1 //===- ICF.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // ICF is short for Identical Code Folding. That is a size optimization to 10 // identify and merge two or more read-only sections (typically functions) 11 // that happened to have the same contents. It usually reduces output size 12 // by a few percent. 13 // 14 // On Windows, ICF is enabled by default. 15 // 16 // See ELF/ICF.cpp for the details about the algorithm. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "ICF.h" 21 #include "Chunks.h" 22 #include "Symbols.h" 23 #include "lld/Common/ErrorHandler.h" 24 #include "lld/Common/Timer.h" 25 #include "llvm/ADT/Hashing.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/Parallel.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/xxhash.h" 30 #include <algorithm> 31 #include <atomic> 32 #include <vector> 33 34 using namespace llvm; 35 36 namespace lld { 37 namespace coff { 38 39 static Timer icfTimer("ICF", Timer::root()); 40 41 class ICF { 42 public: 43 ICF(ICFLevel icfLevel) : icfLevel(icfLevel){}; 44 void run(ArrayRef<Chunk *> v); 45 46 private: 47 void segregate(size_t begin, size_t end, bool constant); 48 49 bool assocEquals(const SectionChunk *a, const SectionChunk *b); 50 51 bool equalsConstant(const SectionChunk *a, const SectionChunk *b); 52 bool equalsVariable(const SectionChunk *a, const SectionChunk *b); 53 54 bool isEligible(SectionChunk *c); 55 56 size_t findBoundary(size_t begin, size_t end); 57 58 void forEachClassRange(size_t begin, size_t end, 59 std::function<void(size_t, size_t)> fn); 60 61 void forEachClass(std::function<void(size_t, size_t)> fn); 62 63 std::vector<SectionChunk *> chunks; 64 int cnt = 0; 65 std::atomic<bool> repeat = {false}; 66 ICFLevel icfLevel = ICFLevel::All; 67 }; 68 69 // Returns true if section S is subject of ICF. 70 // 71 // Microsoft's documentation 72 // (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April 73 // 2017) says that /opt:icf folds both functions and read-only data. 74 // Despite that, the MSVC linker folds only functions. We found 75 // a few instances of programs that are not safe for data merging. 76 // Therefore, we merge only functions just like the MSVC tool. However, we also 77 // merge read-only sections in a couple of cases where the address of the 78 // section is insignificant to the user program and the behaviour matches that 79 // of the Visual C++ linker. 80 bool ICF::isEligible(SectionChunk *c) { 81 // Non-comdat chunks, dead chunks, and writable chunks are not eligible. 82 bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE; 83 if (!c->isCOMDAT() || !c->live || writable) 84 return false; 85 86 // Under regular (not safe) ICF, all code sections are eligible. 87 if ((icfLevel == ICFLevel::All) && 88 c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE) 89 return true; 90 91 // .pdata and .xdata unwind info sections are eligible. 92 StringRef outSecName = c->getSectionName().split('$').first; 93 if (outSecName == ".pdata" || outSecName == ".xdata") 94 return true; 95 96 // So are vtables. 97 if (c->sym && c->sym->getName().startswith("??_7")) 98 return true; 99 100 // Anything else not in an address-significance table is eligible. 101 return !c->keepUnique; 102 } 103 104 // Split an equivalence class into smaller classes. 105 void ICF::segregate(size_t begin, size_t end, bool constant) { 106 while (begin < end) { 107 // Divide [Begin, End) into two. Let Mid be the start index of the 108 // second group. 109 auto bound = std::stable_partition( 110 chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) { 111 if (constant) 112 return equalsConstant(chunks[begin], s); 113 return equalsVariable(chunks[begin], s); 114 }); 115 size_t mid = bound - chunks.begin(); 116 117 // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an 118 // equivalence class ID because every group ends with a unique index. 119 for (size_t i = begin; i < mid; ++i) 120 chunks[i]->eqClass[(cnt + 1) % 2] = mid; 121 122 // If we created a group, we need to iterate the main loop again. 123 if (mid != end) 124 repeat = true; 125 126 begin = mid; 127 } 128 } 129 130 // Returns true if two sections' associative children are equal. 131 bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) { 132 // Ignore associated metadata sections that don't participate in ICF, such as 133 // debug info and CFGuard metadata. 134 auto considerForICF = [](const SectionChunk &assoc) { 135 StringRef Name = assoc.getSectionName(); 136 return !(Name.startswith(".debug") || Name == ".gfids$y" || 137 Name == ".giats$y" || Name == ".gljmp$y"); 138 }; 139 auto ra = make_filter_range(a->children(), considerForICF); 140 auto rb = make_filter_range(b->children(), considerForICF); 141 return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(), 142 [&](const SectionChunk &ia, const SectionChunk &ib) { 143 return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2]; 144 }); 145 } 146 147 // Compare "non-moving" part of two sections, namely everything 148 // except relocation targets. 149 bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) { 150 if (a->relocsSize != b->relocsSize) 151 return false; 152 153 // Compare relocations. 154 auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) { 155 if (r1.Type != r2.Type || 156 r1.VirtualAddress != r2.VirtualAddress) { 157 return false; 158 } 159 Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex); 160 Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex); 161 if (b1 == b2) 162 return true; 163 if (auto *d1 = dyn_cast<DefinedRegular>(b1)) 164 if (auto *d2 = dyn_cast<DefinedRegular>(b2)) 165 return d1->getValue() == d2->getValue() && 166 d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2]; 167 return false; 168 }; 169 if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(), 170 b->getRelocs().begin(), eq)) 171 return false; 172 173 // Compare section attributes and contents. 174 return a->getOutputCharacteristics() == b->getOutputCharacteristics() && 175 a->getSectionName() == b->getSectionName() && 176 a->header->SizeOfRawData == b->header->SizeOfRawData && 177 a->checksum == b->checksum && a->getContents() == b->getContents() && 178 assocEquals(a, b); 179 } 180 181 // Compare "moving" part of two sections, namely relocation targets. 182 bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) { 183 // Compare relocations. 184 auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) { 185 Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex); 186 Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex); 187 if (b1 == b2) 188 return true; 189 if (auto *d1 = dyn_cast<DefinedRegular>(b1)) 190 if (auto *d2 = dyn_cast<DefinedRegular>(b2)) 191 return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2]; 192 return false; 193 }; 194 return std::equal(a->getRelocs().begin(), a->getRelocs().end(), 195 b->getRelocs().begin(), eq) && 196 assocEquals(a, b); 197 } 198 199 // Find the first Chunk after Begin that has a different class from Begin. 200 size_t ICF::findBoundary(size_t begin, size_t end) { 201 for (size_t i = begin + 1; i < end; ++i) 202 if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2]) 203 return i; 204 return end; 205 } 206 207 void ICF::forEachClassRange(size_t begin, size_t end, 208 std::function<void(size_t, size_t)> fn) { 209 while (begin < end) { 210 size_t mid = findBoundary(begin, end); 211 fn(begin, mid); 212 begin = mid; 213 } 214 } 215 216 // Call Fn on each class group. 217 void ICF::forEachClass(std::function<void(size_t, size_t)> fn) { 218 // If the number of sections are too small to use threading, 219 // call Fn sequentially. 220 if (chunks.size() < 1024) { 221 forEachClassRange(0, chunks.size(), fn); 222 ++cnt; 223 return; 224 } 225 226 // Shard into non-overlapping intervals, and call Fn in parallel. 227 // The sharding must be completed before any calls to Fn are made 228 // so that Fn can modify the Chunks in its shard without causing data 229 // races. 230 const size_t numShards = 256; 231 size_t step = chunks.size() / numShards; 232 size_t boundaries[numShards + 1]; 233 boundaries[0] = 0; 234 boundaries[numShards] = chunks.size(); 235 parallelForEachN(1, numShards, [&](size_t i) { 236 boundaries[i] = findBoundary((i - 1) * step, chunks.size()); 237 }); 238 parallelForEachN(1, numShards + 1, [&](size_t i) { 239 if (boundaries[i - 1] < boundaries[i]) { 240 forEachClassRange(boundaries[i - 1], boundaries[i], fn); 241 } 242 }); 243 ++cnt; 244 } 245 246 // Merge identical COMDAT sections. 247 // Two sections are considered the same if their section headers, 248 // contents and relocations are all the same. 249 void ICF::run(ArrayRef<Chunk *> vec) { 250 ScopedTimer t(icfTimer); 251 252 // Collect only mergeable sections and group by hash value. 253 uint32_t nextId = 1; 254 for (Chunk *c : vec) { 255 if (auto *sc = dyn_cast<SectionChunk>(c)) { 256 if (isEligible(sc)) 257 chunks.push_back(sc); 258 else 259 sc->eqClass[0] = nextId++; 260 } 261 } 262 263 // Make sure that ICF doesn't merge sections that are being handled by string 264 // tail merging. 265 for (MergeChunk *mc : MergeChunk::instances) 266 if (mc) 267 for (SectionChunk *sc : mc->sections) 268 sc->eqClass[0] = nextId++; 269 270 // Initially, we use hash values to partition sections. 271 parallelForEach(chunks, [&](SectionChunk *sc) { 272 sc->eqClass[0] = xxHash64(sc->getContents()); 273 }); 274 275 // Combine the hashes of the sections referenced by each section into its 276 // hash. 277 for (unsigned cnt = 0; cnt != 2; ++cnt) { 278 parallelForEach(chunks, [&](SectionChunk *sc) { 279 uint32_t hash = sc->eqClass[cnt % 2]; 280 for (Symbol *b : sc->symbols()) 281 if (auto *sym = dyn_cast_or_null<DefinedRegular>(b)) 282 hash += sym->getChunk()->eqClass[cnt % 2]; 283 // Set MSB to 1 to avoid collisions with non-hash classes. 284 sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31); 285 }); 286 } 287 288 // From now on, sections in Chunks are ordered so that sections in 289 // the same group are consecutive in the vector. 290 llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) { 291 return a->eqClass[0] < b->eqClass[0]; 292 }); 293 294 // Compare static contents and assign unique IDs for each static content. 295 forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); }); 296 297 // Split groups by comparing relocations until convergence is obtained. 298 do { 299 repeat = false; 300 forEachClass( 301 [&](size_t begin, size_t end) { segregate(begin, end, false); }); 302 } while (repeat); 303 304 log("ICF needed " + Twine(cnt) + " iterations"); 305 306 // Merge sections in the same classes. 307 forEachClass([&](size_t begin, size_t end) { 308 if (end - begin == 1) 309 return; 310 311 log("Selected " + chunks[begin]->getDebugName()); 312 for (size_t i = begin + 1; i < end; ++i) { 313 log(" Removed " + chunks[i]->getDebugName()); 314 chunks[begin]->replace(chunks[i]); 315 } 316 }); 317 } 318 319 // Entry point to ICF. 320 void doICF(ArrayRef<Chunk *> chunks, ICFLevel icfLevel) { 321 ICF(icfLevel).run(chunks); 322 } 323 324 } // namespace coff 325 } // namespace lld 326