two comdat sections have e.g. different alignment. 589 // Match that. 590 if (leaderChunk->getContents() != newChunk.getContents()) 591 ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue()); 592 break; 593 } 594 595 case IMAGE_COMDAT_SELECT_ASSOCIATIVE: 596 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. 597 // (This means lld-link doesn't produce duplicate symbol errors for 598 // associative comdats while link.exe does, but associate comdats 599 // are never extern in practice.) 600 llvm_unreachable("createDefined not called for associative comdats"); 601 602 case IMAGE_COMDAT_SELECT_LARGEST: 603 if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { 604 // Replace the existing comdat symbol with the new one. 605 StringRef name = check(coffObj->getSymbolName(sym)); 606 // FIXME: This is incorrect: With /opt:noref, the previous sections 607 // make it into the final executable as well. Correct handling would 608 // be to undo reading of the whole old section that's being replaced, 609 // or doing one pass that determines what the final largest comdat 610 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading 611 // only the largest one. 612 replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true, 613 /*IsExternal*/ true, sym.getGeneric(), 614 nullptr); 615 prevailing = true; 616 } 617 break; 618 619 case IMAGE_COMDAT_SELECT_NEWEST: 620 llvm_unreachable("should have been rejected earlier"); 621 } 622 } 623 624 std::optional<Symbol *> ObjFile::createDefined( 625 COFFSymbolRef sym, 626 std::vector<const coff_aux_section_definition *> &comdatDefs, 627 bool &prevailing) { 628 prevailing = false; 629 auto getName = [&]() { return check(coffObj->getSymbolName(sym)); }; 630 631 if (sym.isCommon()) { 632 auto *c = make<CommonChunk>(sym); 633 chunks.push_back(c); 634 return ctx.symtab.addCommon(this, getName(), sym.getValue(), 635 sym.getGeneric(), c); 636 } 637 638 if (sym.isAbsolute()) { 639 StringRef name = getName(); 640 641 if (name == "@feat.00") 642 feat00Flags = sym.getValue(); 643 // Skip special symbols. 644 if (ignoredSymbolName(name)) 645 return nullptr; 646 647 if (sym.isExternal()) 648 return ctx.symtab.addAbsolute(name, sym); 649 return make<DefinedAbsolute>(ctx, name, sym); 650 } 651 652 int32_t sectionNumber = sym.getSectionNumber(); 653 if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) 654 return nullptr; 655 656 if (llvm::COFF::isReservedSectionNumber(sectionNumber)) 657 fatal(toString(this) + ": " + getName() + 658 " should not refer to special section " + Twine(sectionNumber)); 659 660 if ((uint32_t)sectionNumber >= sparseChunks.size()) 661 fatal(toString(this) + ": " + getName() + 662 " should not refer to non-existent section " + Twine(sectionNumber)); 663 664 // Comdat handling. 665 // A comdat symbol consists of two symbol table entries. 666 // The first symbol entry has the name of the section (e.g. .text), fixed 667 // values for the other fields, and one auxiliary record. 668 // The second symbol entry has the name of the comdat symbol, called the 669 // "comdat leader". 670 // When this function is called for the first symbol entry of a comdat, 671 // it sets comdatDefs and returns std::nullopt, and when it's called for the 672 // second symbol entry it reads comdatDefs and then sets it back to nullptr. 673 674 // Handle comdat leader. 675 if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { 676 comdatDefs[sectionNumber] = nullptr; 677 DefinedRegular *leader; 678 679 if (sym.isExternal()) { 680 std::tie(leader, prevailing) = 681 ctx.symtab.addComdat(this, getName(), sym.getGeneric()); 682 } else { 683 leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 684 /*IsExternal*/ false, sym.getGeneric()); 685 prevailing = true; 686 } 687 688 if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || 689 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe 690 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. 691 def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { 692 fatal("unknown comdat type " + std::to_string((int)def->Selection) + 693 " for " + getName() + " in " + toString(this)); 694 } 695 COMDATType selection = (COMDATType)def->Selection; 696 697 if (leader->isCOMDAT) 698 handleComdatSelection(sym, selection, prevailing, leader, def); 699 700 if (prevailing) { 701 SectionChunk *c = readSection(sectionNumber, def, getName()); 702 sparseChunks[sectionNumber] = c; 703 if (!c) 704 return nullptr; 705 c->sym = cast<DefinedRegular>(leader); 706 c->selection = selection; 707 cast<DefinedRegular>(leader)->data = &c->repl; 708 } else { 709 sparseChunks[sectionNumber] = nullptr; 710 } 711 return leader; 712 } 713 714 // Prepare to handle the comdat leader symbol by setting the section's 715 // ComdatDefs pointer if we encounter a non-associative comdat. 716 if (sparseChunks[sectionNumber] == pendingComdat) { 717 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 718 if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) 719 comdatDefs[sectionNumber] = def; 720 } 721 return std::nullopt; 722 } 723 724 return createRegular(sym); 725 } 726 727 MachineTypes ObjFile::getMachineType() { 728 if (coffObj) 729 return static_cast<MachineTypes>(coffObj->getMachine()); 730 return IMAGE_FILE_MACHINE_UNKNOWN; 731 } 732 733 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { 734 if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName)) 735 return sec->consumeDebugMagic(); 736 return {}; 737 } 738 739 // OBJ files systematically store critical information in a .debug$S stream, 740 // even if the TU was compiled with no debug info. At least two records are 741 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the 742 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is 743 // currently used to initialize the hotPatchable member. 744 void ObjFile::initializeFlags() { 745 ArrayRef<uint8_t> data = getDebugSection(".debug$S"); 746 if (data.empty()) 747 return; 748 749 DebugSubsectionArray subsections; 750 751 BinaryStreamReader reader(data, llvm::endianness::little); 752 ExitOnError exitOnErr; 753 exitOnErr(reader.readArray(subsections, data.size())); 754 755 for (const DebugSubsectionRecord &ss : subsections) { 756 if (ss.kind() != DebugSubsectionKind::Symbols) 757 continue; 758 759 unsigned offset = 0; 760 761 // Only parse the first two records. We are only looking for S_OBJNAME 762 // and S_COMPILE3, and they usually appear at the beginning of the 763 // stream. 764 for (unsigned i = 0; i < 2; ++i) { 765 Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset); 766 if (!sym) { 767 consumeError(sym.takeError()); 768 return; 769 } 770 if (sym->kind() == SymbolKind::S_COMPILE3) { 771 auto cs = 772 cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get())); 773 hotPatchable = 774 (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; 775 } 776 if (sym->kind() == SymbolKind::S_OBJNAME) { 777 auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>( 778 sym.get())); 779 if (objName.Signature) 780 pchSignature = objName.Signature; 781 } 782 offset += sym->length(); 783 } 784 } 785 } 786 787 // Depending on the compilation flags, OBJs can refer to external files, 788 // necessary to merge this OBJ into the final PDB. We currently support two 789 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. 790 // And PDB type servers, when compiling with /Zi. This function extracts these 791 // dependencies and makes them available as a TpiSource interface (see 792 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular 793 // output even with /Yc and /Yu and with /Zi. 794 void ObjFile::initializeDependencies() { 795 if (!ctx.config.debug) 796 return; 797 798 bool isPCH = false; 799 800 ArrayRef<uint8_t> data = getDebugSection(".debug$P"); 801 if (!data.empty()) 802 isPCH = true; 803 else 804 data = getDebugSection(".debug$T"); 805 806 // symbols but no types, make a plain, empty TpiSource anyway, because it 807 // simplifies adding the symbols later. 808 if (data.empty()) { 809 if (!debugChunks.empty()) 810 debugTypesObj = makeTpiSource(ctx, this); 811 return; 812 } 813 814 // Get the first type record. It will indicate if this object uses a type 815 // server (/Zi) or a PCH file (/Yu). 816 CVTypeArray types; 817 BinaryStreamReader reader(data, llvm::endianness::little); 818 cantFail(reader.readArray(types, reader.getLength())); 819 CVTypeArray::Iterator firstType = types.begin(); 820 if (firstType == types.end()) 821 return; 822 823 // Remember the .debug$T or .debug$P section. 824 debugTypes = data; 825 826 // This object file is a PCH file that others will depend on. 827 if (isPCH) { 828 debugTypesObj = makePrecompSource(ctx, this); 829 return; 830 } 831 832 // This object file was compiled with /Zi. Enqueue the PDB dependency. 833 if (firstType->kind() == LF_TYPESERVER2) { 834 TypeServer2Record ts = cantFail( 835 TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data())); 836 debugTypesObj = makeUseTypeServerSource(ctx, this, ts); 837 enqueuePdbFile(ts.getName(), this); 838 return; 839 } 840 841 // This object was compiled with /Yu. It uses types from another object file 842 // with a matching signature. 843 if (firstType->kind() == LF_PRECOMP) { 844 PrecompRecord precomp = cantFail( 845 TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data())); 846 // We're better off trusting the LF_PRECOMP signature. In some cases the 847 // S_OBJNAME record doesn't contain a valid PCH signature. 848 if (precomp.Signature) 849 pchSignature = precomp.Signature; 850 debugTypesObj = makeUsePrecompSource(ctx, this, precomp); 851 // Drop the LF_PRECOMP record from the input stream. 852 debugTypes = debugTypes.drop_front(firstType->RecordData.size()); 853 return; 854 } 855 856 // This is a plain old object file. 857 debugTypesObj = makeTpiSource(ctx, this); 858 } 859 860 // The casing of the PDB path stamped in the OBJ can differ from the actual path 861 // on disk. With this, we ensure to always use lowercase as a key for the 862 // pdbInputFileInstances map, at least on Windows. 863 static std::string normalizePdbPath(StringRef path) { 864 #if defined(_WIN32) 865 return path.lower(); 866 #else // LINUX 867 return std::string(path); 868 #endif 869 } 870 871 // If existing, return the actual PDB path on disk. 872 static std::optional<std::string> 873 findPdbPath(StringRef pdbPath, ObjFile *dependentFile, StringRef outputPath) { 874 // Ensure the file exists before anything else. In some cases, if the path 875 // points to a removable device, Driver::enqueuePath() would fail with an 876 // error (EAGAIN, "resource unavailable try again") which we want to skip 877 // silently. 878 if (llvm::sys::fs::exists(pdbPath)) 879 return normalizePdbPath(pdbPath); 880 881 StringRef objPath = !dependentFile->parentName.empty() 882 ? dependentFile->parentName 883 : dependentFile->getName(); 884 885 // Currently, type server PDBs are only created by MSVC cl, which only runs 886 // on Windows, so we can assume type server paths are Windows style. 887 StringRef pdbName = sys::path::filename(pdbPath, sys::path::Style::windows); 888 889 // Check if the PDB is in the same folder as the OBJ. 890 SmallString<128> path; 891 sys::path::append(path, sys::path::parent_path(objPath), pdbName); 892 if (llvm::sys::fs::exists(path)) 893 return normalizePdbPath(path); 894 895 // Check if the PDB is in the output folder. 896 path.clear(); 897 sys::path::append(path, sys::path::parent_path(outputPath), pdbName); 898 if (llvm::sys::fs::exists(path)) 899 return normalizePdbPath(path); 900 901 return std::nullopt; 902 } 903 904 PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m) 905 : InputFile(ctx, PDBKind, m) {} 906 907 PDBInputFile::~PDBInputFile() = default; 908 909 PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx, 910 StringRef path, 911 ObjFile *fromFile) { 912 auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile); 913 if (!p) 914 return nullptr; 915 auto it = ctx.pdbInputFileInstances.find(*p); 916 if (it != ctx.pdbInputFileInstances.end()) 917 return it->second; 918 return nullptr; 919 } 920 921 void PDBInputFile::parse() { 922 ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this; 923 924 std::unique_ptr<pdb::IPDBSession> thisSession; 925 Error E = pdb::NativeSession::createFromPdb( 926 MemoryBuffer::getMemBuffer(mb, false), thisSession); 927 if (E) { 928 loadErrorStr.emplace(toString(std::move(E))); 929 return; // fail silently at this point - the error will be handled later, 930 // when merging the debug type stream 931 } 932 933 session.reset(static_cast<pdb::NativeSession *>(thisSession.release())); 934 935 pdb::PDBFile &pdbFile = session->getPDBFile(); 936 auto expectedInfo = pdbFile.getPDBInfoStream(); 937 // All PDB Files should have an Info stream. 938 if (!expectedInfo) { 939 loadErrorStr.emplace(toString(expectedInfo.takeError())); 940 return; 941 } 942 debugTypesObj = makeTypeServerSource(ctx, this); 943 } 944 945 // Used only for DWARF debug info, which is not common (except in MinGW 946 // environments). This returns an optional pair of file name and line 947 // number for where the variable was defined. 948 std::optional<std::pair<StringRef, uint32_t>> 949 ObjFile::getVariableLocation(StringRef var) { 950 if (!dwarf) { 951 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 952 if (!dwarf) 953 return std::nullopt; 954 } 955 if (ctx.config.machine == I386) 956 var.consume_front("_"); 957 std::optional<std::pair<std::string, unsigned>> ret = 958 dwarf->getVariableLoc(var); 959 if (!ret) 960 return std::nullopt; 961 return std::make_pair(saver().save(ret->first), ret->second); 962 } 963 964 // Used only for DWARF debug info, which is not common (except in MinGW 965 // environments). 966 std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, 967 uint32_t sectionIndex) { 968 if (!dwarf) { 969 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 970 if (!dwarf) 971 return std::nullopt; 972 } 973 974 return dwarf->getDILineInfo(offset, sectionIndex); 975 } 976 977 void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) { 978 auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile); 979 if (!p) 980 return; 981 auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr); 982 if (!it.second) 983 return; // already scheduled for load 984 ctx.driver.enqueuePDB(*p); 985 } 986 987 ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m) 988 : InputFile(ctx, ImportKind, m), live(!ctx.config.doGC), thunkLive(live) {} 989 990 void ImportFile::parse() { 991 const auto *hdr = 992 reinterpret_cast<const coff_import_header *>(mb.getBufferStart()); 993 994 // Check if the total size is valid. 995 if (mb.getBufferSize() < sizeof(*hdr) || 996 mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) 997 fatal("broken import library"); 998 999 // Read names and create an __imp_ symbol. 1000 StringRef buf = mb.getBuffer().substr(sizeof(*hdr)); 1001 StringRef name = saver().save(buf.split('\0').first); 1002 StringRef impName = saver().save("__imp_" + name); 1003 buf = buf.substr(name.size() + 1); 1004 dllName = buf.split('\0').first; 1005 StringRef extName; 1006 switch (hdr->getNameType()) { 1007 case IMPORT_ORDINAL: 1008 extName = ""; 1009 break; 1010 case IMPORT_NAME: 1011 extName = name; 1012 break; 1013 case IMPORT_NAME_NOPREFIX: 1014 extName = ltrim1(name, "?@_"); 1015 break; 1016 case IMPORT_NAME_UNDECORATE: 1017 extName = ltrim1(name, "?@_"); 1018 extName = extName.substr(0, extName.find('@')); 1019 break; 1020 case IMPORT_NAME_EXPORTAS: 1021 extName = buf.substr(dllName.size() + 1).split('\0').first; 1022 break; 1023 } 1024 1025 this->hdr = hdr; 1026 externalName = extName; 1027 1028 impSym = ctx.symtab.addImportData(impName, this); 1029 // If this was a duplicate, we logged an error but may continue; 1030 // in this case, impSym is nullptr. 1031 if (!impSym) 1032 return; 1033 1034 if (hdr->getType() == llvm::COFF::IMPORT_CONST) 1035 static_cast<void>(ctx.symtab.addImportData(name, this)); 1036 1037 // If type is function, we need to create a thunk which jump to an 1038 // address pointed by the __imp_ symbol. (This allows you to call 1039 // DLL functions just like regular non-DLL functions.) 1040 if (hdr->getType() == llvm::COFF::IMPORT_CODE) 1041 thunkSym = ctx.symtab.addImportThunk( 1042 name, cast_or_null<DefinedImportData>(impSym), hdr->Machine); 1043 } 1044 1045 BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb, 1046 StringRef archiveName, uint64_t offsetInArchive, 1047 bool lazy) 1048 : InputFile(ctx, BitcodeKind, mb, lazy) { 1049 std::string path = mb.getBufferIdentifier().str(); 1050 if (ctx.config.thinLTOIndexOnly) 1051 path = replaceThinLTOSuffix(mb.getBufferIdentifier(), 1052 ctx.config.thinLTOObjectSuffixReplace.first, 1053 ctx.config.thinLTOObjectSuffixReplace.second); 1054 1055 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1056 // name. If two archives define two members with the same name, this 1057 // causes a collision which result in only one of the objects being taken 1058 // into consideration at LTO time (which very likely causes undefined 1059 // symbols later in the link stage). So we append file offset to make 1060 // filename unique. 1061 MemoryBufferRef mbref(mb.getBuffer(), 1062 saver().save(archiveName.empty() 1063 ? path 1064 : archiveName + 1065 sys::path::filename(path) + 1066 utostr(offsetInArchive))); 1067 1068 obj = check(lto::InputFile::create(mbref)); 1069 } 1070 1071 BitcodeFile::~BitcodeFile() = default; 1072 1073 void BitcodeFile::parse() { 1074 llvm::StringSaver &saver = lld::saver(); 1075 1076 std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); 1077 for (size_t i = 0; i != obj->getComdatTable().size(); ++i) 1078 // FIXME: Check nodeduplicate 1079 comdat[i] = 1080 ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first)); 1081 for (const lto::InputFile::Symbol &objSym : obj->symbols()) { 1082 StringRef symName = saver.save(objSym.getName()); 1083 int comdatIndex = objSym.getComdatIndex(); 1084 Symbol *sym; 1085 SectionChunk *fakeSC = nullptr; 1086 if (objSym.isExecutable()) 1087 fakeSC = &ctx.ltoTextSectionChunk.chunk; 1088 else 1089 fakeSC = &ctx.ltoDataSectionChunk.chunk; 1090 if (objSym.isUndefined()) { 1091 sym = ctx.symtab.addUndefined(symName, this, false); 1092 if (objSym.isWeak()) 1093 sym->deferUndefined = true; 1094 // If one LTO object file references (i.e. has an undefined reference to) 1095 // a symbol with an __imp_ prefix, the LTO compilation itself sees it 1096 // as unprefixed but with a dllimport attribute instead, and doesn't 1097 // understand the relation to a concrete IR symbol with the __imp_ prefix. 1098 // 1099 // For such cases, mark the symbol as used in a regular object (i.e. the 1100 // symbol must be retained) so that the linker can associate the 1101 // references in the end. If the symbol is defined in an import library 1102 // or in a regular object file, this has no effect, but if it is defined 1103 // in another LTO object file, this makes sure it is kept, to fulfill 1104 // the reference when linking the output of the LTO compilation. 1105 if (symName.starts_with("__imp_")) 1106 sym->isUsedInRegularObj = true; 1107 } else if (objSym.isCommon()) { 1108 sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize()); 1109 } else if (objSym.isWeak() && objSym.isIndirect()) { 1110 // Weak external. 1111 sym = ctx.symtab.addUndefined(symName, this, true); 1112 std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); 1113 Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback)); 1114 checkAndSetWeakAlias(ctx, this, sym, alias); 1115 } else if (comdatIndex != -1) { 1116 if (symName == obj->getComdatTable()[comdatIndex].first) { 1117 sym = comdat[comdatIndex].first; 1118 if (cast<DefinedRegular>(sym)->data == nullptr) 1119 cast<DefinedRegular>(sym)->data = &fakeSC->repl; 1120 } else if (comdat[comdatIndex].second) { 1121 sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC); 1122 } else { 1123 sym = ctx.symtab.addUndefined(symName, this, false); 1124 } 1125 } else { 1126 sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC, 0, 1127 objSym.isWeak()); 1128 } 1129 symbols.push_back(sym); 1130 if (objSym.isUsed()) 1131 ctx.config.gcroot.push_back(sym); 1132 } 1133 directives = saver.save(obj->getCOFFLinkerOpts()); 1134 } 1135 1136 void BitcodeFile::parseLazy() { 1137 for (const lto::InputFile::Symbol &sym : obj->symbols()) 1138 if (!sym.isUndefined()) 1139 ctx.symtab.addLazyObject(this, sym.getName()); 1140 } 1141 1142 MachineTypes BitcodeFile::getMachineType() { 1143 switch (Triple(obj->getTargetTriple()).getArch()) { 1144 case Triple::x86_64: 1145 return AMD64; 1146 case Triple::x86: 1147 return I386; 1148 case Triple::arm: 1149 case Triple::thumb: 1150 return ARMNT; 1151 case Triple::aarch64: 1152 return ARM64; 1153 default: 1154 return IMAGE_FILE_MACHINE_UNKNOWN; 1155 } 1156 } 1157 1158 std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix, 1159 StringRef repl) { 1160 if (path.consume_back(suffix)) 1161 return (path + repl).str(); 1162 return std::string(path); 1163 } 1164 1165 static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) { 1166 for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) { 1167 const coff_section *sec = CHECK(coffObj->getSection(i), file); 1168 if (rva >= sec->VirtualAddress && 1169 rva <= sec->VirtualAddress + sec->VirtualSize) { 1170 return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0; 1171 } 1172 } 1173 return false; 1174 } 1175 1176 void DLLFile::parse() { 1177 // Parse a memory buffer as a PE-COFF executable. 1178 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 1179 1180 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 1181 bin.release(); 1182 coffObj.reset(obj); 1183 } else { 1184 error(toString(this) + " is not a COFF file"); 1185 return; 1186 } 1187 1188 if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) { 1189 error(toString(this) + " is not a PE-COFF executable"); 1190 return; 1191 } 1192 1193 for (const auto &exp : coffObj->export_directories()) { 1194 StringRef dllName, symbolName; 1195 uint32_t exportRVA; 1196 checkError(exp.getDllName(dllName)); 1197 checkError(exp.getSymbolName(symbolName)); 1198 checkError(exp.getExportRVA(exportRVA)); 1199 1200 if (symbolName.empty()) 1201 continue; 1202 1203 bool code = isRVACode(coffObj.get(), exportRVA, this); 1204 1205 Symbol *s = make<Symbol>(); 1206 s->dllName = dllName; 1207 s->symbolName = symbolName; 1208 s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA; 1209 s->nameType = ImportNameType::IMPORT_NAME; 1210 1211 if (coffObj->getMachine() == I386) { 1212 s->symbolName = symbolName = saver().save("_" + symbolName); 1213 s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX; 1214 } 1215 1216 StringRef impName = saver().save("__imp_" + symbolName); 1217 ctx.symtab.addLazyDLLSymbol(this, s, impName); 1218 if (code) 1219 ctx.symtab.addLazyDLLSymbol(this, s, symbolName); 1220 } 1221 } 1222 1223 MachineTypes DLLFile::getMachineType() { 1224 if (coffObj) 1225 return static_cast<MachineTypes>(coffObj->getMachine()); 1226 return IMAGE_FILE_MACHINE_UNKNOWN; 1227 } 1228 1229 void DLLFile::makeImport(DLLFile::Symbol *s) { 1230 if (!seen.insert(s->symbolName).second) 1231 return; 1232 1233 size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs 1234 size_t size = sizeof(coff_import_header) + impSize; 1235 char *buf = bAlloc().Allocate<char>(size); 1236 memset(buf, 0, size); 1237 char *p = buf; 1238 auto *imp = reinterpret_cast<coff_import_header *>(p); 1239 p += sizeof(*imp); 1240 imp->Sig2 = 0xFFFF; 1241 imp->Machine = coffObj->getMachine(); 1242 imp->SizeOfData = impSize; 1243 imp->OrdinalHint = 0; // Only linking by name 1244 imp->TypeInfo = (s->nameType << 2) | s->importType; 1245 1246 // Write symbol name and DLL name. 1247 memcpy(p, s->symbolName.data(), s->symbolName.size()); 1248 p += s->symbolName.size() + 1; 1249 memcpy(p, s->dllName.data(), s->dllName.size()); 1250 MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName); 1251 ImportFile *impFile = make<ImportFile>(ctx, mbref); 1252 ctx.symtab.addFile(impFile); 1253 } 1254