1 //===- ICF.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // ICF is short for Identical Code Folding. That is a size optimization to 10 // identify and merge two or more read-only sections (typically functions) 11 // that happened to have the same contents. It usually reduces output size 12 // by a few percent. 13 // 14 // On Windows, ICF is enabled by default. 15 // 16 // See ELF/ICF.cpp for the details about the algorithm. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "ICF.h" 21 #include "COFFLinkerContext.h" 22 #include "Chunks.h" 23 #include "Symbols.h" 24 #include "lld/Common/ErrorHandler.h" 25 #include "lld/Common/Timer.h" 26 #include "llvm/ADT/Hashing.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/Parallel.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Support/xxhash.h" 31 #include <algorithm> 32 #include <atomic> 33 #include <vector> 34 35 using namespace llvm; 36 37 namespace lld::coff { 38 39 class ICF { 40 public: 41 ICF(COFFLinkerContext &c) : ctx(c){}; 42 void run(); 43 44 private: 45 void segregate(size_t begin, size_t end, bool constant); 46 47 bool assocEquals(const SectionChunk *a, const SectionChunk *b); 48 49 bool equalsConstant(const SectionChunk *a, const SectionChunk *b); 50 bool equalsVariable(const SectionChunk *a, const SectionChunk *b); 51 52 bool isEligible(SectionChunk *c); 53 54 size_t findBoundary(size_t begin, size_t end); 55 56 void forEachClassRange(size_t begin, size_t end, 57 std::function<void(size_t, size_t)> fn); 58 59 void forEachClass(std::function<void(size_t, size_t)> fn); 60 61 std::vector<SectionChunk *> chunks; 62 int cnt = 0; 63 std::atomic<bool> repeat = {false}; 64 65 COFFLinkerContext &ctx; 66 }; 67 68 // Returns true if section S is subject of ICF. 69 // 70 // Microsoft's documentation 71 // (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April 72 // 2017) says that /opt:icf folds both functions and read-only data. 73 // Despite that, the MSVC linker folds only functions. We found 74 // a few instances of programs that are not safe for data merging. 75 // Therefore, we merge only functions just like the MSVC tool. However, we also 76 // merge read-only sections in a couple of cases where the address of the 77 // section is insignificant to the user program and the behaviour matches that 78 // of the Visual C++ linker. 79 bool ICF::isEligible(SectionChunk *c) { 80 // Non-comdat chunks, dead chunks, and writable chunks are not eligible. 81 bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE; 82 if (!c->isCOMDAT() || !c->live || writable) 83 return false; 84 85 // Under regular (not safe) ICF, all code sections are eligible. 86 if ((ctx.config.doICF == ICFLevel::All) && 87 c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE) 88 return true; 89 90 // .pdata and .xdata unwind info sections are eligible. 91 StringRef outSecName = c->getSectionName().split('$').first; 92 if (outSecName == ".pdata" || outSecName == ".xdata") 93 return true; 94 95 // So are vtables. 96 if (c->sym && c->sym->getName().startswith("??_7")) 97 return true; 98 99 // Anything else not in an address-significance table is eligible. 100 return !c->keepUnique; 101 } 102 103 // Split an equivalence class into smaller classes. 104 void ICF::segregate(size_t begin, size_t end, bool constant) { 105 while (begin < end) { 106 // Divide [Begin, End) into two. Let Mid be the start index of the 107 // second group. 108 auto bound = std::stable_partition( 109 chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) { 110 if (constant) 111 return equalsConstant(chunks[begin], s); 112 return equalsVariable(chunks[begin], s); 113 }); 114 size_t mid = bound - chunks.begin(); 115 116 // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an 117 // equivalence class ID because every group ends with a unique index. 118 for (size_t i = begin; i < mid; ++i) 119 chunks[i]->eqClass[(cnt + 1) % 2] = mid; 120 121 // If we created a group, we need to iterate the main loop again. 122 if (mid != end) 123 repeat = true; 124 125 begin = mid; 126 } 127 } 128 129 // Returns true if two sections' associative children are equal. 130 bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) { 131 // Ignore associated metadata sections that don't participate in ICF, such as 132 // debug info and CFGuard metadata. 133 auto considerForICF = [](const SectionChunk &assoc) { 134 StringRef Name = assoc.getSectionName(); 135 return !(Name.startswith(".debug") || Name == ".gfids$y" || 136 Name == ".giats$y" || Name == ".gljmp$y"); 137 }; 138 auto ra = make_filter_range(a->children(), considerForICF); 139 auto rb = make_filter_range(b->children(), considerForICF); 140 return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(), 141 [&](const SectionChunk &ia, const SectionChunk &ib) { 142 return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2]; 143 }); 144 } 145 146 // Compare "non-moving" part of two sections, namely everything 147 // except relocation targets. 148 bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) { 149 if (a->relocsSize != b->relocsSize) 150 return false; 151 152 // Compare relocations. 153 auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) { 154 if (r1.Type != r2.Type || 155 r1.VirtualAddress != r2.VirtualAddress) { 156 return false; 157 } 158 Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex); 159 Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex); 160 if (b1 == b2) 161 return true; 162 if (auto *d1 = dyn_cast<DefinedRegular>(b1)) 163 if (auto *d2 = dyn_cast<DefinedRegular>(b2)) 164 return d1->getValue() == d2->getValue() && 165 d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2]; 166 return false; 167 }; 168 if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(), 169 b->getRelocs().begin(), eq)) 170 return false; 171 172 // Compare section attributes and contents. 173 return a->getOutputCharacteristics() == b->getOutputCharacteristics() && 174 a->getSectionName() == b->getSectionName() && 175 a->header->SizeOfRawData == b->header->SizeOfRawData && 176 a->checksum == b->checksum && a->getContents() == b->getContents() && 177 assocEquals(a, b); 178 } 179 180 // Compare "moving" part of two sections, namely relocation targets. 181 bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) { 182 // Compare relocations. 183 auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) { 184 Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex); 185 Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex); 186 if (b1 == b2) 187 return true; 188 if (auto *d1 = dyn_cast<DefinedRegular>(b1)) 189 if (auto *d2 = dyn_cast<DefinedRegular>(b2)) 190 return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2]; 191 return false; 192 }; 193 return std::equal(a->getRelocs().begin(), a->getRelocs().end(), 194 b->getRelocs().begin(), eq) && 195 assocEquals(a, b); 196 } 197 198 // Find the first Chunk after Begin that has a different class from Begin. 199 size_t ICF::findBoundary(size_t begin, size_t end) { 200 for (size_t i = begin + 1; i < end; ++i) 201 if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2]) 202 return i; 203 return end; 204 } 205 206 void ICF::forEachClassRange(size_t begin, size_t end, 207 std::function<void(size_t, size_t)> fn) { 208 while (begin < end) { 209 size_t mid = findBoundary(begin, end); 210 fn(begin, mid); 211 begin = mid; 212 } 213 } 214 215 // Call Fn on each class group. 216 void ICF::forEachClass(std::function<void(size_t, size_t)> fn) { 217 // If the number of sections are too small to use threading, 218 // call Fn sequentially. 219 if (chunks.size() < 1024) { 220 forEachClassRange(0, chunks.size(), fn); 221 ++cnt; 222 return; 223 } 224 225 // Shard into non-overlapping intervals, and call Fn in parallel. 226 // The sharding must be completed before any calls to Fn are made 227 // so that Fn can modify the Chunks in its shard without causing data 228 // races. 229 const size_t numShards = 256; 230 size_t step = chunks.size() / numShards; 231 size_t boundaries[numShards + 1]; 232 boundaries[0] = 0; 233 boundaries[numShards] = chunks.size(); 234 parallelFor(1, numShards, [&](size_t i) { 235 boundaries[i] = findBoundary((i - 1) * step, chunks.size()); 236 }); 237 parallelFor(1, numShards + 1, [&](size_t i) { 238 if (boundaries[i - 1] < boundaries[i]) { 239 forEachClassRange(boundaries[i - 1], boundaries[i], fn); 240 } 241 }); 242 ++cnt; 243 } 244 245 // Merge identical COMDAT sections. 246 // Two sections are considered the same if their section headers, 247 // contents and relocations are all the same. 248 void ICF::run() { 249 ScopedTimer t(ctx.icfTimer); 250 251 // Collect only mergeable sections and group by hash value. 252 uint32_t nextId = 1; 253 for (Chunk *c : ctx.symtab.getChunks()) { 254 if (auto *sc = dyn_cast<SectionChunk>(c)) { 255 if (isEligible(sc)) 256 chunks.push_back(sc); 257 else 258 sc->eqClass[0] = nextId++; 259 } 260 } 261 262 // Make sure that ICF doesn't merge sections that are being handled by string 263 // tail merging. 264 for (MergeChunk *mc : ctx.mergeChunkInstances) 265 if (mc) 266 for (SectionChunk *sc : mc->sections) 267 sc->eqClass[0] = nextId++; 268 269 // Initially, we use hash values to partition sections. 270 parallelForEach(chunks, [&](SectionChunk *sc) { 271 sc->eqClass[0] = xxHash64(sc->getContents()); 272 }); 273 274 // Combine the hashes of the sections referenced by each section into its 275 // hash. 276 for (unsigned cnt = 0; cnt != 2; ++cnt) { 277 parallelForEach(chunks, [&](SectionChunk *sc) { 278 uint32_t hash = sc->eqClass[cnt % 2]; 279 for (Symbol *b : sc->symbols()) 280 if (auto *sym = dyn_cast_or_null<DefinedRegular>(b)) 281 hash += sym->getChunk()->eqClass[cnt % 2]; 282 // Set MSB to 1 to avoid collisions with non-hash classes. 283 sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31); 284 }); 285 } 286 287 // From now on, sections in Chunks are ordered so that sections in 288 // the same group are consecutive in the vector. 289 llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) { 290 return a->eqClass[0] < b->eqClass[0]; 291 }); 292 293 // Compare static contents and assign unique IDs for each static content. 294 forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); }); 295 296 // Split groups by comparing relocations until convergence is obtained. 297 do { 298 repeat = false; 299 forEachClass( 300 [&](size_t begin, size_t end) { segregate(begin, end, false); }); 301 } while (repeat); 302 303 log("ICF needed " + Twine(cnt) + " iterations"); 304 305 // Merge sections in the same classes. 306 forEachClass([&](size_t begin, size_t end) { 307 if (end - begin == 1) 308 return; 309 310 log("Selected " + chunks[begin]->getDebugName()); 311 for (size_t i = begin + 1; i < end; ++i) { 312 log(" Removed " + chunks[i]->getDebugName()); 313 chunks[begin]->replace(chunks[i]); 314 } 315 }); 316 } 317 318 // Entry point to ICF. 319 void doICF(COFFLinkerContext &ctx) { ICF(ctx).run(); } 320 321 } // namespace lld::coff 322