1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Chunks.h" 11 #include "Config.h" 12 #include "DebugTypes.h" 13 #include "Driver.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm-c/lto.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/BinaryFormat/COFF.h" 24 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" 25 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" 26 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 27 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" 28 #include "llvm/DebugInfo/PDB/Native/NativeSession.h" 29 #include "llvm/DebugInfo/PDB/Native/PDBFile.h" 30 #include "llvm/LTO/LTO.h" 31 #include "llvm/Object/Binary.h" 32 #include "llvm/Object/COFF.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/Endian.h" 35 #include "llvm/Support/Error.h" 36 #include "llvm/Support/ErrorOr.h" 37 #include "llvm/Support/FileSystem.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include <cstring> 41 #include <system_error> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace llvm::COFF; 46 using namespace llvm::codeview; 47 using namespace llvm::object; 48 using namespace llvm::support::endian; 49 using namespace lld; 50 using namespace lld::coff; 51 52 using llvm::Triple; 53 using llvm::support::ulittle32_t; 54 55 // Returns the last element of a path, which is supposed to be a filename. 56 static StringRef getBasename(StringRef path) { 57 return sys::path::filename(path, sys::path::Style::windows); 58 } 59 60 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". 61 std::string lld::toString(const coff::InputFile *file) { 62 if (!file) 63 return "<internal>"; 64 if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind) 65 return std::string(file->getName()); 66 67 return (getBasename(file->parentName) + "(" + getBasename(file->getName()) + 68 ")") 69 .str(); 70 } 71 72 std::vector<ObjFile *> ObjFile::instances; 73 std::map<std::string, PDBInputFile *> PDBInputFile::instances; 74 std::vector<ImportFile *> ImportFile::instances; 75 std::vector<BitcodeFile *> BitcodeFile::instances; 76 77 /// Checks that Source is compatible with being a weak alias to Target. 78 /// If Source is Undefined and has no weak alias set, makes it a weak 79 /// alias to Target. 80 static void checkAndSetWeakAlias(SymbolTable *symtab, InputFile *f, 81 Symbol *source, Symbol *target) { 82 if (auto *u = dyn_cast<Undefined>(source)) { 83 if (u->weakAlias && u->weakAlias != target) { 84 // Weak aliases as produced by GCC are named in the form 85 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name 86 // of another symbol emitted near the weak symbol. 87 // Just use the definition from the first object file that defined 88 // this weak symbol. 89 if (config->mingw) 90 return; 91 symtab->reportDuplicate(source, f); 92 } 93 u->weakAlias = target; 94 } 95 } 96 97 static bool ignoredSymbolName(StringRef name) { 98 return name == "@feat.00" || name == "@comp.id"; 99 } 100 101 ArchiveFile::ArchiveFile(MemoryBufferRef m) : InputFile(ArchiveKind, m) {} 102 103 void ArchiveFile::parse() { 104 // Parse a MemoryBufferRef as an archive file. 105 file = CHECK(Archive::create(mb), this); 106 107 // Read the symbol table to construct Lazy objects. 108 for (const Archive::Symbol &sym : file->symbols()) 109 symtab->addLazyArchive(this, sym); 110 } 111 112 // Returns a buffer pointing to a member file containing a given symbol. 113 void ArchiveFile::addMember(const Archive::Symbol &sym) { 114 const Archive::Child &c = 115 CHECK(sym.getMember(), 116 "could not get the member for symbol " + toCOFFString(sym)); 117 118 // Return an empty buffer if we have already returned the same buffer. 119 if (!seen.insert(c.getChildOffset()).second) 120 return; 121 122 driver->enqueueArchiveMember(c, sym, getName()); 123 } 124 125 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) { 126 std::vector<MemoryBufferRef> v; 127 Error err = Error::success(); 128 for (const Archive::Child &c : file->children(err)) { 129 MemoryBufferRef mbref = 130 CHECK(c.getMemoryBufferRef(), 131 file->getFileName() + 132 ": could not get the buffer for a child of the archive"); 133 v.push_back(mbref); 134 } 135 if (err) 136 fatal(file->getFileName() + 137 ": Archive::children failed: " + toString(std::move(err))); 138 return v; 139 } 140 141 void LazyObjFile::fetch() { 142 if (mb.getBuffer().empty()) 143 return; 144 145 InputFile *file; 146 if (isBitcode(mb)) 147 file = make<BitcodeFile>(mb, "", 0, std::move(symbols)); 148 else 149 file = make<ObjFile>(mb, std::move(symbols)); 150 mb = {}; 151 symtab->addFile(file); 152 } 153 154 void LazyObjFile::parse() { 155 if (isBitcode(this->mb)) { 156 // Bitcode file. 157 std::unique_ptr<lto::InputFile> obj = 158 CHECK(lto::InputFile::create(this->mb), this); 159 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 160 if (!sym.isUndefined()) 161 symtab->addLazyObject(this, sym.getName()); 162 } 163 return; 164 } 165 166 // Native object file. 167 std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this); 168 COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get()); 169 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 170 for (uint32_t i = 0; i < numSymbols; ++i) { 171 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 172 if (coffSym.isUndefined() || !coffSym.isExternal() || 173 coffSym.isWeakExternal()) 174 continue; 175 StringRef name = check(coffObj->getSymbolName(coffSym)); 176 if (coffSym.isAbsolute() && ignoredSymbolName(name)) 177 continue; 178 symtab->addLazyObject(this, name); 179 i += coffSym.getNumberOfAuxSymbols(); 180 } 181 } 182 183 void ObjFile::parse() { 184 // Parse a memory buffer as a COFF file. 185 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 186 187 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 188 bin.release(); 189 coffObj.reset(obj); 190 } else { 191 fatal(toString(this) + " is not a COFF file"); 192 } 193 194 // Read section and symbol tables. 195 initializeChunks(); 196 initializeSymbols(); 197 initializeFlags(); 198 initializeDependencies(); 199 } 200 201 const coff_section *ObjFile::getSection(uint32_t i) { 202 auto sec = coffObj->getSection(i); 203 if (!sec) 204 fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError())); 205 return *sec; 206 } 207 208 // We set SectionChunk pointers in the SparseChunks vector to this value 209 // temporarily to mark comdat sections as having an unknown resolution. As we 210 // walk the object file's symbol table, once we visit either a leader symbol or 211 // an associative section definition together with the parent comdat's leader, 212 // we set the pointer to either nullptr (to mark the section as discarded) or a 213 // valid SectionChunk for that section. 214 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); 215 216 void ObjFile::initializeChunks() { 217 uint32_t numSections = coffObj->getNumberOfSections(); 218 sparseChunks.resize(numSections + 1); 219 for (uint32_t i = 1; i < numSections + 1; ++i) { 220 const coff_section *sec = getSection(i); 221 if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) 222 sparseChunks[i] = pendingComdat; 223 else 224 sparseChunks[i] = readSection(i, nullptr, ""); 225 } 226 } 227 228 SectionChunk *ObjFile::readSection(uint32_t sectionNumber, 229 const coff_aux_section_definition *def, 230 StringRef leaderName) { 231 const coff_section *sec = getSection(sectionNumber); 232 233 StringRef name; 234 if (Expected<StringRef> e = coffObj->getSectionName(sec)) 235 name = *e; 236 else 237 fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " + 238 toString(e.takeError())); 239 240 if (name == ".drectve") { 241 ArrayRef<uint8_t> data; 242 cantFail(coffObj->getSectionContents(sec, data)); 243 directives = StringRef((const char *)data.data(), data.size()); 244 return nullptr; 245 } 246 247 if (name == ".llvm_addrsig") { 248 addrsigSec = sec; 249 return nullptr; 250 } 251 252 if (name == ".llvm.call-graph-profile") { 253 callgraphSec = sec; 254 return nullptr; 255 } 256 257 // Object files may have DWARF debug info or MS CodeView debug info 258 // (or both). 259 // 260 // DWARF sections don't need any special handling from the perspective 261 // of the linker; they are just a data section containing relocations. 262 // We can just link them to complete debug info. 263 // 264 // CodeView needs linker support. We need to interpret debug info, 265 // and then write it to a separate .pdb file. 266 267 // Ignore DWARF debug info unless /debug is given. 268 if (!config->debug && name.startswith(".debug_")) 269 return nullptr; 270 271 if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) 272 return nullptr; 273 auto *c = make<SectionChunk>(this, sec); 274 if (def) 275 c->checksum = def->CheckSum; 276 277 // CodeView sections are stored to a different vector because they are not 278 // linked in the regular manner. 279 if (c->isCodeView()) 280 debugChunks.push_back(c); 281 else if (name == ".gfids$y") 282 guardFidChunks.push_back(c); 283 else if (name == ".giats$y") 284 guardIATChunks.push_back(c); 285 else if (name == ".gljmp$y") 286 guardLJmpChunks.push_back(c); 287 else if (name == ".gehcont$y") 288 guardEHContChunks.push_back(c); 289 else if (name == ".sxdata") 290 sxDataChunks.push_back(c); 291 else if (config->tailMerge && sec->NumberOfRelocations == 0 && 292 name == ".rdata" && leaderName.startswith("??_C@")) 293 // COFF sections that look like string literal sections (i.e. no 294 // relocations, in .rdata, leader symbol name matches the MSVC name mangling 295 // for string literals) are subject to string tail merging. 296 MergeChunk::addSection(c); 297 else if (name == ".rsrc" || name.startswith(".rsrc$")) 298 resourceChunks.push_back(c); 299 else 300 chunks.push_back(c); 301 302 return c; 303 } 304 305 void ObjFile::includeResourceChunks() { 306 chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end()); 307 } 308 309 void ObjFile::readAssociativeDefinition( 310 COFFSymbolRef sym, const coff_aux_section_definition *def) { 311 readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj())); 312 } 313 314 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, 315 const coff_aux_section_definition *def, 316 uint32_t parentIndex) { 317 SectionChunk *parent = sparseChunks[parentIndex]; 318 int32_t sectionNumber = sym.getSectionNumber(); 319 320 auto diag = [&]() { 321 StringRef name = check(coffObj->getSymbolName(sym)); 322 323 StringRef parentName; 324 const coff_section *parentSec = getSection(parentIndex); 325 if (Expected<StringRef> e = coffObj->getSectionName(parentSec)) 326 parentName = *e; 327 error(toString(this) + ": associative comdat " + name + " (sec " + 328 Twine(sectionNumber) + ") has invalid reference to section " + 329 parentName + " (sec " + Twine(parentIndex) + ")"); 330 }; 331 332 if (parent == pendingComdat) { 333 // This can happen if an associative comdat refers to another associative 334 // comdat that appears after it (invalid per COFF spec) or to a section 335 // without any symbols. 336 diag(); 337 return; 338 } 339 340 // Check whether the parent is prevailing. If it is, so are we, and we read 341 // the section; otherwise mark it as discarded. 342 if (parent) { 343 SectionChunk *c = readSection(sectionNumber, def, ""); 344 sparseChunks[sectionNumber] = c; 345 if (c) { 346 c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; 347 parent->addAssociative(c); 348 } 349 } else { 350 sparseChunks[sectionNumber] = nullptr; 351 } 352 } 353 354 void ObjFile::recordPrevailingSymbolForMingw( 355 COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 356 // For comdat symbols in executable sections, where this is the copy 357 // of the section chunk we actually include instead of discarding it, 358 // add the symbol to a map to allow using it for implicitly 359 // associating .[px]data$<func> sections to it. 360 // Use the suffix from the .text$<func> instead of the leader symbol 361 // name, for cases where the names differ (i386 mangling/decorations, 362 // cases where the leader is a weak symbol named .weak.func.default*). 363 int32_t sectionNumber = sym.getSectionNumber(); 364 SectionChunk *sc = sparseChunks[sectionNumber]; 365 if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { 366 StringRef name = sc->getSectionName().split('$').second; 367 prevailingSectionMap[name] = sectionNumber; 368 } 369 } 370 371 void ObjFile::maybeAssociateSEHForMingw( 372 COFFSymbolRef sym, const coff_aux_section_definition *def, 373 const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 374 StringRef name = check(coffObj->getSymbolName(sym)); 375 if (name.consume_front(".pdata$") || name.consume_front(".xdata$") || 376 name.consume_front(".eh_frame$")) { 377 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly 378 // associative to the symbol <func>. 379 auto parentSym = prevailingSectionMap.find(name); 380 if (parentSym != prevailingSectionMap.end()) 381 readAssociativeDefinition(sym, def, parentSym->second); 382 } 383 } 384 385 Symbol *ObjFile::createRegular(COFFSymbolRef sym) { 386 SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; 387 if (sym.isExternal()) { 388 StringRef name = check(coffObj->getSymbolName(sym)); 389 if (sc) 390 return symtab->addRegular(this, name, sym.getGeneric(), sc, 391 sym.getValue()); 392 // For MinGW symbols named .weak.* that point to a discarded section, 393 // don't create an Undefined symbol. If nothing ever refers to the symbol, 394 // everything should be fine. If something actually refers to the symbol 395 // (e.g. the undefined weak alias), linking will fail due to undefined 396 // references at the end. 397 if (config->mingw && name.startswith(".weak.")) 398 return nullptr; 399 return symtab->addUndefined(name, this, false); 400 } 401 if (sc) 402 return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 403 /*IsExternal*/ false, sym.getGeneric(), sc); 404 return nullptr; 405 } 406 407 void ObjFile::initializeSymbols() { 408 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 409 symbols.resize(numSymbols); 410 411 SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases; 412 std::vector<uint32_t> pendingIndexes; 413 pendingIndexes.reserve(numSymbols); 414 415 DenseMap<StringRef, uint32_t> prevailingSectionMap; 416 std::vector<const coff_aux_section_definition *> comdatDefs( 417 coffObj->getNumberOfSections() + 1); 418 419 for (uint32_t i = 0; i < numSymbols; ++i) { 420 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 421 bool prevailingComdat; 422 if (coffSym.isUndefined()) { 423 symbols[i] = createUndefined(coffSym); 424 } else if (coffSym.isWeakExternal()) { 425 symbols[i] = createUndefined(coffSym); 426 uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex; 427 weakAliases.emplace_back(symbols[i], tagIndex); 428 } else if (Optional<Symbol *> optSym = 429 createDefined(coffSym, comdatDefs, prevailingComdat)) { 430 symbols[i] = *optSym; 431 if (config->mingw && prevailingComdat) 432 recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap); 433 } else { 434 // createDefined() returns None if a symbol belongs to a section that 435 // was pending at the point when the symbol was read. This can happen in 436 // two cases: 437 // 1) section definition symbol for a comdat leader; 438 // 2) symbol belongs to a comdat section associated with another section. 439 // In both of these cases, we can expect the section to be resolved by 440 // the time we finish visiting the remaining symbols in the symbol 441 // table. So we postpone the handling of this symbol until that time. 442 pendingIndexes.push_back(i); 443 } 444 i += coffSym.getNumberOfAuxSymbols(); 445 } 446 447 for (uint32_t i : pendingIndexes) { 448 COFFSymbolRef sym = check(coffObj->getSymbol(i)); 449 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 450 if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) 451 readAssociativeDefinition(sym, def); 452 else if (config->mingw) 453 maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); 454 } 455 if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { 456 StringRef name = check(coffObj->getSymbolName(sym)); 457 log("comdat section " + name + 458 " without leader and unassociated, discarding"); 459 continue; 460 } 461 symbols[i] = createRegular(sym); 462 } 463 464 for (auto &kv : weakAliases) { 465 Symbol *sym = kv.first; 466 uint32_t idx = kv.second; 467 checkAndSetWeakAlias(symtab, this, sym, symbols[idx]); 468 } 469 470 // Free the memory used by sparseChunks now that symbol loading is finished. 471 decltype(sparseChunks)().swap(sparseChunks); 472 } 473 474 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) { 475 StringRef name = check(coffObj->getSymbolName(sym)); 476 return symtab->addUndefined(name, this, sym.isWeakExternal()); 477 } 478 479 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, 480 int32_t section) { 481 uint32_t numSymbols = obj->getNumberOfSymbols(); 482 for (uint32_t i = 0; i < numSymbols; ++i) { 483 COFFSymbolRef sym = check(obj->getSymbol(i)); 484 if (sym.getSectionNumber() != section) 485 continue; 486 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) 487 return def; 488 } 489 return nullptr; 490 } 491 492 void ObjFile::handleComdatSelection( 493 COFFSymbolRef sym, COMDATType &selection, bool &prevailing, 494 DefinedRegular *leader, 495 const llvm::object::coff_aux_section_definition *def) { 496 if (prevailing) 497 return; 498 // There's already an existing comdat for this symbol: `Leader`. 499 // Use the comdats's selection field to determine if the new 500 // symbol in `Sym` should be discarded, produce a duplicate symbol 501 // error, etc. 502 503 SectionChunk *leaderChunk = leader->getChunk(); 504 COMDATType leaderSelection = leaderChunk->selection; 505 506 assert(leader->data && "Comdat leader without SectionChunk?"); 507 if (isa<BitcodeFile>(leader->file)) { 508 // If the leader is only a LTO symbol, we don't know e.g. its final size 509 // yet, so we can't do the full strict comdat selection checking yet. 510 selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY; 511 } 512 513 if ((selection == IMAGE_COMDAT_SELECT_ANY && 514 leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || 515 (selection == IMAGE_COMDAT_SELECT_LARGEST && 516 leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { 517 // cl.exe picks "any" for vftables when building with /GR- and 518 // "largest" when building with /GR. To be able to link object files 519 // compiled with each flag, "any" and "largest" are merged as "largest". 520 leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; 521 } 522 523 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". 524 // Clang on the other hand picks "any". To be able to link two object files 525 // with a __declspec(selectany) declaration, one compiled with gcc and the 526 // other with clang, we merge them as proper "same size as" 527 if (config->mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && 528 leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || 529 (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && 530 leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { 531 leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; 532 } 533 534 // Other than that, comdat selections must match. This is a bit more 535 // strict than link.exe which allows merging "any" and "largest" if "any" 536 // is the first symbol the linker sees, and it allows merging "largest" 537 // with everything (!) if "largest" is the first symbol the linker sees. 538 // Making this symmetric independent of which selection is seen first 539 // seems better though. 540 // (This behavior matches ModuleLinker::getComdatResult().) 541 if (selection != leaderSelection) { 542 log(("conflicting comdat type for " + toString(*leader) + ": " + 543 Twine((int)leaderSelection) + " in " + toString(leader->getFile()) + 544 " and " + Twine((int)selection) + " in " + toString(this)) 545 .str()); 546 symtab->reportDuplicate(leader, this); 547 return; 548 } 549 550 switch (selection) { 551 case IMAGE_COMDAT_SELECT_NODUPLICATES: 552 symtab->reportDuplicate(leader, this); 553 break; 554 555 case IMAGE_COMDAT_SELECT_ANY: 556 // Nothing to do. 557 break; 558 559 case IMAGE_COMDAT_SELECT_SAME_SIZE: 560 if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { 561 if (!config->mingw) { 562 symtab->reportDuplicate(leader, this); 563 } else { 564 const coff_aux_section_definition *leaderDef = nullptr; 565 if (leaderChunk->file) 566 leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(), 567 leaderChunk->getSectionNumber()); 568 if (!leaderDef || leaderDef->Length != def->Length) 569 symtab->reportDuplicate(leader, this); 570 } 571 } 572 break; 573 574 case IMAGE_COMDAT_SELECT_EXACT_MATCH: { 575 SectionChunk newChunk(this, getSection(sym)); 576 // link.exe only compares section contents here and doesn't complain 577 // if the two comdat sections have e.g. different alignment. 578 // Match that. 579 if (leaderChunk->getContents() != newChunk.getContents()) 580 symtab->reportDuplicate(leader, this, &newChunk, sym.getValue()); 581 break; 582 } 583 584 case IMAGE_COMDAT_SELECT_ASSOCIATIVE: 585 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. 586 // (This means lld-link doesn't produce duplicate symbol errors for 587 // associative comdats while link.exe does, but associate comdats 588 // are never extern in practice.) 589 llvm_unreachable("createDefined not called for associative comdats"); 590 591 case IMAGE_COMDAT_SELECT_LARGEST: 592 if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { 593 // Replace the existing comdat symbol with the new one. 594 StringRef name = check(coffObj->getSymbolName(sym)); 595 // FIXME: This is incorrect: With /opt:noref, the previous sections 596 // make it into the final executable as well. Correct handling would 597 // be to undo reading of the whole old section that's being replaced, 598 // or doing one pass that determines what the final largest comdat 599 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading 600 // only the largest one. 601 replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true, 602 /*IsExternal*/ true, sym.getGeneric(), 603 nullptr); 604 prevailing = true; 605 } 606 break; 607 608 case IMAGE_COMDAT_SELECT_NEWEST: 609 llvm_unreachable("should have been rejected earlier"); 610 } 611 } 612 613 Optional<Symbol *> ObjFile::createDefined( 614 COFFSymbolRef sym, 615 std::vector<const coff_aux_section_definition *> &comdatDefs, 616 bool &prevailing) { 617 prevailing = false; 618 auto getName = [&]() { return check(coffObj->getSymbolName(sym)); }; 619 620 if (sym.isCommon()) { 621 auto *c = make<CommonChunk>(sym); 622 chunks.push_back(c); 623 return symtab->addCommon(this, getName(), sym.getValue(), sym.getGeneric(), 624 c); 625 } 626 627 if (sym.isAbsolute()) { 628 StringRef name = getName(); 629 630 if (name == "@feat.00") 631 feat00Flags = sym.getValue(); 632 // Skip special symbols. 633 if (ignoredSymbolName(name)) 634 return nullptr; 635 636 if (sym.isExternal()) 637 return symtab->addAbsolute(name, sym); 638 return make<DefinedAbsolute>(name, sym); 639 } 640 641 int32_t sectionNumber = sym.getSectionNumber(); 642 if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) 643 return nullptr; 644 645 if (llvm::COFF::isReservedSectionNumber(sectionNumber)) 646 fatal(toString(this) + ": " + getName() + 647 " should not refer to special section " + Twine(sectionNumber)); 648 649 if ((uint32_t)sectionNumber >= sparseChunks.size()) 650 fatal(toString(this) + ": " + getName() + 651 " should not refer to non-existent section " + Twine(sectionNumber)); 652 653 // Comdat handling. 654 // A comdat symbol consists of two symbol table entries. 655 // The first symbol entry has the name of the section (e.g. .text), fixed 656 // values for the other fields, and one auxiliary record. 657 // The second symbol entry has the name of the comdat symbol, called the 658 // "comdat leader". 659 // When this function is called for the first symbol entry of a comdat, 660 // it sets comdatDefs and returns None, and when it's called for the second 661 // symbol entry it reads comdatDefs and then sets it back to nullptr. 662 663 // Handle comdat leader. 664 if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { 665 comdatDefs[sectionNumber] = nullptr; 666 DefinedRegular *leader; 667 668 if (sym.isExternal()) { 669 std::tie(leader, prevailing) = 670 symtab->addComdat(this, getName(), sym.getGeneric()); 671 } else { 672 leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 673 /*IsExternal*/ false, sym.getGeneric()); 674 prevailing = true; 675 } 676 677 if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || 678 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe 679 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. 680 def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { 681 fatal("unknown comdat type " + std::to_string((int)def->Selection) + 682 " for " + getName() + " in " + toString(this)); 683 } 684 COMDATType selection = (COMDATType)def->Selection; 685 686 if (leader->isCOMDAT) 687 handleComdatSelection(sym, selection, prevailing, leader, def); 688 689 if (prevailing) { 690 SectionChunk *c = readSection(sectionNumber, def, getName()); 691 sparseChunks[sectionNumber] = c; 692 c->sym = cast<DefinedRegular>(leader); 693 c->selection = selection; 694 cast<DefinedRegular>(leader)->data = &c->repl; 695 } else { 696 sparseChunks[sectionNumber] = nullptr; 697 } 698 return leader; 699 } 700 701 // Prepare to handle the comdat leader symbol by setting the section's 702 // ComdatDefs pointer if we encounter a non-associative comdat. 703 if (sparseChunks[sectionNumber] == pendingComdat) { 704 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 705 if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) 706 comdatDefs[sectionNumber] = def; 707 } 708 return None; 709 } 710 711 return createRegular(sym); 712 } 713 714 MachineTypes ObjFile::getMachineType() { 715 if (coffObj) 716 return static_cast<MachineTypes>(coffObj->getMachine()); 717 return IMAGE_FILE_MACHINE_UNKNOWN; 718 } 719 720 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { 721 if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName)) 722 return sec->consumeDebugMagic(); 723 return {}; 724 } 725 726 // OBJ files systematically store critical information in a .debug$S stream, 727 // even if the TU was compiled with no debug info. At least two records are 728 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the 729 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is 730 // currently used to initialize the hotPatchable member. 731 void ObjFile::initializeFlags() { 732 ArrayRef<uint8_t> data = getDebugSection(".debug$S"); 733 if (data.empty()) 734 return; 735 736 DebugSubsectionArray subsections; 737 738 BinaryStreamReader reader(data, support::little); 739 ExitOnError exitOnErr; 740 exitOnErr(reader.readArray(subsections, data.size())); 741 742 for (const DebugSubsectionRecord &ss : subsections) { 743 if (ss.kind() != DebugSubsectionKind::Symbols) 744 continue; 745 746 unsigned offset = 0; 747 748 // Only parse the first two records. We are only looking for S_OBJNAME 749 // and S_COMPILE3, and they usually appear at the beginning of the 750 // stream. 751 for (unsigned i = 0; i < 2; ++i) { 752 Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset); 753 if (!sym) { 754 consumeError(sym.takeError()); 755 return; 756 } 757 if (sym->kind() == SymbolKind::S_COMPILE3) { 758 auto cs = 759 cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get())); 760 hotPatchable = 761 (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; 762 } 763 if (sym->kind() == SymbolKind::S_OBJNAME) { 764 auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>( 765 sym.get())); 766 pchSignature = objName.Signature; 767 } 768 offset += sym->length(); 769 } 770 } 771 } 772 773 // Depending on the compilation flags, OBJs can refer to external files, 774 // necessary to merge this OBJ into the final PDB. We currently support two 775 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. 776 // And PDB type servers, when compiling with /Zi. This function extracts these 777 // dependencies and makes them available as a TpiSource interface (see 778 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular 779 // output even with /Yc and /Yu and with /Zi. 780 void ObjFile::initializeDependencies() { 781 if (!config->debug) 782 return; 783 784 bool isPCH = false; 785 786 ArrayRef<uint8_t> data = getDebugSection(".debug$P"); 787 if (!data.empty()) 788 isPCH = true; 789 else 790 data = getDebugSection(".debug$T"); 791 792 // Don't make a TpiSource for objects with no debug info. If the object has 793 // symbols but no types, make a plain, empty TpiSource anyway, because it 794 // simplifies adding the symbols later. 795 if (data.empty()) { 796 if (!debugChunks.empty()) 797 debugTypesObj = makeTpiSource(this); 798 return; 799 } 800 801 // Get the first type record. It will indicate if this object uses a type 802 // server (/Zi) or a PCH file (/Yu). 803 CVTypeArray types; 804 BinaryStreamReader reader(data, support::little); 805 cantFail(reader.readArray(types, reader.getLength())); 806 CVTypeArray::Iterator firstType = types.begin(); 807 if (firstType == types.end()) 808 return; 809 810 // Remember the .debug$T or .debug$P section. 811 debugTypes = data; 812 813 // This object file is a PCH file that others will depend on. 814 if (isPCH) { 815 debugTypesObj = makePrecompSource(this); 816 return; 817 } 818 819 // This object file was compiled with /Zi. Enqueue the PDB dependency. 820 if (firstType->kind() == LF_TYPESERVER2) { 821 TypeServer2Record ts = cantFail( 822 TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data())); 823 debugTypesObj = makeUseTypeServerSource(this, ts); 824 PDBInputFile::enqueue(ts.getName(), this); 825 return; 826 } 827 828 // This object was compiled with /Yu. It uses types from another object file 829 // with a matching signature. 830 if (firstType->kind() == LF_PRECOMP) { 831 PrecompRecord precomp = cantFail( 832 TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data())); 833 debugTypesObj = makeUsePrecompSource(this, precomp); 834 // Drop the LF_PRECOMP record from the input stream. 835 debugTypes = debugTypes.drop_front(firstType->RecordData.size()); 836 return; 837 } 838 839 // This is a plain old object file. 840 debugTypesObj = makeTpiSource(this); 841 } 842 843 // Make a PDB path assuming the PDB is in the same folder as the OBJ 844 static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) { 845 StringRef localPath = 846 !file->parentName.empty() ? file->parentName : file->getName(); 847 SmallString<128> path = sys::path::parent_path(localPath); 848 849 // Currently, type server PDBs are only created by MSVC cl, which only runs 850 // on Windows, so we can assume type server paths are Windows style. 851 sys::path::append(path, 852 sys::path::filename(tSPath, sys::path::Style::windows)); 853 return std::string(path.str()); 854 } 855 856 // The casing of the PDB path stamped in the OBJ can differ from the actual path 857 // on disk. With this, we ensure to always use lowercase as a key for the 858 // PDBInputFile::instances map, at least on Windows. 859 static std::string normalizePdbPath(StringRef path) { 860 #if defined(_WIN32) 861 return path.lower(); 862 #else // LINUX 863 return std::string(path); 864 #endif 865 } 866 867 // If existing, return the actual PDB path on disk. 868 static Optional<std::string> findPdbPath(StringRef pdbPath, 869 ObjFile *dependentFile) { 870 // Ensure the file exists before anything else. In some cases, if the path 871 // points to a removable device, Driver::enqueuePath() would fail with an 872 // error (EAGAIN, "resource unavailable try again") which we want to skip 873 // silently. 874 if (llvm::sys::fs::exists(pdbPath)) 875 return normalizePdbPath(pdbPath); 876 std::string ret = getPdbBaseName(dependentFile, pdbPath); 877 if (llvm::sys::fs::exists(ret)) 878 return normalizePdbPath(ret); 879 return None; 880 } 881 882 PDBInputFile::PDBInputFile(MemoryBufferRef m) : InputFile(PDBKind, m) {} 883 884 PDBInputFile::~PDBInputFile() = default; 885 886 PDBInputFile *PDBInputFile::findFromRecordPath(StringRef path, 887 ObjFile *fromFile) { 888 auto p = findPdbPath(path.str(), fromFile); 889 if (!p) 890 return nullptr; 891 auto it = PDBInputFile::instances.find(*p); 892 if (it != PDBInputFile::instances.end()) 893 return it->second; 894 return nullptr; 895 } 896 897 void PDBInputFile::enqueue(StringRef path, ObjFile *fromFile) { 898 auto p = findPdbPath(path.str(), fromFile); 899 if (!p) 900 return; 901 auto it = PDBInputFile::instances.emplace(*p, nullptr); 902 if (!it.second) 903 return; // already scheduled for load 904 driver->enqueuePDB(*p); 905 } 906 907 void PDBInputFile::parse() { 908 PDBInputFile::instances[mb.getBufferIdentifier().str()] = this; 909 910 std::unique_ptr<pdb::IPDBSession> thisSession; 911 loadErr.emplace(pdb::NativeSession::createFromPdb( 912 MemoryBuffer::getMemBuffer(mb, false), thisSession)); 913 if (*loadErr) 914 return; // fail silently at this point - the error will be handled later, 915 // when merging the debug type stream 916 917 session.reset(static_cast<pdb::NativeSession *>(thisSession.release())); 918 919 pdb::PDBFile &pdbFile = session->getPDBFile(); 920 auto expectedInfo = pdbFile.getPDBInfoStream(); 921 // All PDB Files should have an Info stream. 922 if (!expectedInfo) { 923 loadErr.emplace(expectedInfo.takeError()); 924 return; 925 } 926 debugTypesObj = makeTypeServerSource(this); 927 } 928 929 // Used only for DWARF debug info, which is not common (except in MinGW 930 // environments). This returns an optional pair of file name and line 931 // number for where the variable was defined. 932 Optional<std::pair<StringRef, uint32_t>> 933 ObjFile::getVariableLocation(StringRef var) { 934 if (!dwarf) { 935 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 936 if (!dwarf) 937 return None; 938 } 939 if (config->machine == I386) 940 var.consume_front("_"); 941 Optional<std::pair<std::string, unsigned>> ret = dwarf->getVariableLoc(var); 942 if (!ret) 943 return None; 944 return std::make_pair(saver.save(ret->first), ret->second); 945 } 946 947 // Used only for DWARF debug info, which is not common (except in MinGW 948 // environments). 949 Optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, 950 uint32_t sectionIndex) { 951 if (!dwarf) { 952 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 953 if (!dwarf) 954 return None; 955 } 956 957 return dwarf->getDILineInfo(offset, sectionIndex); 958 } 959 960 void ImportFile::parse() { 961 const char *buf = mb.getBufferStart(); 962 const auto *hdr = reinterpret_cast<const coff_import_header *>(buf); 963 964 // Check if the total size is valid. 965 if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) 966 fatal("broken import library"); 967 968 // Read names and create an __imp_ symbol. 969 StringRef name = saver.save(StringRef(buf + sizeof(*hdr))); 970 StringRef impName = saver.save("__imp_" + name); 971 const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1; 972 dllName = std::string(StringRef(nameStart)); 973 StringRef extName; 974 switch (hdr->getNameType()) { 975 case IMPORT_ORDINAL: 976 extName = ""; 977 break; 978 case IMPORT_NAME: 979 extName = name; 980 break; 981 case IMPORT_NAME_NOPREFIX: 982 extName = ltrim1(name, "?@_"); 983 break; 984 case IMPORT_NAME_UNDECORATE: 985 extName = ltrim1(name, "?@_"); 986 extName = extName.substr(0, extName.find('@')); 987 break; 988 } 989 990 this->hdr = hdr; 991 externalName = extName; 992 993 impSym = symtab->addImportData(impName, this); 994 // If this was a duplicate, we logged an error but may continue; 995 // in this case, impSym is nullptr. 996 if (!impSym) 997 return; 998 999 if (hdr->getType() == llvm::COFF::IMPORT_CONST) 1000 static_cast<void>(symtab->addImportData(name, this)); 1001 1002 // If type is function, we need to create a thunk which jump to an 1003 // address pointed by the __imp_ symbol. (This allows you to call 1004 // DLL functions just like regular non-DLL functions.) 1005 if (hdr->getType() == llvm::COFF::IMPORT_CODE) 1006 thunkSym = symtab->addImportThunk( 1007 name, cast_or_null<DefinedImportData>(impSym), hdr->Machine); 1008 } 1009 1010 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1011 uint64_t offsetInArchive) 1012 : BitcodeFile(mb, archiveName, offsetInArchive, {}) {} 1013 1014 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1015 uint64_t offsetInArchive, 1016 std::vector<Symbol *> &&symbols) 1017 : InputFile(BitcodeKind, mb), symbols(std::move(symbols)) { 1018 std::string path = mb.getBufferIdentifier().str(); 1019 if (config->thinLTOIndexOnly) 1020 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1021 1022 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1023 // name. If two archives define two members with the same name, this 1024 // causes a collision which result in only one of the objects being taken 1025 // into consideration at LTO time (which very likely causes undefined 1026 // symbols later in the link stage). So we append file offset to make 1027 // filename unique. 1028 MemoryBufferRef mbref( 1029 mb.getBuffer(), 1030 saver.save(archiveName.empty() ? path 1031 : archiveName + sys::path::filename(path) + 1032 utostr(offsetInArchive))); 1033 1034 obj = check(lto::InputFile::create(mbref)); 1035 } 1036 1037 BitcodeFile::~BitcodeFile() = default; 1038 1039 namespace { 1040 // Convenience class for initializing a coff_section with specific flags. 1041 class FakeSection { 1042 public: 1043 FakeSection(int c) { section.Characteristics = c; } 1044 1045 coff_section section; 1046 }; 1047 1048 // Convenience class for initializing a SectionChunk with specific flags. 1049 class FakeSectionChunk { 1050 public: 1051 FakeSectionChunk(const coff_section *section) : chunk(nullptr, section) { 1052 // Comdats from LTO files can't be fully treated as regular comdats 1053 // at this point; we don't know what size or contents they are going to 1054 // have, so we can't do proper checking of such aspects of them. 1055 chunk.selection = IMAGE_COMDAT_SELECT_ANY; 1056 } 1057 1058 SectionChunk chunk; 1059 }; 1060 1061 FakeSection ltoTextSection(IMAGE_SCN_MEM_EXECUTE); 1062 FakeSection ltoDataSection(IMAGE_SCN_CNT_INITIALIZED_DATA); 1063 FakeSectionChunk ltoTextSectionChunk(<oTextSection.section); 1064 FakeSectionChunk ltoDataSectionChunk(<oDataSection.section); 1065 } // namespace 1066 1067 void BitcodeFile::parse() { 1068 std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); 1069 for (size_t i = 0; i != obj->getComdatTable().size(); ++i) 1070 // FIXME: Check nodeduplicate 1071 comdat[i] = 1072 symtab->addComdat(this, saver.save(obj->getComdatTable()[i].first)); 1073 for (const lto::InputFile::Symbol &objSym : obj->symbols()) { 1074 StringRef symName = saver.save(objSym.getName()); 1075 int comdatIndex = objSym.getComdatIndex(); 1076 Symbol *sym; 1077 SectionChunk *fakeSC = nullptr; 1078 if (objSym.isExecutable()) 1079 fakeSC = <oTextSectionChunk.chunk; 1080 else 1081 fakeSC = <oDataSectionChunk.chunk; 1082 if (objSym.isUndefined()) { 1083 sym = symtab->addUndefined(symName, this, false); 1084 } else if (objSym.isCommon()) { 1085 sym = symtab->addCommon(this, symName, objSym.getCommonSize()); 1086 } else if (objSym.isWeak() && objSym.isIndirect()) { 1087 // Weak external. 1088 sym = symtab->addUndefined(symName, this, true); 1089 std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); 1090 Symbol *alias = symtab->addUndefined(saver.save(fallback)); 1091 checkAndSetWeakAlias(symtab, this, sym, alias); 1092 } else if (comdatIndex != -1) { 1093 if (symName == obj->getComdatTable()[comdatIndex].first) { 1094 sym = comdat[comdatIndex].first; 1095 if (cast<DefinedRegular>(sym)->data == nullptr) 1096 cast<DefinedRegular>(sym)->data = &fakeSC->repl; 1097 } else if (comdat[comdatIndex].second) { 1098 sym = symtab->addRegular(this, symName, nullptr, fakeSC); 1099 } else { 1100 sym = symtab->addUndefined(symName, this, false); 1101 } 1102 } else { 1103 sym = symtab->addRegular(this, symName, nullptr, fakeSC); 1104 } 1105 symbols.push_back(sym); 1106 if (objSym.isUsed()) 1107 config->gcroot.push_back(sym); 1108 } 1109 directives = obj->getCOFFLinkerOpts(); 1110 } 1111 1112 MachineTypes BitcodeFile::getMachineType() { 1113 switch (Triple(obj->getTargetTriple()).getArch()) { 1114 case Triple::x86_64: 1115 return AMD64; 1116 case Triple::x86: 1117 return I386; 1118 case Triple::arm: 1119 return ARMNT; 1120 case Triple::aarch64: 1121 return ARM64; 1122 default: 1123 return IMAGE_FILE_MACHINE_UNKNOWN; 1124 } 1125 } 1126 1127 std::string lld::coff::replaceThinLTOSuffix(StringRef path) { 1128 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1129 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1130 1131 if (path.consume_back(suffix)) 1132 return (path + repl).str(); 1133 return std::string(path); 1134 } 1135 1136 static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) { 1137 for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) { 1138 const coff_section *sec = CHECK(coffObj->getSection(i), file); 1139 if (rva >= sec->VirtualAddress && 1140 rva <= sec->VirtualAddress + sec->VirtualSize) { 1141 return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0; 1142 } 1143 } 1144 return false; 1145 } 1146 1147 void DLLFile::parse() { 1148 // Parse a memory buffer as a PE-COFF executable. 1149 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 1150 1151 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 1152 bin.release(); 1153 coffObj.reset(obj); 1154 } else { 1155 error(toString(this) + " is not a COFF file"); 1156 return; 1157 } 1158 1159 if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) { 1160 error(toString(this) + " is not a PE-COFF executable"); 1161 return; 1162 } 1163 1164 for (const auto &exp : coffObj->export_directories()) { 1165 StringRef dllName, symbolName; 1166 uint32_t exportRVA; 1167 checkError(exp.getDllName(dllName)); 1168 checkError(exp.getSymbolName(symbolName)); 1169 checkError(exp.getExportRVA(exportRVA)); 1170 1171 if (symbolName.empty()) 1172 continue; 1173 1174 bool code = isRVACode(coffObj.get(), exportRVA, this); 1175 1176 Symbol *s = make<Symbol>(); 1177 s->dllName = dllName; 1178 s->symbolName = symbolName; 1179 s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA; 1180 s->nameType = ImportNameType::IMPORT_NAME; 1181 1182 if (coffObj->getMachine() == I386) { 1183 s->symbolName = symbolName = saver.save("_" + symbolName); 1184 s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX; 1185 } 1186 1187 StringRef impName = saver.save("__imp_" + symbolName); 1188 symtab->addLazyDLLSymbol(this, s, impName); 1189 if (code) 1190 symtab->addLazyDLLSymbol(this, s, symbolName); 1191 } 1192 } 1193 1194 MachineTypes DLLFile::getMachineType() { 1195 if (coffObj) 1196 return static_cast<MachineTypes>(coffObj->getMachine()); 1197 return IMAGE_FILE_MACHINE_UNKNOWN; 1198 } 1199 1200 void DLLFile::makeImport(DLLFile::Symbol *s) { 1201 if (!seen.insert(s->symbolName).second) 1202 return; 1203 1204 size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs 1205 size_t size = sizeof(coff_import_header) + impSize; 1206 char *buf = bAlloc.Allocate<char>(size); 1207 memset(buf, 0, size); 1208 char *p = buf; 1209 auto *imp = reinterpret_cast<coff_import_header *>(p); 1210 p += sizeof(*imp); 1211 imp->Sig2 = 0xFFFF; 1212 imp->Machine = coffObj->getMachine(); 1213 imp->SizeOfData = impSize; 1214 imp->OrdinalHint = 0; // Only linking by name 1215 imp->TypeInfo = (s->nameType << 2) | s->importType; 1216 1217 // Write symbol name and DLL name. 1218 memcpy(p, s->symbolName.data(), s->symbolName.size()); 1219 p += s->symbolName.size() + 1; 1220 memcpy(p, s->dllName.data(), s->dllName.size()); 1221 MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName); 1222 ImportFile *impFile = make<ImportFile>(mbref); 1223 symtab->addFile(impFile); 1224 } 1225