1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Chunks.h" 11 #include "Config.h" 12 #include "DebugTypes.h" 13 #include "Driver.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm-c/lto.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/BinaryFormat/COFF.h" 24 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" 25 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" 26 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 27 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" 28 #include "llvm/DebugInfo/PDB/Native/NativeSession.h" 29 #include "llvm/DebugInfo/PDB/Native/PDBFile.h" 30 #include "llvm/LTO/LTO.h" 31 #include "llvm/Object/Binary.h" 32 #include "llvm/Object/COFF.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/Endian.h" 35 #include "llvm/Support/Error.h" 36 #include "llvm/Support/ErrorOr.h" 37 #include "llvm/Support/FileSystem.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include <cstring> 41 #include <system_error> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace llvm::COFF; 46 using namespace llvm::codeview; 47 using namespace llvm::object; 48 using namespace llvm::support::endian; 49 using namespace lld; 50 using namespace lld::coff; 51 52 using llvm::Triple; 53 using llvm::support::ulittle32_t; 54 55 // Returns the last element of a path, which is supposed to be a filename. 56 static StringRef getBasename(StringRef path) { 57 return sys::path::filename(path, sys::path::Style::windows); 58 } 59 60 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". 61 std::string lld::toString(const coff::InputFile *file) { 62 if (!file) 63 return "<internal>"; 64 if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind) 65 return std::string(file->getName()); 66 67 return (getBasename(file->parentName) + "(" + getBasename(file->getName()) + 68 ")") 69 .str(); 70 } 71 72 std::vector<ObjFile *> ObjFile::instances; 73 std::map<std::string, PDBInputFile *> PDBInputFile::instances; 74 std::vector<ImportFile *> ImportFile::instances; 75 std::vector<BitcodeFile *> BitcodeFile::instances; 76 77 /// Checks that Source is compatible with being a weak alias to Target. 78 /// If Source is Undefined and has no weak alias set, makes it a weak 79 /// alias to Target. 80 static void checkAndSetWeakAlias(SymbolTable *symtab, InputFile *f, 81 Symbol *source, Symbol *target) { 82 if (auto *u = dyn_cast<Undefined>(source)) { 83 if (u->weakAlias && u->weakAlias != target) { 84 // Weak aliases as produced by GCC are named in the form 85 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name 86 // of another symbol emitted near the weak symbol. 87 // Just use the definition from the first object file that defined 88 // this weak symbol. 89 if (config->mingw) 90 return; 91 symtab->reportDuplicate(source, f); 92 } 93 u->weakAlias = target; 94 } 95 } 96 97 static bool ignoredSymbolName(StringRef name) { 98 return name == "@feat.00" || name == "@comp.id"; 99 } 100 101 ArchiveFile::ArchiveFile(MemoryBufferRef m) : InputFile(ArchiveKind, m) {} 102 103 void ArchiveFile::parse() { 104 // Parse a MemoryBufferRef as an archive file. 105 file = CHECK(Archive::create(mb), this); 106 107 // Read the symbol table to construct Lazy objects. 108 for (const Archive::Symbol &sym : file->symbols()) 109 symtab->addLazyArchive(this, sym); 110 } 111 112 // Returns a buffer pointing to a member file containing a given symbol. 113 void ArchiveFile::addMember(const Archive::Symbol &sym) { 114 const Archive::Child &c = 115 CHECK(sym.getMember(), 116 "could not get the member for symbol " + toCOFFString(sym)); 117 118 // Return an empty buffer if we have already returned the same buffer. 119 if (!seen.insert(c.getChildOffset()).second) 120 return; 121 122 driver->enqueueArchiveMember(c, sym, getName()); 123 } 124 125 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) { 126 std::vector<MemoryBufferRef> v; 127 Error err = Error::success(); 128 for (const Archive::Child &c : file->children(err)) { 129 MemoryBufferRef mbref = 130 CHECK(c.getMemoryBufferRef(), 131 file->getFileName() + 132 ": could not get the buffer for a child of the archive"); 133 v.push_back(mbref); 134 } 135 if (err) 136 fatal(file->getFileName() + 137 ": Archive::children failed: " + toString(std::move(err))); 138 return v; 139 } 140 141 void LazyObjFile::fetch() { 142 if (mb.getBuffer().empty()) 143 return; 144 145 InputFile *file; 146 if (isBitcode(mb)) 147 file = make<BitcodeFile>(mb, "", 0, std::move(symbols)); 148 else 149 file = make<ObjFile>(mb, std::move(symbols)); 150 mb = {}; 151 symtab->addFile(file); 152 } 153 154 void LazyObjFile::parse() { 155 if (isBitcode(this->mb)) { 156 // Bitcode file. 157 std::unique_ptr<lto::InputFile> obj = 158 CHECK(lto::InputFile::create(this->mb), this); 159 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 160 if (!sym.isUndefined()) 161 symtab->addLazyObject(this, sym.getName()); 162 } 163 return; 164 } 165 166 // Native object file. 167 std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this); 168 COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get()); 169 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 170 for (uint32_t i = 0; i < numSymbols; ++i) { 171 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 172 if (coffSym.isUndefined() || !coffSym.isExternal() || 173 coffSym.isWeakExternal()) 174 continue; 175 StringRef name = check(coffObj->getSymbolName(coffSym)); 176 if (coffSym.isAbsolute() && ignoredSymbolName(name)) 177 continue; 178 symtab->addLazyObject(this, name); 179 i += coffSym.getNumberOfAuxSymbols(); 180 } 181 } 182 183 void ObjFile::parse() { 184 // Parse a memory buffer as a COFF file. 185 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 186 187 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 188 bin.release(); 189 coffObj.reset(obj); 190 } else { 191 fatal(toString(this) + " is not a COFF file"); 192 } 193 194 // Read section and symbol tables. 195 initializeChunks(); 196 initializeSymbols(); 197 initializeFlags(); 198 initializeDependencies(); 199 } 200 201 const coff_section *ObjFile::getSection(uint32_t i) { 202 auto sec = coffObj->getSection(i); 203 if (!sec) 204 fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError())); 205 return *sec; 206 } 207 208 // We set SectionChunk pointers in the SparseChunks vector to this value 209 // temporarily to mark comdat sections as having an unknown resolution. As we 210 // walk the object file's symbol table, once we visit either a leader symbol or 211 // an associative section definition together with the parent comdat's leader, 212 // we set the pointer to either nullptr (to mark the section as discarded) or a 213 // valid SectionChunk for that section. 214 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); 215 216 void ObjFile::initializeChunks() { 217 uint32_t numSections = coffObj->getNumberOfSections(); 218 sparseChunks.resize(numSections + 1); 219 for (uint32_t i = 1; i < numSections + 1; ++i) { 220 const coff_section *sec = getSection(i); 221 if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) 222 sparseChunks[i] = pendingComdat; 223 else 224 sparseChunks[i] = readSection(i, nullptr, ""); 225 } 226 } 227 228 SectionChunk *ObjFile::readSection(uint32_t sectionNumber, 229 const coff_aux_section_definition *def, 230 StringRef leaderName) { 231 const coff_section *sec = getSection(sectionNumber); 232 233 StringRef name; 234 if (Expected<StringRef> e = coffObj->getSectionName(sec)) 235 name = *e; 236 else 237 fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " + 238 toString(e.takeError())); 239 240 if (name == ".drectve") { 241 ArrayRef<uint8_t> data; 242 cantFail(coffObj->getSectionContents(sec, data)); 243 directives = StringRef((const char *)data.data(), data.size()); 244 return nullptr; 245 } 246 247 if (name == ".llvm_addrsig") { 248 addrsigSec = sec; 249 return nullptr; 250 } 251 252 if (name == ".llvm.call-graph-profile") { 253 callgraphSec = sec; 254 return nullptr; 255 } 256 257 // Object files may have DWARF debug info or MS CodeView debug info 258 // (or both). 259 // 260 // DWARF sections don't need any special handling from the perspective 261 // of the linker; they are just a data section containing relocations. 262 // We can just link them to complete debug info. 263 // 264 // CodeView needs linker support. We need to interpret debug info, 265 // and then write it to a separate .pdb file. 266 267 // Ignore DWARF debug info unless /debug is given. 268 if (!config->debug && name.startswith(".debug_")) 269 return nullptr; 270 271 if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) 272 return nullptr; 273 auto *c = make<SectionChunk>(this, sec); 274 if (def) 275 c->checksum = def->CheckSum; 276 277 // CodeView sections are stored to a different vector because they are not 278 // linked in the regular manner. 279 if (c->isCodeView()) 280 debugChunks.push_back(c); 281 else if (name == ".gfids$y") 282 guardFidChunks.push_back(c); 283 else if (name == ".giats$y") 284 guardIATChunks.push_back(c); 285 else if (name == ".gljmp$y") 286 guardLJmpChunks.push_back(c); 287 else if (name == ".sxdata") 288 sxDataChunks.push_back(c); 289 else if (config->tailMerge && sec->NumberOfRelocations == 0 && 290 name == ".rdata" && leaderName.startswith("??_C@")) 291 // COFF sections that look like string literal sections (i.e. no 292 // relocations, in .rdata, leader symbol name matches the MSVC name mangling 293 // for string literals) are subject to string tail merging. 294 MergeChunk::addSection(c); 295 else if (name == ".rsrc" || name.startswith(".rsrc$")) 296 resourceChunks.push_back(c); 297 else 298 chunks.push_back(c); 299 300 return c; 301 } 302 303 void ObjFile::includeResourceChunks() { 304 chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end()); 305 } 306 307 void ObjFile::readAssociativeDefinition( 308 COFFSymbolRef sym, const coff_aux_section_definition *def) { 309 readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj())); 310 } 311 312 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, 313 const coff_aux_section_definition *def, 314 uint32_t parentIndex) { 315 SectionChunk *parent = sparseChunks[parentIndex]; 316 int32_t sectionNumber = sym.getSectionNumber(); 317 318 auto diag = [&]() { 319 StringRef name = check(coffObj->getSymbolName(sym)); 320 321 StringRef parentName; 322 const coff_section *parentSec = getSection(parentIndex); 323 if (Expected<StringRef> e = coffObj->getSectionName(parentSec)) 324 parentName = *e; 325 error(toString(this) + ": associative comdat " + name + " (sec " + 326 Twine(sectionNumber) + ") has invalid reference to section " + 327 parentName + " (sec " + Twine(parentIndex) + ")"); 328 }; 329 330 if (parent == pendingComdat) { 331 // This can happen if an associative comdat refers to another associative 332 // comdat that appears after it (invalid per COFF spec) or to a section 333 // without any symbols. 334 diag(); 335 return; 336 } 337 338 // Check whether the parent is prevailing. If it is, so are we, and we read 339 // the section; otherwise mark it as discarded. 340 if (parent) { 341 SectionChunk *c = readSection(sectionNumber, def, ""); 342 sparseChunks[sectionNumber] = c; 343 if (c) { 344 c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; 345 parent->addAssociative(c); 346 } 347 } else { 348 sparseChunks[sectionNumber] = nullptr; 349 } 350 } 351 352 void ObjFile::recordPrevailingSymbolForMingw( 353 COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 354 // For comdat symbols in executable sections, where this is the copy 355 // of the section chunk we actually include instead of discarding it, 356 // add the symbol to a map to allow using it for implicitly 357 // associating .[px]data$<func> sections to it. 358 // Use the suffix from the .text$<func> instead of the leader symbol 359 // name, for cases where the names differ (i386 mangling/decorations, 360 // cases where the leader is a weak symbol named .weak.func.default*). 361 int32_t sectionNumber = sym.getSectionNumber(); 362 SectionChunk *sc = sparseChunks[sectionNumber]; 363 if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { 364 StringRef name = sc->getSectionName().split('$').second; 365 prevailingSectionMap[name] = sectionNumber; 366 } 367 } 368 369 void ObjFile::maybeAssociateSEHForMingw( 370 COFFSymbolRef sym, const coff_aux_section_definition *def, 371 const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 372 StringRef name = check(coffObj->getSymbolName(sym)); 373 if (name.consume_front(".pdata$") || name.consume_front(".xdata$") || 374 name.consume_front(".eh_frame$")) { 375 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly 376 // associative to the symbol <func>. 377 auto parentSym = prevailingSectionMap.find(name); 378 if (parentSym != prevailingSectionMap.end()) 379 readAssociativeDefinition(sym, def, parentSym->second); 380 } 381 } 382 383 Symbol *ObjFile::createRegular(COFFSymbolRef sym) { 384 SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; 385 if (sym.isExternal()) { 386 StringRef name = check(coffObj->getSymbolName(sym)); 387 if (sc) 388 return symtab->addRegular(this, name, sym.getGeneric(), sc, 389 sym.getValue()); 390 // For MinGW symbols named .weak.* that point to a discarded section, 391 // don't create an Undefined symbol. If nothing ever refers to the symbol, 392 // everything should be fine. If something actually refers to the symbol 393 // (e.g. the undefined weak alias), linking will fail due to undefined 394 // references at the end. 395 if (config->mingw && name.startswith(".weak.")) 396 return nullptr; 397 return symtab->addUndefined(name, this, false); 398 } 399 if (sc) 400 return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 401 /*IsExternal*/ false, sym.getGeneric(), sc); 402 return nullptr; 403 } 404 405 void ObjFile::initializeSymbols() { 406 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 407 symbols.resize(numSymbols); 408 409 SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases; 410 std::vector<uint32_t> pendingIndexes; 411 pendingIndexes.reserve(numSymbols); 412 413 DenseMap<StringRef, uint32_t> prevailingSectionMap; 414 std::vector<const coff_aux_section_definition *> comdatDefs( 415 coffObj->getNumberOfSections() + 1); 416 417 for (uint32_t i = 0; i < numSymbols; ++i) { 418 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 419 bool prevailingComdat; 420 if (coffSym.isUndefined()) { 421 symbols[i] = createUndefined(coffSym); 422 } else if (coffSym.isWeakExternal()) { 423 symbols[i] = createUndefined(coffSym); 424 uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex; 425 weakAliases.emplace_back(symbols[i], tagIndex); 426 } else if (Optional<Symbol *> optSym = 427 createDefined(coffSym, comdatDefs, prevailingComdat)) { 428 symbols[i] = *optSym; 429 if (config->mingw && prevailingComdat) 430 recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap); 431 } else { 432 // createDefined() returns None if a symbol belongs to a section that 433 // was pending at the point when the symbol was read. This can happen in 434 // two cases: 435 // 1) section definition symbol for a comdat leader; 436 // 2) symbol belongs to a comdat section associated with another section. 437 // In both of these cases, we can expect the section to be resolved by 438 // the time we finish visiting the remaining symbols in the symbol 439 // table. So we postpone the handling of this symbol until that time. 440 pendingIndexes.push_back(i); 441 } 442 i += coffSym.getNumberOfAuxSymbols(); 443 } 444 445 for (uint32_t i : pendingIndexes) { 446 COFFSymbolRef sym = check(coffObj->getSymbol(i)); 447 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 448 if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) 449 readAssociativeDefinition(sym, def); 450 else if (config->mingw) 451 maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); 452 } 453 if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { 454 StringRef name = check(coffObj->getSymbolName(sym)); 455 log("comdat section " + name + 456 " without leader and unassociated, discarding"); 457 continue; 458 } 459 symbols[i] = createRegular(sym); 460 } 461 462 for (auto &kv : weakAliases) { 463 Symbol *sym = kv.first; 464 uint32_t idx = kv.second; 465 checkAndSetWeakAlias(symtab, this, sym, symbols[idx]); 466 } 467 468 // Free the memory used by sparseChunks now that symbol loading is finished. 469 decltype(sparseChunks)().swap(sparseChunks); 470 } 471 472 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) { 473 StringRef name = check(coffObj->getSymbolName(sym)); 474 return symtab->addUndefined(name, this, sym.isWeakExternal()); 475 } 476 477 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, 478 int32_t section) { 479 uint32_t numSymbols = obj->getNumberOfSymbols(); 480 for (uint32_t i = 0; i < numSymbols; ++i) { 481 COFFSymbolRef sym = check(obj->getSymbol(i)); 482 if (sym.getSectionNumber() != section) 483 continue; 484 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) 485 return def; 486 } 487 return nullptr; 488 } 489 490 void ObjFile::handleComdatSelection( 491 COFFSymbolRef sym, COMDATType &selection, bool &prevailing, 492 DefinedRegular *leader, 493 const llvm::object::coff_aux_section_definition *def) { 494 if (prevailing) 495 return; 496 // There's already an existing comdat for this symbol: `Leader`. 497 // Use the comdats's selection field to determine if the new 498 // symbol in `Sym` should be discarded, produce a duplicate symbol 499 // error, etc. 500 501 SectionChunk *leaderChunk = nullptr; 502 COMDATType leaderSelection = IMAGE_COMDAT_SELECT_ANY; 503 504 if (leader->data) { 505 leaderChunk = leader->getChunk(); 506 leaderSelection = leaderChunk->selection; 507 } else { 508 // FIXME: comdats from LTO files don't know their selection; treat them 509 // as "any". 510 selection = leaderSelection; 511 } 512 513 if ((selection == IMAGE_COMDAT_SELECT_ANY && 514 leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || 515 (selection == IMAGE_COMDAT_SELECT_LARGEST && 516 leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { 517 // cl.exe picks "any" for vftables when building with /GR- and 518 // "largest" when building with /GR. To be able to link object files 519 // compiled with each flag, "any" and "largest" are merged as "largest". 520 leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; 521 } 522 523 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". 524 // Clang on the other hand picks "any". To be able to link two object files 525 // with a __declspec(selectany) declaration, one compiled with gcc and the 526 // other with clang, we merge them as proper "same size as" 527 if (config->mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && 528 leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || 529 (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && 530 leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { 531 leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; 532 } 533 534 // Other than that, comdat selections must match. This is a bit more 535 // strict than link.exe which allows merging "any" and "largest" if "any" 536 // is the first symbol the linker sees, and it allows merging "largest" 537 // with everything (!) if "largest" is the first symbol the linker sees. 538 // Making this symmetric independent of which selection is seen first 539 // seems better though. 540 // (This behavior matches ModuleLinker::getComdatResult().) 541 if (selection != leaderSelection) { 542 log(("conflicting comdat type for " + toString(*leader) + ": " + 543 Twine((int)leaderSelection) + " in " + toString(leader->getFile()) + 544 " and " + Twine((int)selection) + " in " + toString(this)) 545 .str()); 546 symtab->reportDuplicate(leader, this); 547 return; 548 } 549 550 switch (selection) { 551 case IMAGE_COMDAT_SELECT_NODUPLICATES: 552 symtab->reportDuplicate(leader, this); 553 break; 554 555 case IMAGE_COMDAT_SELECT_ANY: 556 // Nothing to do. 557 break; 558 559 case IMAGE_COMDAT_SELECT_SAME_SIZE: 560 if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { 561 if (!config->mingw) { 562 symtab->reportDuplicate(leader, this); 563 } else { 564 const coff_aux_section_definition *leaderDef = findSectionDef( 565 leaderChunk->file->getCOFFObj(), leaderChunk->getSectionNumber()); 566 if (!leaderDef || leaderDef->Length != def->Length) 567 symtab->reportDuplicate(leader, this); 568 } 569 } 570 break; 571 572 case IMAGE_COMDAT_SELECT_EXACT_MATCH: { 573 SectionChunk newChunk(this, getSection(sym)); 574 // link.exe only compares section contents here and doesn't complain 575 // if the two comdat sections have e.g. different alignment. 576 // Match that. 577 if (leaderChunk->getContents() != newChunk.getContents()) 578 symtab->reportDuplicate(leader, this, &newChunk, sym.getValue()); 579 break; 580 } 581 582 case IMAGE_COMDAT_SELECT_ASSOCIATIVE: 583 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. 584 // (This means lld-link doesn't produce duplicate symbol errors for 585 // associative comdats while link.exe does, but associate comdats 586 // are never extern in practice.) 587 llvm_unreachable("createDefined not called for associative comdats"); 588 589 case IMAGE_COMDAT_SELECT_LARGEST: 590 if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { 591 // Replace the existing comdat symbol with the new one. 592 StringRef name = check(coffObj->getSymbolName(sym)); 593 // FIXME: This is incorrect: With /opt:noref, the previous sections 594 // make it into the final executable as well. Correct handling would 595 // be to undo reading of the whole old section that's being replaced, 596 // or doing one pass that determines what the final largest comdat 597 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading 598 // only the largest one. 599 replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true, 600 /*IsExternal*/ true, sym.getGeneric(), 601 nullptr); 602 prevailing = true; 603 } 604 break; 605 606 case IMAGE_COMDAT_SELECT_NEWEST: 607 llvm_unreachable("should have been rejected earlier"); 608 } 609 } 610 611 Optional<Symbol *> ObjFile::createDefined( 612 COFFSymbolRef sym, 613 std::vector<const coff_aux_section_definition *> &comdatDefs, 614 bool &prevailing) { 615 prevailing = false; 616 auto getName = [&]() { return check(coffObj->getSymbolName(sym)); }; 617 618 if (sym.isCommon()) { 619 auto *c = make<CommonChunk>(sym); 620 chunks.push_back(c); 621 return symtab->addCommon(this, getName(), sym.getValue(), sym.getGeneric(), 622 c); 623 } 624 625 if (sym.isAbsolute()) { 626 StringRef name = getName(); 627 628 if (name == "@feat.00") 629 feat00Flags = sym.getValue(); 630 // Skip special symbols. 631 if (ignoredSymbolName(name)) 632 return nullptr; 633 634 if (sym.isExternal()) 635 return symtab->addAbsolute(name, sym); 636 return make<DefinedAbsolute>(name, sym); 637 } 638 639 int32_t sectionNumber = sym.getSectionNumber(); 640 if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) 641 return nullptr; 642 643 if (llvm::COFF::isReservedSectionNumber(sectionNumber)) 644 fatal(toString(this) + ": " + getName() + 645 " should not refer to special section " + Twine(sectionNumber)); 646 647 if ((uint32_t)sectionNumber >= sparseChunks.size()) 648 fatal(toString(this) + ": " + getName() + 649 " should not refer to non-existent section " + Twine(sectionNumber)); 650 651 // Comdat handling. 652 // A comdat symbol consists of two symbol table entries. 653 // The first symbol entry has the name of the section (e.g. .text), fixed 654 // values for the other fields, and one auxiliary record. 655 // The second symbol entry has the name of the comdat symbol, called the 656 // "comdat leader". 657 // When this function is called for the first symbol entry of a comdat, 658 // it sets comdatDefs and returns None, and when it's called for the second 659 // symbol entry it reads comdatDefs and then sets it back to nullptr. 660 661 // Handle comdat leader. 662 if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { 663 comdatDefs[sectionNumber] = nullptr; 664 DefinedRegular *leader; 665 666 if (sym.isExternal()) { 667 std::tie(leader, prevailing) = 668 symtab->addComdat(this, getName(), sym.getGeneric()); 669 } else { 670 leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 671 /*IsExternal*/ false, sym.getGeneric()); 672 prevailing = true; 673 } 674 675 if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || 676 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe 677 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. 678 def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { 679 fatal("unknown comdat type " + std::to_string((int)def->Selection) + 680 " for " + getName() + " in " + toString(this)); 681 } 682 COMDATType selection = (COMDATType)def->Selection; 683 684 if (leader->isCOMDAT) 685 handleComdatSelection(sym, selection, prevailing, leader, def); 686 687 if (prevailing) { 688 SectionChunk *c = readSection(sectionNumber, def, getName()); 689 sparseChunks[sectionNumber] = c; 690 c->sym = cast<DefinedRegular>(leader); 691 c->selection = selection; 692 cast<DefinedRegular>(leader)->data = &c->repl; 693 } else { 694 sparseChunks[sectionNumber] = nullptr; 695 } 696 return leader; 697 } 698 699 // Prepare to handle the comdat leader symbol by setting the section's 700 // ComdatDefs pointer if we encounter a non-associative comdat. 701 if (sparseChunks[sectionNumber] == pendingComdat) { 702 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 703 if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) 704 comdatDefs[sectionNumber] = def; 705 } 706 return None; 707 } 708 709 return createRegular(sym); 710 } 711 712 MachineTypes ObjFile::getMachineType() { 713 if (coffObj) 714 return static_cast<MachineTypes>(coffObj->getMachine()); 715 return IMAGE_FILE_MACHINE_UNKNOWN; 716 } 717 718 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { 719 if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName)) 720 return sec->consumeDebugMagic(); 721 return {}; 722 } 723 724 // OBJ files systematically store critical information in a .debug$S stream, 725 // even if the TU was compiled with no debug info. At least two records are 726 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the 727 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is 728 // currently used to initialize the hotPatchable member. 729 void ObjFile::initializeFlags() { 730 ArrayRef<uint8_t> data = getDebugSection(".debug$S"); 731 if (data.empty()) 732 return; 733 734 DebugSubsectionArray subsections; 735 736 BinaryStreamReader reader(data, support::little); 737 ExitOnError exitOnErr; 738 exitOnErr(reader.readArray(subsections, data.size())); 739 740 for (const DebugSubsectionRecord &ss : subsections) { 741 if (ss.kind() != DebugSubsectionKind::Symbols) 742 continue; 743 744 unsigned offset = 0; 745 746 // Only parse the first two records. We are only looking for S_OBJNAME 747 // and S_COMPILE3, and they usually appear at the beginning of the 748 // stream. 749 for (unsigned i = 0; i < 2; ++i) { 750 Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset); 751 if (!sym) { 752 consumeError(sym.takeError()); 753 return; 754 } 755 if (sym->kind() == SymbolKind::S_COMPILE3) { 756 auto cs = 757 cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get())); 758 hotPatchable = 759 (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; 760 } 761 if (sym->kind() == SymbolKind::S_OBJNAME) { 762 auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>( 763 sym.get())); 764 pchSignature = objName.Signature; 765 } 766 offset += sym->length(); 767 } 768 } 769 } 770 771 // Depending on the compilation flags, OBJs can refer to external files, 772 // necessary to merge this OBJ into the final PDB. We currently support two 773 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. 774 // And PDB type servers, when compiling with /Zi. This function extracts these 775 // dependencies and makes them available as a TpiSource interface (see 776 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular 777 // output even with /Yc and /Yu and with /Zi. 778 void ObjFile::initializeDependencies() { 779 if (!config->debug) 780 return; 781 782 bool isPCH = false; 783 784 ArrayRef<uint8_t> data = getDebugSection(".debug$P"); 785 if (!data.empty()) 786 isPCH = true; 787 else 788 data = getDebugSection(".debug$T"); 789 790 // Don't make a TpiSource for objects with no debug info. If the object has 791 // symbols but no types, make a plain, empty TpiSource anyway, because it 792 // simplifies adding the symbols later. 793 if (data.empty()) { 794 if (!debugChunks.empty()) 795 debugTypesObj = makeTpiSource(this); 796 return; 797 } 798 799 // Get the first type record. It will indicate if this object uses a type 800 // server (/Zi) or a PCH file (/Yu). 801 CVTypeArray types; 802 BinaryStreamReader reader(data, support::little); 803 cantFail(reader.readArray(types, reader.getLength())); 804 CVTypeArray::Iterator firstType = types.begin(); 805 if (firstType == types.end()) 806 return; 807 808 // Remember the .debug$T or .debug$P section. 809 debugTypes = data; 810 811 // This object file is a PCH file that others will depend on. 812 if (isPCH) { 813 debugTypesObj = makePrecompSource(this); 814 return; 815 } 816 817 // This object file was compiled with /Zi. Enqueue the PDB dependency. 818 if (firstType->kind() == LF_TYPESERVER2) { 819 TypeServer2Record ts = cantFail( 820 TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data())); 821 debugTypesObj = makeUseTypeServerSource(this, ts); 822 PDBInputFile::enqueue(ts.getName(), this); 823 return; 824 } 825 826 // This object was compiled with /Yu. It uses types from another object file 827 // with a matching signature. 828 if (firstType->kind() == LF_PRECOMP) { 829 PrecompRecord precomp = cantFail( 830 TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data())); 831 debugTypesObj = makeUsePrecompSource(this, precomp); 832 // Drop the LF_PRECOMP record from the input stream. 833 debugTypes = debugTypes.drop_front(firstType->RecordData.size()); 834 return; 835 } 836 837 // This is a plain old object file. 838 debugTypesObj = makeTpiSource(this); 839 } 840 841 // Make a PDB path assuming the PDB is in the same folder as the OBJ 842 static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) { 843 StringRef localPath = 844 !file->parentName.empty() ? file->parentName : file->getName(); 845 SmallString<128> path = sys::path::parent_path(localPath); 846 847 // Currently, type server PDBs are only created by MSVC cl, which only runs 848 // on Windows, so we can assume type server paths are Windows style. 849 sys::path::append(path, 850 sys::path::filename(tSPath, sys::path::Style::windows)); 851 return std::string(path.str()); 852 } 853 854 // The casing of the PDB path stamped in the OBJ can differ from the actual path 855 // on disk. With this, we ensure to always use lowercase as a key for the 856 // PDBInputFile::instances map, at least on Windows. 857 static std::string normalizePdbPath(StringRef path) { 858 #if defined(_WIN32) 859 return path.lower(); 860 #else // LINUX 861 return std::string(path); 862 #endif 863 } 864 865 // If existing, return the actual PDB path on disk. 866 static Optional<std::string> findPdbPath(StringRef pdbPath, 867 ObjFile *dependentFile) { 868 // Ensure the file exists before anything else. In some cases, if the path 869 // points to a removable device, Driver::enqueuePath() would fail with an 870 // error (EAGAIN, "resource unavailable try again") which we want to skip 871 // silently. 872 if (llvm::sys::fs::exists(pdbPath)) 873 return normalizePdbPath(pdbPath); 874 std::string ret = getPdbBaseName(dependentFile, pdbPath); 875 if (llvm::sys::fs::exists(ret)) 876 return normalizePdbPath(ret); 877 return None; 878 } 879 880 PDBInputFile::PDBInputFile(MemoryBufferRef m) : InputFile(PDBKind, m) {} 881 882 PDBInputFile::~PDBInputFile() = default; 883 884 PDBInputFile *PDBInputFile::findFromRecordPath(StringRef path, 885 ObjFile *fromFile) { 886 auto p = findPdbPath(path.str(), fromFile); 887 if (!p) 888 return nullptr; 889 auto it = PDBInputFile::instances.find(*p); 890 if (it != PDBInputFile::instances.end()) 891 return it->second; 892 return nullptr; 893 } 894 895 void PDBInputFile::enqueue(StringRef path, ObjFile *fromFile) { 896 auto p = findPdbPath(path.str(), fromFile); 897 if (!p) 898 return; 899 auto it = PDBInputFile::instances.emplace(*p, nullptr); 900 if (!it.second) 901 return; // already scheduled for load 902 driver->enqueuePDB(*p); 903 } 904 905 void PDBInputFile::parse() { 906 PDBInputFile::instances[mb.getBufferIdentifier().str()] = this; 907 908 std::unique_ptr<pdb::IPDBSession> thisSession; 909 loadErr.emplace(pdb::NativeSession::createFromPdb( 910 MemoryBuffer::getMemBuffer(mb, false), thisSession)); 911 if (*loadErr) 912 return; // fail silently at this point - the error will be handled later, 913 // when merging the debug type stream 914 915 session.reset(static_cast<pdb::NativeSession *>(thisSession.release())); 916 917 pdb::PDBFile &pdbFile = session->getPDBFile(); 918 auto expectedInfo = pdbFile.getPDBInfoStream(); 919 // All PDB Files should have an Info stream. 920 if (!expectedInfo) { 921 loadErr.emplace(expectedInfo.takeError()); 922 return; 923 } 924 debugTypesObj = makeTypeServerSource(this); 925 } 926 927 // Used only for DWARF debug info, which is not common (except in MinGW 928 // environments). This returns an optional pair of file name and line 929 // number for where the variable was defined. 930 Optional<std::pair<StringRef, uint32_t>> 931 ObjFile::getVariableLocation(StringRef var) { 932 if (!dwarf) { 933 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 934 if (!dwarf) 935 return None; 936 } 937 if (config->machine == I386) 938 var.consume_front("_"); 939 Optional<std::pair<std::string, unsigned>> ret = dwarf->getVariableLoc(var); 940 if (!ret) 941 return None; 942 return std::make_pair(saver.save(ret->first), ret->second); 943 } 944 945 // Used only for DWARF debug info, which is not common (except in MinGW 946 // environments). 947 Optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, 948 uint32_t sectionIndex) { 949 if (!dwarf) { 950 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 951 if (!dwarf) 952 return None; 953 } 954 955 return dwarf->getDILineInfo(offset, sectionIndex); 956 } 957 958 static StringRef ltrim1(StringRef s, const char *chars) { 959 if (!s.empty() && strchr(chars, s[0])) 960 return s.substr(1); 961 return s; 962 } 963 964 void ImportFile::parse() { 965 const char *buf = mb.getBufferStart(); 966 const auto *hdr = reinterpret_cast<const coff_import_header *>(buf); 967 968 // Check if the total size is valid. 969 if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) 970 fatal("broken import library"); 971 972 // Read names and create an __imp_ symbol. 973 StringRef name = saver.save(StringRef(buf + sizeof(*hdr))); 974 StringRef impName = saver.save("__imp_" + name); 975 const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1; 976 dllName = std::string(StringRef(nameStart)); 977 StringRef extName; 978 switch (hdr->getNameType()) { 979 case IMPORT_ORDINAL: 980 extName = ""; 981 break; 982 case IMPORT_NAME: 983 extName = name; 984 break; 985 case IMPORT_NAME_NOPREFIX: 986 extName = ltrim1(name, "?@_"); 987 break; 988 case IMPORT_NAME_UNDECORATE: 989 extName = ltrim1(name, "?@_"); 990 extName = extName.substr(0, extName.find('@')); 991 break; 992 } 993 994 this->hdr = hdr; 995 externalName = extName; 996 997 impSym = symtab->addImportData(impName, this); 998 // If this was a duplicate, we logged an error but may continue; 999 // in this case, impSym is nullptr. 1000 if (!impSym) 1001 return; 1002 1003 if (hdr->getType() == llvm::COFF::IMPORT_CONST) 1004 static_cast<void>(symtab->addImportData(name, this)); 1005 1006 // If type is function, we need to create a thunk which jump to an 1007 // address pointed by the __imp_ symbol. (This allows you to call 1008 // DLL functions just like regular non-DLL functions.) 1009 if (hdr->getType() == llvm::COFF::IMPORT_CODE) 1010 thunkSym = symtab->addImportThunk( 1011 name, cast_or_null<DefinedImportData>(impSym), hdr->Machine); 1012 } 1013 1014 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1015 uint64_t offsetInArchive) 1016 : BitcodeFile(mb, archiveName, offsetInArchive, {}) {} 1017 1018 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1019 uint64_t offsetInArchive, 1020 std::vector<Symbol *> &&symbols) 1021 : InputFile(BitcodeKind, mb), symbols(std::move(symbols)) { 1022 std::string path = mb.getBufferIdentifier().str(); 1023 if (config->thinLTOIndexOnly) 1024 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1025 1026 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1027 // name. If two archives define two members with the same name, this 1028 // causes a collision which result in only one of the objects being taken 1029 // into consideration at LTO time (which very likely causes undefined 1030 // symbols later in the link stage). So we append file offset to make 1031 // filename unique. 1032 MemoryBufferRef mbref( 1033 mb.getBuffer(), 1034 saver.save(archiveName.empty() ? path 1035 : archiveName + sys::path::filename(path) + 1036 utostr(offsetInArchive))); 1037 1038 obj = check(lto::InputFile::create(mbref)); 1039 } 1040 1041 BitcodeFile::~BitcodeFile() = default; 1042 1043 void BitcodeFile::parse() { 1044 std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); 1045 for (size_t i = 0; i != obj->getComdatTable().size(); ++i) 1046 // FIXME: lto::InputFile doesn't keep enough data to do correct comdat 1047 // selection handling. 1048 comdat[i] = symtab->addComdat(this, saver.save(obj->getComdatTable()[i])); 1049 for (const lto::InputFile::Symbol &objSym : obj->symbols()) { 1050 StringRef symName = saver.save(objSym.getName()); 1051 int comdatIndex = objSym.getComdatIndex(); 1052 Symbol *sym; 1053 if (objSym.isUndefined()) { 1054 sym = symtab->addUndefined(symName, this, false); 1055 } else if (objSym.isCommon()) { 1056 sym = symtab->addCommon(this, symName, objSym.getCommonSize()); 1057 } else if (objSym.isWeak() && objSym.isIndirect()) { 1058 // Weak external. 1059 sym = symtab->addUndefined(symName, this, true); 1060 std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); 1061 Symbol *alias = symtab->addUndefined(saver.save(fallback)); 1062 checkAndSetWeakAlias(symtab, this, sym, alias); 1063 } else if (comdatIndex != -1) { 1064 if (symName == obj->getComdatTable()[comdatIndex]) 1065 sym = comdat[comdatIndex].first; 1066 else if (comdat[comdatIndex].second) 1067 sym = symtab->addRegular(this, symName); 1068 else 1069 sym = symtab->addUndefined(symName, this, false); 1070 } else { 1071 sym = symtab->addRegular(this, symName); 1072 } 1073 symbols.push_back(sym); 1074 if (objSym.isUsed()) 1075 config->gcroot.push_back(sym); 1076 } 1077 directives = obj->getCOFFLinkerOpts(); 1078 } 1079 1080 MachineTypes BitcodeFile::getMachineType() { 1081 switch (Triple(obj->getTargetTriple()).getArch()) { 1082 case Triple::x86_64: 1083 return AMD64; 1084 case Triple::x86: 1085 return I386; 1086 case Triple::arm: 1087 return ARMNT; 1088 case Triple::aarch64: 1089 return ARM64; 1090 default: 1091 return IMAGE_FILE_MACHINE_UNKNOWN; 1092 } 1093 } 1094 1095 std::string lld::coff::replaceThinLTOSuffix(StringRef path) { 1096 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1097 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1098 1099 if (path.consume_back(suffix)) 1100 return (path + repl).str(); 1101 return std::string(path); 1102 } 1103